強化學習是機器學習中專注于序列決策問題的范式。與機器學習和統計學的許多其他領域一樣,數據效率常常是一個主要關注點;即,一個序列決策的智能體需要多少試驗與錯誤的交互數據才能學習到所需的行為?數據效率低下的強化學習面臨的一個關鍵障礙是探索問題,即智能體必須在獲取新知識與利用當前知識以最大化近期性能之間找到平衡。傳統的探索與利用平衡的文獻主要針對智能體能夠在相關的時間框架內接近最優性能的環境。然而,現代人工決策智能體所面對的復雜環境(例如萬維網)使得在任何相關的時間框架內接近最優性能幾乎無望。 本論文的重點是開發應對復雜環境中探索問題的有原則且實用的方法。我們的方法基于一個簡單的觀察,即面對如此復雜的環境時,智能體不應致力于獲取足夠的信息以實現最優行為,而應瞄準一個較為適中的信息集,雖然該信息集可以促進行為改進,但本身不足以實現接近最優的性能。我們設計了一個能夠以這種方式調節探索的智能體,并對其行為進行了理論和實證分析。實際上,該智能體在每個時間段都會決定學習什么,以在信息需求和性能之間取得所需的權衡。正如本論文所闡明的那樣,這類智能體的設計核心在于信息論和有損壓縮的經典工具,這些工具不僅能夠提供有原則的理論保證,也有助于在大規模實踐中實現。
數據高效的強化學習
強化學習(Reinforcement Learning,RL)[Sutton 和 Barto, 1998;Kaelbling 等人, 1996] 是機器學習中專注于序列決策問題的范式。與機器學習和統計學的許多其他領域一樣,數據效率常常是一個主要的關注點;即,序列決策的智能體需要通過多少試錯交互數據才能學習到所需的行為?然而,與其他任何機器學習范式不同的是,RL 中的數據效率要求同時應對三個基本挑戰:
與傳統的監督學習不同,監督學習中的學習者會被提供一個固定的、靜態的數據集,而強化學習的智能體通過與環境的交互自適應地收集數據。廣義上講,探索挑戰歸結為一個序列決策智能體面對的二元選擇:是獲取關于世界的新知識,還是利用現有知識以最大化即時性能?雖然泛化和信用分配帶來的挑戰通常也很重要,但本論文將專注于應對強化學習中的探索問題。盡管如此,我們的解決方案概念設計使得未來的研究可能會發現,將這些想法與處理另外兩個挑戰的方法結合起來,能夠構建一個更全面的數據高效RL智能體。 復雜環境中的探索
學習識別最優行為的智能體是序列決策文獻的主要關注點。事實上,強化學習算法有著悠久的歷史,這些算法引導探索性決策,目的是學習最優行為。然而,學習是一個獲取信息的過程,因此,智能體想要學習的任何內容都需要從與環境的交互中獲取足夠精確的信息;自然地,以這一必要信息量來衡量,有些事情比其他事情更容易學習。 在與復雜環境交互時,識別最優策略可能是一項極其困難的挑戰,因為在任何合理的時間框架內需要學習的內容都過多。因此,有限的智能體必須進行優先排序。一種簡單的方法是指定一個學習目標,可以被視為一個信息集,雖然不足以在環境中實現最優性能,但足以引導有效決策并促進行為改進。然后,智能體可以重新調整其探索,優先收集有關該學習目標的信息,而不是最優行為。 與其讓智能體設計者為智能體設計一個學習目標,本論文中所探討的每個智能體都被設計為能夠以自動化、數據驅動的方式選擇其自己的學習目標。這將智能體設計者的角色從指定目標轉變為賦予智能體確定并適時調整學習目標的能力。設計者可以將學習目標的一般形式作為學習算法的框架的一部分進行指定。傳統的、固定目標的學習算法可以重新用作智能體實現其自身目標的子程序。我們在本論文中引入了一條連貫的研究路線,涵蓋了從多臂賭博機問題到深度強化學習,以解決一個基本問題: 智能體在與復雜環境交互時,應該如何決定學習什么?
