欺騙技術在網絡防御領域越來越受歡迎。本文試圖將欺騙建模為非合作博弈環境下的戰略決策。我們將網絡安全系統和黑客之間的互動建模為一個攻擊者和防御者的博弈。為攻擊者引入了一個無成本的指數學習方案,其中的博弈是在一個抽象的網絡圖上進行。該博弈在主動目錄用戶網絡上模擬了特權升級攻擊的場景。欺騙,以假用戶的形式,被植入整個網絡。博弈的策略在于在網絡的不同位置放置誘餌,以阻礙攻擊者實現其目標的理想路徑。結果表明,即使是最簡單的基于欺騙的安全系統,也會大大減緩攻擊者實現其目標的速度。此外,結果表明,與節點相關的網絡參數和成本陰影在決定結果方面起著重要作用。
關鍵詞:網絡安全;博弈論;欺騙;模擬;攻擊者與防御者博弈
傳統的網絡安全防御依賴于基于周邊的方法(Zaliva,2008)。這些方法利用異常檢測系統,通過分析安全數據湖來應對我們的可疑事件。數據湖是收集安全網絡內不同系統日志的數據存儲。安全數據湖是巨大的,每秒鐘從各種數據源中獲取數百萬安全事件。任何異常事件都會被檢測到,并顯示給安全分析員,以檢查警報的真實性和準確性。然而,由于以下原因,這些系統并不健全。
1.大量的誤報(Axelsson, 2000)
2.捕獲、存儲和索引數據湖是一個昂貴和復雜的過程。
此外,大量的錯誤警報會給安全分析員帶來損失,導致真正的警報被遺漏的情況發生。這些系統遵循被動的防御策略,其目標是防止攻擊。這很少奏效,因為破壞目標系統的平均時間較短,而且一直在穩步下降(Leversage and Byres, 2008)。傳統的網絡周界--許多這些預防技術通常部署在這里--已經變得松散,并經常被突破。云計算、移動性和自帶設備(BYOD)以及面向互聯網的應用程序的激增,使得這些周邊防御變得無效(inc,2017)。
欺騙技術作為一種積極的網絡安全防御形式正在迅速崛起(Mitnick和Simon,2011;Almeshekah,2015;Yuill等人,2006),并被用于緩解上述情況。欺騙技術的重點是創造陷阱(欺騙/誘餌)和誘餌,并部署在現有的IT基礎設施內。所使用的欺騙手段并不是常規操作的一部分,而只是在網絡攻擊中被揭露。攻擊者或入侵者花費時間和精力來定位和訪問分布在企業網絡中的欺騙行為。他們這樣做是認為欺騙是真實的,但實際上是專門為攻擊而設置的。任何關于欺騙的操作都是對妥協的積極肯定。換句話說,在一個基于欺騙的解決方案中,一個高度積極的異常現象會宣布自己,從而減輕假陽性的泛濫(inc,2017)。
在本文中,我們制定了一個非合作性的攻擊者-防御者博弈,以模擬攻擊者和防御者之間的互動,使用欺騙作為主動防御的工具。將黑客和安全系統之間的互動建模為一個博弈的想法并不新穎(Zhuang等人,2010;Xu和Zhuang,2016)。然而,在一個圖框架內使用欺騙來定義博弈模型,之前還沒有人嘗試過。在我們的框架中,每個原子欺騙單元被認為是由真實服務單元組成的圖中的一個節點。我們把這個圖稱為抽象網絡圖(ANG)。ANG是對真實網絡圖的一種同構抽象。每個原子功能單元都是ANG的一部分。因此,由各個功能單元組成的主機本身就形成了子圖。例如,一個企業的主機有一個網卡(NC),它連接在主板上,由CPU控制。NC、主板和CPU可以被看作是企業ANG的節點。在這個主機上運行的任何應用程序或進程也將是ANG的一部分。圖1中顯示了一個代表不同類型節點的ANG樣本。我們設計了在內部ANG放置欺騙的策略,以最大限度地提高防御者獲勝的機會。不同的攻擊場景被建模和模擬,以列舉攻擊者可能遵循的不同可能性。關鍵的想法是欺騙攻擊者并誤導他,從而耗盡他的資源。
