亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

深度學習有望從數據中學習復雜的模式,特別是當輸入或輸出空間很大時。在機器人學習中,輸入(如圖像或其他傳感器數據)和輸出(如關節角度等動作)都可能很大,這暗示深度學習可能特別適合解決機器人學領域的挑戰性問題。

然而,與大多數機器學習應用不同,機器人學習涉及物理約束,使得標準的學習方法面臨挑戰。機器人昂貴,通常需要人工介入以重置環境和修復硬件。這些約束使得大規模的數據收集和訓練變得困難,為應用當前的數據密集型算法設置了一個主要的障礙。機器人學習在評估方面還有一個額外的障礙:每個物理空間都是不同的,這使得實驗室之間的結果不一致。

機器人學習范例的兩個常見假設限制了數據效率。首先,一個代理通常假設獨立的環境和沒有先前的知識或經驗 —— 學習是從零開始的。其次,代理通常只接收圖像觀察作為輸入,僅依賴視覺來學習任務。但在現實世界中,人類在多個環境中通過多種感官學習,并在學習新任務時帶有先前的經驗。這種方法不僅是實際的,而且在實際的機器人技術中也是至關重要的,因為從部署的物理系統中收集大量樣本在成本上是不切實際的。 在這篇論文中,我展示了一項工作,通過利用多模態和預訓練來提高機器人學習的數據效率。首先,我展示了如何通過多模態感知,如視覺和聽覺,提供豐富的自監督(第2章)。其次,我介紹了一個框架,用于預訓練和評估通過環境轉移的自監督探索(第3章)。在第4章中,我將這些想法應用于實際的操作,結合了大規模預訓練和多模態的好處,通過音頻-視頻預訓練來為接觸式微型麥克風提供訓練。最后,根據第3章的基準測試工作,我介紹了一個真實的機器人基準,用于通過共享數據和硬件評估視覺和策略學習方法的泛化能力(第5章)。

想象一個嬰兒玩一個她從未見過的物體。她搖晃它并聽那噪音。她觀察她的父母來了解它是如何使用的。盡管這些行為對成年人來說可能看起來并不聰明,但嬰兒的學習方式卻充分利用了他們早期生活的豐富性。他們利用所有的感官;他們尋求創意的反饋;他們在周圍的世界的多樣性中茁壯成長 [133]。我認為這些行為是為了構建更好的智能體而得到的靈感。具體來說,我旨在通過利用自監督、多模態和先前的經驗來提高機器人的學習能力。強化學習(RL)允許系統超越被動學習,并在與世界互動的同時從這些互動中學習。在標準的RL范式中,研究者手動指定一個獎勵函數(得分),代理則學會最大化這一獎勵。這在Atari或圍棋這樣的游戲中效果很好,但在機器人技術這樣的應用中,獎勵函數很難制定,而且從現實世界的數據中學習需要樣本效率。RL的挑戰可以分為兩個領域:如何在一個環境中收集有趣的數據(探索)和如何從這樣的數據中學習任務(策略學習)。在我的論文中,我探討了如何改進探索和策略學習,使RL在真實世界的環境中變得可行。目前的RL探索框架是兒童探索世界方式的差勁代理。RL代理往往從零開始(在一個環境中從零開始初始化)并且只使用視覺或狀態向量,而忽略了其他感覺模態。在這篇論文中,我旨在使探索更加符合真實世界:代理使用大規模數據(來自先前的環境和被動來源)有效地將知識轉移到新的環境中,其中自監督和多模態引導快速適應。

付費5元查看完整內容

相關內容

我們引入了一個解釋黑盒機器學習(ML)模型的框架,發現深度神經網絡的一個失敗模式是過度解釋,并討論如何應用ML方法進行治療設計,包括面向所有變種的COVID-19疫苗。盡管ML模型被廣泛部署并經常獲得比傳統方法更高的準確性,但深度學習模型在功能上很復雜且難以解釋,限制了它們在高風險環境中的應用。除了更安全的部署外,模型解釋還有助于科學發現,經過驗證的基于實驗數據訓練的ML模型可以用來揭示生物機制或通過生物上真實的目標函數設計治療方法,如疫苗的人群覆蓋。對于解釋黑盒ML模型,我們引入了一個與模型無關、忠實于基礎函數并且概念上直觀的方法,稱為“**足夠的輸入子集”(SIS)**方法。