優化算法是機器學習和統計推斷的基石。隨著大規模數據集的出現,計算挑戰日益增加,迫使人們追求更高效的算法。現代優化技術通常針對特定的機器學習問題進行定制,這些方法利用問題的獨特結構特征,使其比當前應用于這些問題的方法效率更高。另一個關鍵方面是理解所得到估計量的估計精度。在某些情況下,盡管在訓練集上實現精確優化可能不切實際,但某些簡單而有效的啟發式方法在適當的統計框架內可以表現出令人贊嘆的估計精度。 在本文中,我們從優化和統計的角度研究了幾種大規模算法。第2章和第3章研究了兩種針對結構約束的連續優化算法。第2章集中討論了具有圓柱形約束的無界約束的一種廣義Frank-Wolfe方法。第3章則研究了具有少量極點的多面體約束的類似坐標下降(CD)方法。這兩種方法由于對問題結構的敏感性而表現出最先進的性能。 第4章研究了一種帶有解釋器-響應對之間可能存在不匹配的線性回歸變體。我們研究了一種簡單且高效的啟發式方法,并在統計環境中對其估計誤差進行了嚴格分析。 第5章和第6章研究了兩種決策樹算法。第5章研究了最優決策樹的計算,并引入了一種新的分支定界方法,用于具有一般連續特征的最優決策樹。第6章則轉向在足夠雜質減少條件下對CART算法的分析。我們為滿足該條件的信號函數證明了嚴格的誤差界,并討論了一些滿足該條件的函數類。 第7章研究了一種具有形狀約束的密度估計問題。我們提出了一種立方-牛頓法框架用于計算,并研究了有限混合的逼近性質。
強化學習是專注于序列決策問題的機器學習范式。與許多其他機器學習和統計領域類似,數據效率通常是一個主要關注點,即序列決策代理需要多少試錯交互數據才能學習到期望的行為?數據高效強化學習的一個關鍵障礙是探索問題,即序列決策代理必須在獲取有關環境的新知識和利用當前知識最大化近期性能之間找到平衡。傳統文獻關于平衡探索和利用的研究主要集中在代理可以在相關時間范圍內接近最優性能的環境中。然而,現代人工決策代理涉及復雜環境,例如萬維網,在任何相關時間范圍內都不可能接近最優性能。 本文致力于開發應對復雜環境中探索問題的原則性和實用性方法。我們的方法基于一個簡單的觀察:面對如此復雜的環境,與其試圖獲取足夠的信息以實現最優行為,不如針對一個適度的信息庫,該信息庫雖然能夠促進行為改善,但本身不足以實現近似最優性能。我們設計了一個以這種方式調節探索的代理,并對其行為進行了理論和實證分析。實際上,在每個時間段,該代理決定學習什么,以在信息需求和性能之間達到理想的權衡。 正如本文所闡明的,設計這種代理的核心是經典的信息論和有損壓縮工具,這不僅提供了原則性的理論保證,而且在大規模實踐實施中也具有可行性。
數據高效的強化學習
強化學習(RL)[Sutton and Barto, 1998; Kaelbling et al., 1996] 是一種專注于序列決策問題的機器學習范式。與機器學習和統計學的許多其他領域類似,數據效率通常是一個主要關注點,即序列決策代理需要多少試錯交互數據才能學習到期望的行為?然而,與其他任何機器學習范式不同,RL中的數據效率需要同時應對三個基本挑戰:
探索:明智地優先收集哪些環境數據以改善長期性能。
泛化:穩健地從采樣數據中提取可轉移的信息,擴展到尚未見過的觀測。
信用分配:準確地將每步決策的長序列與延遲的未來結果關聯起來。