圖1. 一個企業中的抽象網絡圖(ANG)樣本
攻擊者所追求的資源之一是活動目錄(Chadwick, 2005; Metcalf, 2016)。活動目錄服務控制著廣泛的基于目錄的身份相關服務的訪問權。為了使建模更加真實,我們選擇活動目錄攻擊來進行博弈模擬。攻擊者試圖通過不同的策略來控制AD。我們將建模的重點放在使用密碼重置方法Metcalf(2016)的一種特權升級形式上。這種形式的攻擊通常被稱為重置密碼攻擊。其基本思想是利用未經授權的訪問權限授予用戶認證。為了減輕這種攻擊,我們以假用戶和假憑證的形式進行欺騙,以誤導攻擊者。我們提出了我們對這些攻擊的模擬結果和分析。
這項工作的主要貢獻和意見是:
使用欺騙手段制定攻擊者-防御者博弈的基于圖的新方法
經驗表明,部署欺騙會大大增加攻擊者實現其目標的工作量。
表明通過增加欺騙手段來增加圖中的節點數,即用戶數是有益的。
確定了圖的屬性在攻擊者和防御者之間的決斗結果中起著重要作用。
盡管我們為主動目錄攻擊建立了博弈模型,但我們的博弈模型是可擴展的,并能穩健地模擬任何基于欺騙的防御策略。本文的其余部分如下:在第2節,我們描述了欺騙和ANG背后的概念。我們在第3節中介紹了我們的工作背景。在第4節中,我們解釋了博弈的制定和包含的模型。第5節解釋我們的實驗設置。在下一節中,將介紹模擬的結果和討論。最后在第7節中對本文進行了總結,并提出了一些未來的指導意見。
圖 3. 特權升級與欺騙之間的部署。在這種情況下,攻擊者被迫探索更大的網絡。
網絡空間是支持戰場物聯網(IoBT)的數字通信網絡,是以防御為中心的傳感器、計算機、執行器和人類以數字方式連接的模式。一個安全的IoBT基礎設施有助于在分布式子系統中實時實施觀察、定位、決定、行動(OODA)循環。網絡犯罪分子和戰略對手的成功黑客行為表明,像IoBT這樣的網絡系統并不安全。三條工作路線展示了一條通往更強大的IoBT的道路。首先,收集了企業網絡流量的基線數據集,并通過生成方法對其進行建模,允許生成真實的、合成的網絡數據。接下來,通過算法制作了網絡數據包的對抗性例子,以欺騙網絡入侵檢測系統,同時保持數據包的功能。最后,提出了一個框架,使用元學習來結合各種薄弱模型的預測能力。這導致了一個元模型在數據包的整體準確性和對抗性實例檢測率方面優于所有基線分類器。國防戰略強調網絡安全是保衛國土和在信息時代保持軍事優勢的必要條件。這項研究提供了學術觀點和應用技術,以推進美國防部在信息時代的網絡安全態勢。
圖 22. 對抗性樣本的生成和測試的4個步驟
圖23. 元學習框架通過智能地結合每個基礎模型的預測能力來加強對對抗性攻擊。對抗性訓練的分類器是通過5.3所述的增強數據集進行訓練。
美國國防部(DoD)預計,未來的戰爭將主要在網絡領域進行,對手包括戰略競爭對手和非國家行為者。由于美國從未打過一場全面的網絡戰爭,因此對 "路線規則"并不十分了解[6]。敵人有可能通過已知和未知的威脅載體來攻擊美國的利益。這些攻擊的影響可能是非動能性的,即對信息系統的未獲許可的訪問或控制,或者是動能性的,即攻擊導致物理資產的破壞、基礎設施的損害或死亡。許多遺留的網絡物理系統在建造時沒有預見到網絡漏洞[7]。隨著戰場物聯網的發展,包括更多的這些系統,潛在的網絡威脅暴露也在增加。想象一下,當士兵的可穿戴設備在戰斗中因網絡攻擊而發生故障時,會出現怎樣的混亂。至關重要的是,我們要在對手利用這些缺點之前,用新技術解決我們軍隊的網絡安全問題。生成式機器學習和元學習是新興領域,可能為網絡安全研究中一些長期存在的障礙提供解決方案。