我們用SIS在自然語言、計算機視覺和計算生物學環境中演示了ML模型的解釋。使用SIS框架,我們發現了深度神經網絡的一個新的失敗模式——過度解釋,這可能會妨礙在實際環境中的泛化能力。我們認為過度解釋是由于訓練數據集中存在退化信號引起的。接下來,使用已與實驗性免疫原性數據校準的ML模型,我們開發了一個用于計算設計穩健肽疫苗的靈活框架。我們的框架優化了每個人群中的??次覆蓋率,以激活更廣泛的T細胞免疫反應,考慮到個體之間肽免疫原性的差異,并減少由突變導致的疫苗逃逸的機會。使用這個框架,我們設計了對SARS-CoV-2的疫苗,其人群覆蓋率優于已發布的基線并在關注的變種中得到保留。我們通過我們的疫苗在體內對COVID-19進行的動物挑戰研究驗證了這種方法。這篇論文展示了模型解釋如何使ML方法能夠在生物環境中忠實部署的不同方式。

付費5元查看完整內容

這篇論文研究了通過試錯學習教導自主智能體完成任務的算法。通常,這個問題被描述為一個強化學習(RL)問題,其中智能體試圖最大化用戶提供的獎勵函數。這里研究的算法采取了不同的方法,大部分避免使用獎勵函數,而是直接從數據中學習實現期望的結果。這種方法允許用戶使用來自監督學習和非監督學習的算法工具,同時也為非專家用戶提供了一個教導智能體新任務的界面。這些方法的設計中的主要挑戰是預測期望結果的概率,尤其是當這些結果在未來的數百步中才發生,特別是在使用離策略數據時。為此,這篇論文的第一部分基于遞歸分類開發了一種算法,該算法通過時間差分更新估計未來狀態的概率(第2章)。這種方法直接適用于具有連續狀態和動作的環境,不需要任何手工制作的距離度量,并導致了一個比之前的方法更高效的面向目標的RL算法。然后,我們將這個想法推廣到可以通過多種方式解決的任務,允許更靈活的任務規范,并提供更廣泛的泛化能力。

將控制問題以期望的結果來描述提供了一個簡單的機制來指定任務是什么,但它沒有為如何解決任務留下任何余地,這引發了一個問題:這些方法是否僅限于簡單任務。為了解決這個限制,我們考慮推斷復雜任務解決方案的結構。由于第一部分介紹的算法在本質上是概率性的,所以很容易將這種結構作為一個未觀察到的潛在變量納入其中。這些新算法推斷這種任務結構;在這樣做的過程中,它們將控制問題分解為一系列更容易的問題,從而加速學習。

我們首先討論以目標為條件的設置,這種推斷觀點導致了一個簡單且理論上有正當理由的方法,將面向目標的RL集成到傳統的規劃流程中(第4章)。RL被用來估計距離并學習一個局部策略,而觀察(如,圖像)上的圖搜索確定了通往目標的高級路徑。這種方法顯著優于標準的目標條件RL算法。接著,我們考慮一種不同的方式來構造任務解決方案:作為一個學習過的動態模型和策略的組合(第5章)。結果是一個基于模型的RL算法,其中模型和策略使用相同的目標聯合優化,這是預期回報的下界。

這篇論文基于初步論文提案中提出的工作在兩個主要方向上進行了深入。首先,我們探討了遞歸分類的幾何解釋(第2章),在表示學習和強化學習之間建立了緊密的聯系(第3章)。這種聯系使我們能夠將遞歸分類擴展到通過有限數量的獎勵標記狀態后設定的任務,并使我們能夠將這些方法應用到基于真實世界圖像的機器人操作任務上。其次,我們擴展了RL的潛在變量觀點(第4章和第5章)以在學習的表示上執行推斷(第5.6節)。這種擴展使我們的方法能夠擴展到更高維度的任務,并提供了大量的計算加速。

付費5元查看完整內容

利用深度神經網絡進行機器學習的最新進展,在從大型數據集學習方面取得了重大成功。然而,這些成功主要集中在計算機視覺和自然語言處理方面,而在序列決策問題方面的進展仍然有限。強化學習(RL)方法就是為了解決這些問題而設計的,但相比之下,它們很難擴展到許多現實世界的應用中,因為它們依賴于成本高昂且可能不安全的在線試錯,而且需要從頭開始逐個學習每個技能的低效過程。本文將介紹設計RL智能體的工作,這些智能體直接從離線數據中訓練,能夠掌握多種技能,以解決上述挑戰。