與傳統的監督學習不同,在傳統的監督學習中,學習者被提供了一個固定的、靜態的數據集,而RL代理通過與環境的交互自適應地收集數據。廣義上講,探索挑戰歸結為序列決策代理面臨的一個二元選擇:是獲取關于世界的新知識,還是利用當前知識以最大化即時性能。盡管泛化和信用分配帶來的挑戰通常非常顯著,但本文將專注于解決RL中的探索問題。然而,我們的解決方案設計成這樣,以便未來的研究可以將這些理念與處理其他兩個挑戰的方法相結合,從而形成一個更全面的數據高效RL代理。 在復雜環境中的探索 在序列決策文獻中,學習識別最優行為的代理代表了主要的研究重點。事實上,已有許多強化學習算法通過引導探索性決策來學習最優行為。然而,學習是一個獲取信息的過程,因此,任何代理試圖學習的內容都需要從與環境的交互中獲得精確量的信息;自然地,以這種必要信息量來衡量,有些東西比其他東西更容易學習。 在與復雜環境交互時,識別最優策略可能是一個極其困難的挑戰,因為在任何合理的時間范圍內都有太多的東西需要學習。因此,一個受限的代理必須進行優先級排序。一個簡單的方法是指定一個學習目標,這可以看作是一個信息庫,雖然不足以在環境中產生最優性能,但足以指導有效的決策并促進行為改善。然后,代理可以重新定位其探索,優先收集關于這個學習目標的信息,而不是追求最優行為。 與其讓代理設計者為代理制定學習目標,不如讓每個代理自動地、數據驅動地選擇自己的學習目標。這將代理設計者的角色從指定目標轉變為賦予代理設定和適當調整目標的能力。設計者可以將這種學習目標的一般形式作為學習算法的框架的一部分來指定。然后,可以將更傳統的、固定目標的學習算法重新用于代理實現其目標的子程序。本文介紹了一系列連貫的工作,從多臂賭博機問題一直到深度強化學習,以解決一個基本問題: 一個與復雜環境交互的代理應該如何決定學習什么? 這種方法不僅使代理能夠自主選擇和調整學習目標,還使其探索過程更具適應性和效率。通過優先獲取能夠顯著改善決策的信息,即使在無法實現最優行為的情況下,代理也能在復雜環境中取得良好的表現。
與機器學習系統不同,人類可以從少數示例中學習新概念,并有效適應變化的環境。機器學習系統通常需要大量數據來學習類似的概念或適應變化。這是因為它們缺乏領域特定的先驗知識(也稱為歸納偏差)。為了應對這些缺點,元學習旨在通過數據驅動的方式獲得領域特定的歸納偏差,通常是從一組相關數據集中獲得。文獻中的大多數現有元學習方法依賴于豐富的領域或問題特定的數據集。然而,在實踐中,我們通常只能獲取有限數量的此類數據集。因此,在本論文中,我們探討了如何僅從少量數據集中成功進行元學習。為了解決這個問題,我們開發了一個理論框架來理解元學習中的泛化。在此基礎上,我們提出了一類可擴展的算法,這些算法通過原理性的元級正則化來進行元學習先驗,防止數據集的過擬合。然后,我們研究了確保元學習先驗提供可靠不確定性估計的方法,使其適用于交互學習。為此,我們提出了一種在函數空間中的正則化方案,并證明所得到的元學習方法在貝葉斯優化中顯著提高了效率。隨后,我們將該方法擴展到安全約束設置中。此外,我們引入了一種基于模型的元強化學習方法,用于有效地適應控制策略的變化動態。最后,我們提出了一種新的元學習框架,該框架直接逼近數據生成的隨機過程。由于它完全在函數空間中進行元學習,因此不會受到神經網絡高維參數空間中先驗問題的影響。在整個論文中,我們通過醫療保健、分子生物學和自動化機器學習(AutoML)以及機器人控制等實際應用,實驗證明了我們提出的方法的實際有效性。