入侵檢測系統(IDS)是一種阻止和防御網絡攻擊的方法[7]。不幸的是,IDS需要大量的數據集進行訓練[2]。有機的網絡攻擊數據,帶有標記的條目,是出了名的稀缺。NSL-KDD[8]試圖糾正被廣泛引用的KDD-CUP基準數據集的問題,然而,即使是改進的版本也是過時的,而且范圍有限。
生成式機器學習是人工智能的一個領域,有可能以新的方式解決未解決的問題。諸如馬爾科夫鏈蒙特卡洛、自動編碼器和生成對抗網絡(GANS)和自動編碼器的方法被用來估計未知的概率分布函數。對多樣化和現實的生成數據的應用是很迫切的,特別是對網絡。生成方法提供了一個分析和綜合網絡數據的途徑,而生成方法與元學習的結合提供了一個防止某些網絡攻擊的機會。
本章的其余部分介紹了三個促進美國網絡系統安全的研究課題。第2章提供了一個相關主題的總體文獻回顧,以及一個精心挑選的可能對讀者特別有價值的來源的快速參考表。第3至5章提供了與貢獻1、2和3相對應的已完成的研究手稿。以前發表的研究是第六章,最后總結了研究的主要發現以及它們對現代防御的影響。附錄提供了不適合于主文件的額外信息。附錄A是元學習NIDS的相關研究,不適合于所述貢獻。附錄B是一個參考的AFIT論文表。附錄C包括支持貢獻1的數據表格。
本論文提出了三個研究課題以支持軍隊安全態勢的現代化。雖然每個課題都可以獨立進行,但本論文采取了連續的方法,早期研究的結果增強了后來的工作。本論文的總體目標是證明在建立一個對對抗性攻擊具有強大抵抗力的入侵檢測系統方面取得了重大進展。
貢獻1:生成真實的合成網絡數據。
第一個研究目標是對現代網絡數據的概率分布進行建模,并從基線分布中生成額外的、現實的數據。預定的生成模型可以是明確的,以概率分布函數的形式,或隱含的,如GAN。生成方法將在第2.2節討論。無論怎樣,模型生成的現實數據必須證明與基線數據的分布相匹配。與第4.2節中NSL-KDD[8]、KDD-CUP[9]、UNSW-NB15[10]等其他基準數據集不同,生成的數據必須能夠代表現代政府系統中的網絡流量,包括授權和惡意行為者的例子,而且比例適當。惡意流量必須是現代網絡攻擊的代表,并反映原始分布中未觀察到的例子。一個可能的策略是通過在敵對環境中收集的真實網絡數據或在現實的高保真模擬中收集的數據來訓練一個生成模型。然后,基線數據可以用來訓練一個生成模型,能夠從與基線相同的分布中創建新的、現實的例子。
特別是,生成模型應該強調對模式崩潰的復原力,并且應該對變量之間的宏觀層面的關聯性進行建模。如果成功,現實生成的網絡數據將被用作創建對抗性例子的起點。擴大的、生成的數據集比小的真實數據集更受歡迎,因為它展示了生成方法的可行性,以克服新型網絡攻擊中的數據不足。隨著網絡日志數據中新現象的發現,它們將被復制到更大的數量,有利于創建對抗性例子和強大的IDS。如果生成方法不能產生現實的數據,那么目標二可以使用數量更多的基線數據來實現,而這些數據的獲取是昂貴和費力的。為了支持貢獻1,已經提交并接受了兩篇存檔的同行評審論文。《網絡領域生成方法的挑戰和機遇》已被《2021年冬季模擬會議論文集》接受,《為訓練和評估網絡入侵檢測系統的機器學習分類器生成現實的網絡數據》已提交給《應用專家系統》。這兩項工作都是由Marc Chal′e(主要作者)撰寫的,委員會成員為支持學位論文研究做出了貢獻。支持貢獻1的工作在第三章和附錄C中介紹。
貢獻2:生成對抗性樣本。