在本文的第一部分中,我們首先介紹了一種算法,從離線數據集中學習高性能策略,并通過使用學習到的動力學模型生成的推出來擴展離線數據,提高離線強化學習智能體的泛化能力。然后,我們將該方法擴展到高維觀測空間,如圖像,并表明該方法使現實世界的機器人系統能夠執行操作任務。在論文的第二部分,為了避免在之前的強化學習工作中從頭開始學習每個任務的問題,同時保持離線學習的好處,討論了如何使強化學習智能體通過跨任務共享數據從不同的離線數據中學習各種任務。此外,我們表明,共享數據需要標記來自其他任務的數據的獎勵,這依賴于繁重的獎勵工程,也是勞動密集型的。為了解決這些問題,我們描述了如何有效地利用離線RL中的各種未標記數據,繞過獎勵標記的挑戰。最后,我們列出了未來的研究方向,如利用異構無標簽離線數據集的有效預訓練方案、離線預訓練后的在線微調以及離線RL的離線超參數選擇。

付費5元查看完整內容

機器學習(ML)正在經歷一場范式的轉變——機器學習模型越來越多地被作為一種服務來提供,以自動化各種下游決策,而不是由機器學習專家對特定任務進行端到端的訓練和部署。例如,大型科技公司提供的圖片或文本分類API,被廣泛的第三方應用開發者使用,以及通過網站向數百萬用戶提供各種預測(如天氣、COVID、流量等),以幫助他們進行規劃。盡管這種新的范式通過使ML更廣泛地可訪問而使其民主化,但它引起了對可信性(用戶無法看到他們是如何被訓練的以及他們的失敗模式)和性能(預測模型不再為特定的下游任務量身定做)的擔憂。本文通過以下方法來解決這些問題:

貢獻1。提出了一種新的方法,通過精確的不確定性量化,向下游決策者傳遞信心,后者將對(高風險)決策進行預測。精確的不確定性量化可以通過預測相關結果的真實概率(例如給定癥狀的病人患病的真實概率)來實現。雖然在大多數情況下,準確地輸出這些概率是不可能的,但對于大型決策任務,學習與真實概率難以區分的概率卻是驚人的可能。不可區分性保證了決策者的可靠性,因為在他們的決策任務中,他們不應該能夠區分預測概率和真實概率之間的區別。作為一個應用程序,我開發了一些預測模型,如醫療診斷、航班延誤預測和貧困預測等領域。我展示了通過使用我的方法,決策者可以自信地做出導致良好結果的決策。

貢獻2。發展一種新的信息理論,以嚴格推理和優化ML預測在廣泛的決策任務中的“有用性”。香農信息理論在機器學習中有著廣泛的應用,但在處理復雜的學習和決策任務時存在一些局限性。例如,考慮從對手攔截的安全加密消息數據集。根據信息論,這些加密信息與對手的計劃具有高度的互信息,而任何計算有界的決策者都不能利用這些信息。為了解決這些局限性,我提出了一個新的框架,稱為“效用信息理論”,它概括了香農熵、信息和散度,以解釋知識或建模能力有限的決策者將如何使用信息。作為一個應用,我將新的信息應用于貝葉斯優化問題,并顯示了比使用香農信息的當前方法在樣本效率方面的數量級改進。

付費5元查看完整內容

深度神經網絡(DNNs)使計算機能夠在許多不同的應用中脫穎而出,如圖像分類、語音識別和機器人控制。為了加快DNN的訓練和服務,并行計算被廣泛采用。向外擴展時,系統效率是一個大問題。在分布式機器學習中,高通信開銷和有限的設備上內存是導致系統效率低下的兩個主要原因。

//www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-83.html

本文研究了在分布式機器學習工作負載下,在數據和模型并行性方面減輕通信瓶頸并實現更好的設備上內存利用的可能方法。

在通信方面,我們的Blink項目緩解了數據并行訓練中的通信瓶頸。通過打包生成樹而不是形成環,Blink可以在任意網絡環境中實現更高的靈活性,并提供近乎最佳的網絡吞吐量。為了消除模型并行訓練和推理過程中的通信問題,我們從系統層上升到應用層。我們的sensAI項目將多任務模型解耦到斷開的子網中,其中每個子網負責單個任務或原始任務集的子集的決策制定。

為了更好地利用設備上的內存,我們的小波項目有意增加任務啟動延遲,在加速器上的不同訓練任務波之間交錯使用內存峰值。通過將多個訓練波集中在同一個加速器上,它提高了計算和設備上的內存利用率。

付費5元查看完整內容

決策算法在許多不同的應用中被使用。傳統的設計決策算法的方法采用原則和簡化的建模,在此基礎上,人們可以通過易于處理的優化來確定決策。最近,深度學習方法正在變得越來越流行,這種方法使用從數據調整的高度參數架構,而不依賴于數學模型。基于模型的優化和以數據為中心的深度學習通常被認為是不同的學科。在這里,我們將它們描述為一個在特異性和參數化方面不斷變化的連續光譜的邊緣,并為位于這個光譜中間的方法提供一個教程式的展示,稱為基于模型的深度學習。在我們的演示中,我們還附帶了超分辨率和隨機控制方面的運行示例,并展示了如何使用所提供的特性和每種詳細方法來表示它們。將基于模型的優化和深度學習結合在一起,在生物醫學成像和數字通信等各種應用中使用實驗結果,證明了這種結合的好處。