在機器學習領域,開發在世界中智能行為的代理仍是一個開放性挑戰。對這樣的代理的期望包括高效的探索、最大化長期效用以及能夠有效利用以往數據解決新任務的能力。強化學習(RL)是一種基于通過試錯直接與環境互動來學習的方法,并為我們訓練和部署此類代理提供了途徑。此外,將RL與強大的神經網絡功能逼近器結合使用——一個被稱為“深度RL”的子領域——已顯示出實現這一目標的證據。例如,深度RL已產生了能夠以超人水平玩圍棋的代理、提高微芯片設計的效率,以及學習控制核聚變反應的復雜新策略的代理。部署深度RL的一個主要問題是樣本效率低。具體來說,雖然可以使用深度RL訓練有效的代理,但主要成功案例大多數是在我們可以通過使用模擬器獲得大量在線互動的環境中實現的。然而,在許多現實世界的問題中,我們面臨的情況是樣本成本高昂。正如所暗示的,解決這個問題的一種方式是通過獲取一些以往的數據,通常稱為“離線數據”,這可以加速我們學習這些代理的速度,例如利用探索性數據防止重復部署,或使用人類專家數據快速引導代理朝向有前途的行為等。然而,將這些數據融入現有的深度RL算法的最佳方式并不直觀;簡單地使用RL算法在這些離線數據上進行預訓練,一種稱為“離線RL”的范式作為后續學習的起點,往往是不利的。此外,如何明確地在線派生出由這種離線預訓練積極影響的有用行為尚不清楚。鑒于這些因素,本文提出了一種三管齊下的策略來提高深度RL中的樣本效率。首先,我們研究了在離線數據上進行有效的預訓練。然后,我們解決在線問題,探討在純在線操作時對環境進行高效適應。最后,我們得出結論,使用離線數據在在線行動時明確增強策略。
當前流行的機器學習范式涉及對每一個新任務使用靜態數據集訓練一個獨立模型。與之相反,人類會隨時間積累知識,終身學習范式旨在通過使系統能夠持續地從一系列任務中學習,并保留過去的知識以實現未來學習的高效性,來模擬這一過程。這種范式還提供了諸如避免定期模型訓練、潛在地減少計算和能源需求、以及促進環保的綠色人工智能等優勢。在現代機器學習中,盡管深度神經網絡功能強大,但面臨如災難性遺忘(在新任務學習中丟失先前任務的知識)和負面干擾(先前學到的知識阻礙新任務學習)等挑戰。這些問題源于穩定性-可塑性困境,這需要在保留過去知識(穩定性)與獲取新知識(可塑性)之間找到正確的平衡。高效的終身學習系統必須解決這一困境,以及其他考慮,如支持在線數據流、利用小型且固定的內存緩沖容量(如果有的話)和從未標記的數據流中學習。
在本文中,我們從生物學習過程和深度學習的最新進展中獲得靈感,以實現高效的終身學習系統。我們提出將歸納偏置注入數據驅動機器學習的三個主要組成部分:模型(架構與初始化)、訓練(目標與優化)和數據。本論文分為三個部分,每個部分對應以上一個組件。在第一部分中,我們探索了預訓練初始化的角色,揭示了它們與隨機初始化相比在減輕遺忘方面的隱性優勢。接下來,我們設計了一個參數高效的專家架構,該架構動態擴展學習容量以解決穩定性-可塑性困境。在第二部分中,我們展示了針對平坦極小值的顯式優化如何改善網絡穩定性,并引入了一個元學習目標以平衡穩定性與可塑性。第三部分深入探討了終身半監督學習,通過復習偽標記數據來解決穩定性-可塑性困境。我們以從終身學習的角度檢驗預訓練結束,展示通過將上述策略應用于模型的(持續)預訓練,如何增強其性能。
在過去的十年中,訓練硬件的進步和大數據集的可用性使得深度神經網絡在機器學習領域取得了顯著進展。這些網絡在許多自然語言處理和計算機視覺任務中達到或超過了人類水平的表現,例如機器翻譯(Lepikhin et al., 2021)、問答(Du et al., 2022; Chowdhery et al., 2023)、開放式對話生成(Ouyang et al., 2022)、對象檢測和圖像生成(Lu et al., 2023),這些評估是基于獨立同分布(i.i.d)的保留數據進行的。然而,當這些網絡應用于數據分布隨時間變化的現實情況時,它們的表現往往會變差(Lazaridou et al., 2021)。