第2個研究目標是產生能夠躲避現代IDS的對抗性樣本。對抗性樣本必須使用新的技術來創建,包括適用的生成方法。對抗性樣本必須超越諸如[11]的工作,強制執行網絡數據的不可變方面[12],并實現端到端的攻擊。解決這一挑戰可能會增加最先進的網絡攻擊對當前IDS的有效性,但一旦這些技術被確定,它們就可以在強大的IDS中得到解決。盡管最近在計算機視覺領域創造對抗性攻擊方面取得了進展,但在網絡領域產生對抗性攻擊是特別具有挑戰性的[12]。為了使被擾亂的互聯網協議(IP)數據包能夠促進端到端的網絡攻擊,數據包必須保持其專門的數據結構以及執行時的原始功能。雖然圖像可以不受限制地被擾動,并產生一個有效的圖像文件,但在互聯網上傳輸的IP數據包在擾動過程中會被破壞,導致無效的端到端攻擊。盡管最初對網絡領域的對抗性攻擊的研究[11] [13] [14]集中在擾亂網絡數據的特征向量上,但更困難的任務是擾亂網絡數據包的實際有效載荷,同時保持其原始功能[13] [15] [12]。或者,可以生成一個對抗性的特征向量,然后反向設計成一個能躲避IDS的功能性IP數據包。在努力實現端到端黑盒攻擊的過程中,我們必須證明對抗性例子可以被限制在網絡領域的標準內。這一目標在提交給《計算機與工業工程》的期刊文章《基于約束優化的網絡入侵檢測系統轉移攻擊的對抗性實例生成》中實現。 這項工作是由Marc Chal′e(主要作者)撰寫的,委員會成員為支持論文研究做出了貢獻。支持貢獻2的工作在第四章和附錄D中介紹。
貢獻3:展示一個強大的入侵檢測系統。
入侵檢測系統在保護網絡系統數據的保密性、完整性和可用性方面發揮著重要作用,但它們存在根本性的缺陷。幾種流行的基于規則的IDS對惡意軟件的檢測率在實踐中是驚人的低。一項研究發現,Zeek使用其基于規則的警報系統只檢測到52%的惡意軟件攻擊[16]。這種乏善可陳的表現可能促使了機器學習入侵檢測系統的最新發展。雖然近年來IDS的能力有所提高,但對手也在不斷創新他們的方法。此外,自2005年以來,美國報告的入侵事件的比率一直在增加。大多數IDS漏洞被認為是規避攻擊的結果,其中IP數據包被修改為看似無害,但實際上是有害的[17]。在現代,諸如[11]這樣的規避攻擊使用啟發式方法來擾亂IP數據包的特征,騙過IDS。
因此,最終的研究目標是利用GML和元學習等技術,提高基于機器學習的IDS的分類性能和魯棒性,如[2]。通過分類性能,我們特別指出了召回率(檢測率)和準確率的指標。穩健性是指算法對來自于與訓練所用的例子不同的分布的例子有很好的概括傾向[18];它是當今網絡環境中模型的一個越來越重要的特征。
雖然貢獻2暴露了基于ML的IDS的安全漏洞,但貢獻3提供了一個解決方案。這一研究目標在MADFACTS中實現。MADFACTS: Meta-learning Augmented Defense For Adversarial Cyber Techniques是一篇已完成的長篇文章,正等待提交給《計算機與安全》、《未來互聯網》或《優化通訊》等刊物。這項工作是由Marc Chal′e(主要作者)撰寫的,委員會成員為支持論文研究做出了貢獻。支持貢獻3的工作將在第四章介紹。
影響。
上述研究目標對物聯網的網絡防御和整個國家安全有協同的影響。貢獻1旨在解決網絡領域長期缺乏標記的高質量訓練數據的問題。貢獻2提供了一個技術優勢,以對抗那些希望開發針對物聯網的新型對抗性攻擊的網絡犯罪分子和對手。貢獻1和貢獻2的成功加強了貢獻3的工作,其中一個強大的IDS擊敗了對手的例子。這些成就符合軍事戰略的更大愿景,即在所有領域(包括網絡、空間、陸地、空中和海上)實現機動性自由。加強整個IoBT的網絡安全對于指揮官在現代跨域戰爭中造成預期的影響是必不可少的,因為指揮、控制、情報和識別是決策的骨干,而且越來越數字化了。這項研究提供了一條有希望的途徑,以提高對抗不斷變化的攻擊威脅的穩健性。