付費5元查看完整內容

機器學習是一種變革性的計算工具,它正在革新許多技術和科學應用。然而,最近在人工智能和機器學習方面的成功,以及隨之而來的模型的廣泛部署,已經改變了經典的機器學習管道。首先,可用數據的絕對規模——在數量和維度上——已經爆炸。此外,現代機器學習架構具有指數級的設計選擇和超參數,但它們都是使用通用的隨機梯度方法進行優化的。這突出了自適應梯度方法的需要,該方法在沒有事先知道實例的情況下充分執行。接著并期望它們即使在不分布的輸入中也能提供良好的預測——這強調了對可靠模型的需要。最后,隨著我們收集越來越多的用戶數據,我們希望在向公眾發布這些模型時,基于這些數據訓練的模型不會損害訓練集中存在的個人的隱私。在這篇論文中,我們證明了解決這些新出現的問題需要優化方面的基本進步。更具體地說,我們首先提出了理解自適應梯度算法的最優性的新的理論結果,并展示了在基于梯度的采樣器的背景下自適應方法的實際用例。然后,我們提出了可擴展的最小最大優化方法,以有效地解決魯棒目標。最后,我們開發了私有優化方法,在更嚴格的隱私要求下最優地學習,以及自適應方法,在簡單的實例上增加“適當數量的噪聲”并顯著降低隱私的代價。

//searchworks.stanford.edu/view/14053711

付費5元查看完整內容

機器學習系統通常是在這樣的假設下設計的,即它們將作為一個靜態模型部署在世界上一個單一的靜態區域。然而,世界是不斷變化的,因此未來看起來不再完全像過去,甚至在相對靜態的環境中,系統可能部署在其世界的新的、看不見的部分。盡管數據分布的這種連續變化會給機器學習中獲得的模型帶來重大挑戰,但模型也不必是靜態的:它可以而且應該自適應。在這次演講中,我將討論我們如何允許深度網絡通過適應來魯棒地應對這種分布轉移。首先介紹元學習的概念,然后簡要概述從機器人到藥物設計的幾個成功的元學習應用,最后討論元學習研究前沿的幾項最新工作。

視頻: //www.youtube.com/watch?v=7qOOmtXHilY&feature=youtu.be

付費5元查看完整內容

計算機視覺在深度學習時代取得了快速的進步。這在很大程度上歸功于大規模標記數據的可用性,加上GPU計算。然而,計算機視覺模型在一個領域上訓練,比如白天的圖像,通常不能泛化到新的領域,比如晚上獲得的圖像。為所有可能的場景標記數據是昂貴的,但是未標記的數據更容易獲得。在本課程中,我們將學習無監督領域適應的概念,并應用于各種計算機視覺問題,如圖像分類、語義分割、目標檢測、人臉識別和三維重建。

本課程將涵蓋領域適應的各種主題,包括:

  • 分布排列
  • 度量學習
  • 集成
  • 對抗學習
  • 生成式建模
  • 開集自適應
  • 域泛化
  • 公平

這些方法將應用于計算機視覺中的幾個問題,如:

  • 圖像分類
  • 語義分割
  • 對象檢測
  • 人臉識別
  • 行人重識別
  • 視頻理解

//cseweb.ucsd.edu/~mkchandraker/classes/CSE291/Winter2020/

付費5元查看完整內容

深度強化學習解決很多復雜問題的能力已經有目共睹,然而,如何提升其學習效率是目前面臨的主要問題之一。現有的很多方法已驗證遷移學習可利用相關任務中獲得的先驗知識來加快強化學習任務的學習效率。然而,這些方法需要明確計算任務之間的相似度,或者只能選擇一個適合的源策略,并利用它提供針對目標任務的指導性探索。目前仍缺少如何不顯式的計算策略間相似性,自適應的利用源策略中的先驗知識的方法。本文提出了一種通用的策略遷移框架(PTF),利用上述思想實現高效的強化學習。PTF通過將多策略遷移過程建模為選項(option)學習,option判斷何時和哪種源策略最適合重用,何時終止該策略的重用。如圖1所示,PTF分為兩個子模塊,智能體(agent)模塊和option模塊。Agent模塊負責與環境交互,并根據環境的經驗和option的指導進行策略更新。

付費5元查看完整內容
北京阿比特科技有限公司