它們失敗的主要原因是當前的機器學習方法專注于孤立學習(Chen and Liu, 2018),即使用靜態數據集為每個新任務或一組相關任務訓練一個單獨的網絡。一種保持這些網絡更新的方法是每當新信息變得可用時就從頭開始重新訓練它們。然而,先前訓練所用的數據可能因隱私或存儲限制而只是暫時可用(Farquhar and Gal, 2018)。此外,重新訓練方法可能在計算上昂貴,數據效率低,且耗時長,尤其是對于大型網絡。例如,GPT-3(Brown et al., 2020),一個具有175B參數的自回歸語言模型,訓練了499B個標記,使用的計算量相當于3.14e23次浮點操作,如果在單個NVIDIA Tesla V100 GPU上訓練,將需要355年和460萬美元的成本。另一種方法是連續地隨著新信息的到來更新網絡。然而,深度神經網絡和一般的參數模型容易發生災難性遺忘(McCloskey and Cohen, 1989; Ratcliff, 1990; French, 1999)現象。在這種現象中,網絡在新信息被整合進系統時會忘記或覆蓋之前學到的知識。此外,這些網絡可能會經歷負面干擾(Pan and Yang, 2009; Weiss et al., 2016)現象,即先前學到的知識可能會妨礙新事物的有效學習,從而增加了數據需求。這兩種現象都源于穩定性-可塑性困境(Mermillod et al., 2013)。穩定性與保留過去的知識有關,可塑性與學習新知識有關。需要一種平衡,因為過多的穩定性會阻礙新知識的獲取,而過多的可塑性會導致忘記以前的知識。這一困境使得當前網絡難以更新其知識,并有效地適應新任務的增量學習。
與此相反,我們人類的學習方式則大不相同。我們通過在一生中獲取和更新知識來學習,保留以前學到的知識,并利用它來促進新概念和技能的有效學習。受到這種人類學習過程的啟發,終身學習(Thrun and Mitchell, 1995; Thrun, 1995; Chen and Liu, 2018)或增量學習(Solomonoff et al., 1989; Syed et al., 1999; Ruping, 2001)或永不停止的學習(Mitchell et al., 2018)或連續學習(Parisi et al., 2019)范式旨在開發能夠從持續的數據流中學習的系統,理想情況下保留過去的知識,用新信息更新它,并利用它進行后續學習。此外,研究人員也認識到終身學習能力對于實現人工通用智能的進展至關重要(Silver, 2011; Chen and Liu, 2018; Yogatama et al., 2019)。除了與生物學習相似之外,終身學習范式還有潛力通過消除過度模型重新訓練來減少能源浪費,并實現環保和可持續的綠色人工智能(Hazelwood et al., 2018; Strubell et al., 2019; Schwartz et al., 2020)。終身學習范式還與其他知識轉移相關的范式有關,如轉移學習(Pan and Yang, 2009)和多任務學習(Caruana, 1997)。與這兩個范式不同的是,終身學習范式更為通用;它假設對任務的順序訪問,旨在改善對先前任務的表現(理想情況下是積極的后向轉移或消極的遺忘)和新任務的表現(積極的前向轉移)。當前的轉移學習范式主要關注從以前的任務到新任務的單向知識轉移,即使這可能損害先前學到的任務的表現。另一方面,多任務學習假設同時訪問所有任務的數據,并通過使任務之間的知識共享來改善所有任務的表現。