網絡威脅變得越來越普遍。最近備受矚目的入侵事件表明,秘密的的網絡空間效應如何能夠挑戰21世紀的國際安全戰略格局。每個經濟部門和人類生活的各個方面對數字技術的日益依賴強烈地表明,這一趨勢將繼續下去。北約盟國正以日益強大的網絡安全和防御來應對,特別是當它與軍事系統、平臺和任務相交時。
對提高復原力和穩健性的要求加速了對人工智能技術的探索和采用,即使計算機能夠模仿人類智能的技術,用于網絡防御。深度機器學習(DML)就是這樣一種最先進的技術,它在網絡安全以及許多其他應用領域都表現出了相當大的潛力。深度機器學習可以增強網絡彈性,其防御措施隨著時間的推移隨著威脅的變化而變化,并減少人類專家手動數據分析的總體負擔。深度機器學習可以促進更快的響應,特別是在充分和足夠的訓練下。一些可能的考慮包括在建立或生成數據模型開發中的對抗性樣本。
本技術報告在整合北約范圍內深度機器學習(DML)的網絡防御應用知識方面采取了初步措施。它進一步確定了目前的解決方案和軍事需求之間的差距,并相應地構建了DML在軍事領域有前途的網絡防御應用的追求。研究小組以技術報告的體現為核心,從惡意軟件檢測、事件管理、信息管理、漏洞管理、軟件保障、資產管理、許可證管理、網絡管理和配置管理的角度審查國家標準和技術研究所的安全準則。
該報告研究了DML的復雜效用、實際實施以及公開的挑戰。研究工作組由數據科學、機器學習、網絡防御、建模與仿真和系統工程等領域的專家組成。研究人員和從業人員考慮了數據的聚集、數據的特征、共享數據的需要以及數據模型的共享,或其生成者。這些因素,包括如何處理、訓練、訪問數據,以及相關的技術,如遷移或聯邦學習,也被考慮在內。
網絡威脅越來越先進,對手更具戰略性,可以從世界任何地方表現出威脅。今天的對手擁有資源和時間,只要有時間和資源,就可以輕松地發動破壞性攻擊。
不同格式的數據的可用性和豐富性也有助于為對手創造一種靈活性,如果沒有數據的涌入,這種靈活性是不存在的[1]。由于對手很容易獲得工具和技術,所有形式的大數據的可用性,網絡攻擊達到了前所未有的高度,北約國家必須通過緩解工具和技術來增強其戰略地位,以減輕對軍事系統、平臺和任務的網絡威脅[2]。
緩解技術將包括最新和最偉大的技術,以創造彈性,及時發現和應對攻擊,并在平臺發生任何損害或損害之前恢復。
世界正在變得更加數字化[3],軍隊也不例外。隨著先進工具的出現和技術的數字化,研究人員必須做好準備,研究防御性技術,以防止軍事系統和平臺的破壞和退化。
RTG計劃探索深度機器學習(DML)的應用,以實施和加強軍事戰略網絡地位,并創建一個防御,不僅要解決今天的威脅,還要解決未來可能出現的威脅,如增加的處理能力,先進的工具和數據操作技術。
擬議的 "IST 163 - 網絡防御深度機器學習"活動的主要目標是鞏固全北約在DML和網絡防御領域的知識,確定民用解決方案和軍事需求之間的差距,并與其他北約國家合作,使用數據處理,共享數據和模型,并追求將最有前途的技術和應用轉移到軍事領域,同時堅持標準,確保數據與所選技術相匹配。
RTG致力于發現北約各國的DML技術,揭示數據是如何處理和適合神經網絡的,并確定各國在這些技術中的差距,以比較最佳的解決方案,這些解決方案有可能被其他可能沒有潛力或技術不先進的國家采用。
這項研究為各國創造了一個機會,以全面審視DML在網絡防御方面的能力和差距,并研究以最先進的DML方法加強網絡防御的手段。
在為DML創建數據時,來自不同背景的研究人員將共同支持反映數據效用和模型的最佳情況的用例,并努力確保數據最適合于研究。考慮到來自多種背景的擬議數據的動態,對數據的整理和消毒以適應模型,將創造一個機會,看到不同類型的數據對DML模型的各方面作用。