此外,即使在單任務學習設置中,神經網絡也顯示出經歷災難性遺忘的情況(Toneva et al., 2019),這突出了終身學習范式不僅限于多任務場景。即使是任務的概念在終身學習范式中也非常開放。例如,考慮一個終身COVID-19命名實體識別(NER)標記器。任務有三種不同的表現形式 - (i)分類任務,如實體塊、實體檢測、實體鏈接、共指解析和關系提取,(ii)針對2020、2021、2022、2023年COVID-19研究文章的不同領域的NER,(iii)針對COVID-19變種如COVID-Alpha、COVID-Beta、COVID-Omicron的演化類別的NER。這些表現形式對應于終身學習的三個突出場景:任務、領域和類別增量學習(Van de Ven and Tolias, 2019)。除了解決災難性遺忘之外,終身學習系統還有幾個其他目標(Biesialska et al., 2020)。人類能夠迅速從持續的對話中學習新信息,而不需要明確的主題邊界(Chen and Liu, 2018)。我們有選擇地保留過去的經驗在我們有限的記憶容量中以防止遺忘,并在需要時稀疏地回放它們(Ratcliff, 1990; McGaugh, 2000)。此外,我們經常從環境中以無監督的方式學習,而不是依賴于明確的監督(Aljundi, 2019)。相比之下,當前的終身學習系統(Biesialska et al., 2020)需要明確的任務邊界,它們依賴于大內存容量,因此數據效率低,且在計算上昂貴,因為它們需要對標記數據進行多次傳遞。為了更有效地模仿人類學習,有必要開發在更現實的假設下運行且在數據、記憶和計算上更高效的終身學習系統(Farquhar and Gal, 2018)。 在本論文中,我們的目標是設計高效的終身學習系統,這些系統可以減輕之前學到的知識的災難性遺忘,并通過在現實假設下運行來促進未來的學習。受到生物學習過程和深度學習的最新進展的啟發,我們提議將適當的歸納偏見注入數據驅動機器學習的三個主要組成部分:模型、訓練和數據。通過這樣做,我們還希望提高終身學習系統在數據、內存和計算需求方面的效率。
模型無關的特征重要性度量對于揭示不透明或“黑箱”機器學習模型的任務至關重要。這種模型在高風險決策環境(如醫療保健或銀行業)的激增,要求開發靈活且可信的方法來解決這個問題。由于沒有地面真實的特征重要性進行比較,各種競爭方法提供了不同的方法和/或理念,通常都聲稱自己更優越。最近一些最受歡迎的方法是從合作博弈論的工具進行適應,這些工具在獎勵或成本分享問題中被使用。在本文檔中,我們報告了這類特征重要性方法的最近進展。特別是,我們討論了一個使用Shapley值的“數據為中心”的群體(cohort)-基礎框架,用于模型不可知的局部特征重要性。我們提出了一個主要的重要性度量,并探討了更適合特定用例或數據環境的該方法的幾種適應。我們分析了這些方法的屬性和行為,并將它們應用于包括選民注冊和累犯數據在內的一系列合成和實際問題設置。然后,我們提出并討論了局部重要性聚合和特征重要性評估的新方法。
深度學習有望從數據中學習復雜的模式,特別是當輸入或輸出空間很大時。在機器人學習中,輸入(如圖像或其他傳感器數據)和輸出(如關節角度等動作)都可能很大,這暗示深度學習可能特別適合解決機器人學領域的挑戰性問題。
然而,與大多數機器學習應用不同,機器人學習涉及物理約束,使得標準的學習方法面臨挑戰。機器人昂貴,通常需要人工介入以重置環境和修復硬件。這些約束使得大規模的數據收集和訓練變得困難,為應用當前的數據密集型算法設置了一個主要的障礙。機器人學習在評估方面還有一個額外的障礙:每個物理空間都是不同的,這使得實驗室之間的結果不一致。
機器人學習范例的兩個常見假設限制了數據效率。首先,一個代理通常假設獨立的環境和沒有先前的知識或經驗 —— 學習是從零開始的。其次,代理通常只接收圖像觀察作為輸入,僅依賴視覺來學習任務。但在現實世界中,人類在多個環境中通過多種感官學習,并在學習新任務時帶有先前的經驗。這種方法不僅是實際的,而且在實際的機器人技術中也是至關重要的,因為從部署的物理系統中收集大量樣本在成本上是不切實際的。 在這篇論文中,我展示了一項工作,通過利用多模態和預訓練來提高機器人學習的數據效率。首先,我展示了如何通過多模態感知,如視覺和聽覺,提供豐富的自監督(第2章)。其次,我介紹了一個框架,用于預訓練和評估通過環境轉移的自監督探索(第3章)。在第4章中,我將這些想法應用于實際的操作,結合了大規模預訓練和多模態的好處,通過音頻-視頻預訓練來為接觸式微型麥克風提供訓練。最后,根據第3章的基準測試工作,我介紹了一個真實的機器人基準,用于通過共享數據和硬件評估視覺和策略學習方法的泛化能力(第5章)。
想象一個嬰兒玩一個她從未見過的物體。她搖晃它并聽那噪音。她觀察她的父母來了解它是如何使用的。盡管這些行為對成年人來說可能看起來并不聰明,但嬰兒的學習方式卻充分利用了他們早期生活的豐富性。他們利用所有的感官;他們尋求創意的反饋;他們在周圍的世界的多樣性中茁壯成長 [133]。我認為這些行為是為了構建更好的智能體而得到的靈感。具體來說,我旨在通過利用自監督、多模態和先前的經驗來提高機器人的學習能力。強化學習(RL)允許系統超越被動學習,并在與世界互動的同時從這些互動中學習。在標準的RL范式中,研究者手動指定一個獎勵函數(得分),代理則學會最大化這一獎勵。這在Atari或圍棋這樣的游戲中效果很好,但在機器人技術這樣的應用中,獎勵函數很難制定,而且從現實世界的數據中學習需要樣本效率。RL的挑戰可以分為兩個領域:如何在一個環境中收集有趣的數據(探索)和如何從這樣的數據中學習任務(策略學習)。在我的論文中,我探討了如何改進探索和策略學習,使RL在真實世界的環境中變得可行。目前的RL探索框架是兒童探索世界方式的差勁代理。RL代理往往從零開始(在一個環境中從零開始初始化)并且只使用視覺或狀態向量,而忽略了其他感覺模態。在這篇論文中,我旨在使探索更加符合真實世界:代理使用大規模數據(來自先前的環境和被動來源)有效地將知識轉移到新的環境中,其中自監督和多模態引導快速適應。
這篇論文研究了通過試錯學習教導自主智能體完成任務的算法。通常,這個問題被描述為一個強化學習(RL)問題,其中智能體試圖最大化用戶提供的獎勵函數。這里研究的算法采取了不同的方法,大部分避免使用獎勵函數,而是直接從數據中學習實現期望的結果。這種方法允許用戶使用來自監督學習和非監督學習的算法工具,同時也為非專家用戶提供了一個教導智能體新任務的界面。這些方法的設計中的主要挑戰是預測期望結果的概率,尤其是當這些結果在未來的數百步中才發生,特別是在使用離策略數據時。為此,這篇論文的第一部分基于遞歸分類開發了一種算法,該算法通過時間差分更新估計未來狀態的概率(第2章)。這種方法直接適用于具有連續狀態和動作的環境,不需要任何手工制作的距離度量,并導致了一個比之前的方法更高效的面向目標的RL算法。然后,我們將這個想法推廣到可以通過多種方式解決的任務,允許更靈活的任務規范,并提供更廣泛的泛化能力。