將特別關注術語與北約其他倡議中的相關活動的一致性。因此,它將面向來自人工智能、機器學習、建模和模擬以及系統工程等領域的多學科受眾。
工作組的工作將集中在機器學習上,包括深度學習方面。
網絡防御影響軍事行動的所有領域,包括通信、行動和后勤。隨著威脅的復雜化和對手變得更加創新,傳統的基于簽名的檢測威脅的方法很容易被規避。現有的防御措施無法跟上新的漏洞、漏洞和攻擊載體出現的規模。顯然,有必要開發自動和數據驅動的防御系統,其模型適合于軍事系統和聯盟操作環境。
減少數據分析的負擔和擴展到多樣化和聯合環境的網絡防御技術,現在和將來都對軍事行動相當重要。在這一類別中,一個有前途的領域是機器學習(ML)的應用,即研究和開發沒有預編程指令的模式識別方法來解釋數據。Theobold[1]明確闡述了機器學習的效用:
在20世紀上半葉的20年里,美國的武裝部隊是數字計算機發展的唯一最重要的驅動力[2]。隨著商業計算機行業開始形成,武裝部隊和國防工業成為其主要市場。在其發展過程中,人類對所有的軟件進行編程,并作為計算和算法進步的主要驅動力。面向對象的編程使軟件可以重復使用,并擴大了其規模。后來,互聯網使軟件民主化。隨著深度機器學習(DML)的出現,這一格局正準備再次發生根本性的轉變,這是ML的一個子集。DML技術通過訓練描述輸入和輸出之間關系的模型,使計算機能夠 "編寫 "自己的軟件。這一突破已經在加速每個行業的進步。研究表明,深度學習將在未來20年內使全球股票市場增加近50%[3]。
網絡防御也不例外,這是個趨勢。20世紀后半葉,社會和軍事應用中越來越多地采用數字技術,而21世紀頭幾十年的常規數據泄露事件,說明了一個有彈性的網絡空間的重要性。人工智能(AI)的應用,包括用于網絡防御的ML和DML,已經在國防研究論壇上獲得了相當多的曝光[4]、[5]、[6]、[7]、[8]、[9]、[10]、[11]。這些應用具有相當大的軍事前景,特別是涉及到漏洞發現、威脅識別、態勢感知和彈性系統。
網絡防御是北約合作安全核心任務的組成部分[12]。2002年,盟國領導人首次公開承認需要加強防御網絡攻擊的能力[13]。此后不久,在2003年,他們建立了北約計算機事件響應能力(NCIRC),這是一個由 "第一響應者 "組成的團隊,負責預防、檢測和響應網絡事件。從那時起,網絡領域的重要性和關注度都在不斷增加。2008年,北約建立了合作網絡防御卓越中心,目前由25個贊助國組成,其任務是加強北約盟國和合作伙伴的能力、合作和信息共享[14]。2014年,盟國領導人宣布,網絡攻擊可能導致援引北約創始條約中的集體防御條款。2016年,盟國承認網絡空間是軍事行動的一個領域。盟國領導人進一步承諾,將加強其國家網絡和基礎設施的復原力作為優先事項,并申明國際法適用于網絡空間[15]。雖然北約的主要重點是保護聯盟擁有和運營的通信和信息系統,但它規定了簡化的網絡防御治理,協助盟國應對網絡攻擊,并將網絡防御納入作戰計劃,包括民事應急計劃。北約清楚地認識到,其盟國和合作伙伴受益于一個可預測和安全的網絡空間。
對北約安全的網絡威脅越來越頻繁,越來越復雜,越來越具有破壞性和脅迫性。聯盟必須準備好保衛其網絡和行動,以應對它所面臨的日益復雜的網絡威脅。因此,盟軍的理論指出,網絡防御是影響未來軍事力量平衡的六個關鍵因素之一[16]。北約的政策進一步將網絡防御的追求定格在六個關鍵目標上[17]。
將網絡防御的考慮納入北約的結構和規劃過程,以執行北約的集體防御和危機管理的核心任務。- 重點關注北約及其盟國的關鍵網絡資產的預防、恢復和防御。