將控制問題以期望的結果來描述提供了一個簡單的機制來指定任務是什么,但它沒有為如何解決任務留下任何余地,這引發了一個問題:這些方法是否僅限于簡單任務。為了解決這個限制,我們考慮推斷復雜任務解決方案的結構。由于第一部分介紹的算法在本質上是概率性的,所以很容易將這種結構作為一個未觀察到的潛在變量納入其中。這些新算法推斷這種任務結構;在這樣做的過程中,它們將控制問題分解為一系列更容易的問題,從而加速學習。
我們首先討論以目標為條件的設置,這種推斷觀點導致了一個簡單且理論上有正當理由的方法,將面向目標的RL集成到傳統的規劃流程中(第4章)。RL被用來估計距離并學習一個局部策略,而觀察(如,圖像)上的圖搜索確定了通往目標的高級路徑。這種方法顯著優于標準的目標條件RL算法。接著,我們考慮一種不同的方式來構造任務解決方案:作為一個學習過的動態模型和策略的組合(第5章)。結果是一個基于模型的RL算法,其中模型和策略使用相同的目標聯合優化,這是預期回報的下界。
這篇論文基于初步論文提案中提出的工作在兩個主要方向上進行了深入。首先,我們探討了遞歸分類的幾何解釋(第2章),在表示學習和強化學習之間建立了緊密的聯系(第3章)。這種聯系使我們能夠將遞歸分類擴展到通過有限數量的獎勵標記狀態后設定的任務,并使我們能夠將這些方法應用到基于真實世界圖像的機器人操作任務上。其次,我們擴展了RL的潛在變量觀點(第4章和第5章)以在學習的表示上執行推斷(第5.6節)。這種擴展使我們的方法能夠擴展到更高維度的任務,并提供了大量的計算加速。
利用深度神經網絡進行機器學習的最新進展,在從大型數據集學習方面取得了重大成功。然而,這些成功主要集中在計算機視覺和自然語言處理方面,而在序列決策問題方面的進展仍然有限。強化學習(RL)方法就是為了解決這些問題而設計的,但相比之下,它們很難擴展到許多現實世界的應用中,因為它們依賴于成本高昂且可能不安全的在線試錯,而且需要從頭開始逐個學習每個技能的低效過程。本文將介紹設計RL智能體的工作,這些智能體直接從離線數據中訓練,能夠掌握多種技能,以解決上述挑戰。
在本文的第一部分中,我們首先介紹了一種算法,從離線數據集中學習高性能策略,并通過使用學習到的動力學模型生成的推出來擴展離線數據,提高離線強化學習智能體的泛化能力。然后,我們將該方法擴展到高維觀測空間,如圖像,并表明該方法使現實世界的機器人系統能夠執行操作任務。在論文的第二部分,為了避免在之前的強化學習工作中從頭開始學習每個任務的問題,同時保持離線學習的好處,討論了如何使強化學習智能體通過跨任務共享數據從不同的離線數據中學習各種任務。此外,我們表明,共享數據需要標記來自其他任務的數據的獎勵,這依賴于繁重的獎勵工程,也是勞動密集型的。為了解決這些問題,我們描述了如何有效地利用離線RL中的各種未標記數據,繞過獎勵標記的挑戰。最后,我們列出了未來的研究方向,如利用異構無標簽離線數據集的有效預訓練方案、離線預訓練后的在線微調以及離線RL的離線超參數選擇。
決策算法在許多不同的應用中被使用。傳統的設計決策算法的方法采用原則和簡化的建模,在此基礎上,人們可以通過易于處理的優化來確定決策。最近,深度學習方法正在變得越來越流行,這種方法使用從數據調整的高度參數架構,而不依賴于數學模型。基于模型的優化和以數據為中心的深度學習通常被認為是不同的學科。在這里,我們將它們描述為一個在特異性和參數化方面不斷變化的連續光譜的邊緣,并為位于這個光譜中間的方法提供一個教程式的展示,稱為基于模型的深度學習。在我們的演示中,我們還附帶了超分辨率和隨機控制方面的運行示例,并展示了如何使用所提供的特性和每種詳細方法來表示它們。將基于模型的優化和深度學習結合在一起,在生物醫學成像和數字通信等各種應用中使用實驗結果,證明了這種結合的好處。