發展強大的網絡防御能力,集中保護北約自己的網絡。
為對北約核心任務至關重要的國家網絡的網絡防御制定最低要求。
提供援助,以實現最低水平的網絡防御,減少國家關鍵基礎設施的脆弱性。
與合作伙伴、國際組織、私營部門和學術界接觸。
最近的研究闡述了這些目標是如何實現的[18]。盡管其成員負責保護自己的網絡空間部分,但北約在促進互動、保持態勢感知以及隨著危機或沖突的發展將資產從一個盟友或戰術情況轉移到另一個盟友方面發揮著關鍵作用。它進一步倡導多國部隊之間的高度互操作性,包括聯合收集、決策和執行盟國在網絡空間的行動要素[19]。2013年,北約防御規劃進程開始向其盟國分配一些集體的最低能力,以確保一個共同的基線,包括國家網絡應急小組(CERT)、加密、教育、培訓和信息共享。在網絡空間以及其他領域,北約在建立國際規范和行為準則方面發揮了不可或缺的作用,促進了對不可接受的行為、譴責、制裁和起訴的明確性。
美國國家網絡戰略[20]宣稱有責任捍衛美國利益免受網絡攻擊,并威懾任何試圖損害國家利益的對手。它進一步確認了為實現這一目標而開發的網絡空間行動能力。美國軍事理論將網絡行動定義為一系列行動,以防止未經授權的訪問,擊敗特定的威脅,并拒絕對手的影響[21]。在本報告的背景下,有兩個關鍵功能非常突出。
網絡空間安全(Cybersecurity),是指在受保護的網絡空間內采取的行動,以防止未經授權訪問、利用或破壞計算機、電子通信系統和其他信息技術,包括平臺信息技術,以及其中包含的信息,以確保其可用性、完整性、認證、保密性和不可抵賴性。
而網絡空間防御(Cyber Defence)則是指在受保護的網絡空間內采取的行動,以擊敗已經違反或有可能違反網絡空間安全措施的特定威脅,包括檢測、定性、反擊和減輕威脅的行動,包括惡意軟件或用戶的未經授權的活動,并將系統恢復到安全配置。
盡管有區別,但網絡安全和網絡防御都需要對系統和安全控制進行廣泛的持續監測。聯合軍事理論進一步承認了整合能力的挑戰,其中包括。
民族國家的威脅,可以獲得其他行為者無法獲得的資源、人員或時間。一些國家可能利用網絡空間能力來攻擊或進行針對美國及其盟友的間諜活動。這些行為者包括傳統的對手;敵人;甚至可能是傳統的盟友,并可能外包給第三方,包括幌子公司、愛國的黑客或其他代理人,以實現其目標。
非國家威脅包括不受國家邊界約束的組織,包括合法的非政府組織(NGO)、犯罪組織和暴力極端主義組織。非國家威脅利用網絡空間籌集資金,與目標受眾和對方溝通,招募人員,計劃行動,破壞對政府的信任,進行間諜活動,并在網絡空間內直接開展恐怖行動。他們也可能被民族國家用作代理人,通過網絡空間進行攻擊或間諜活動。
個人或小團體的威脅是由可獲得的惡意軟件和攻擊能力促成的。這些小規模的威脅包括各種各樣的團體或個人,可以被更復雜的威脅所利用,如犯罪組織或民族國家,往往在他們不知情的情況下,對目標實施行動,同時掩蓋威脅/贊助者的身份,也創造了合理的推諉性。
事故和自然災害可以擾亂網絡空間的物理基礎設施。例子包括操作失誤、工業事故和自然災害。從這些事件中恢復可能會因為需要大量的外部協調和對臨時備份措施的依賴而變得復雜。
匿名性和歸屬性。為了啟動適當的防御反應,網絡空間威脅的歸屬對于被防御的網絡空間以外的任何行動都是至關重要的,而不是授權的自衛。
地域。防御性反應的累積效應可能超出最初的威脅。由于跨區域的考慮,一些防御行動被協調、整合和同步化,在遠離被支持的指揮官的地方集中執行。
技術挑戰。使用依賴利用目標中的技術漏洞的網絡空間能力可能會暴露其功能,并損害該能力對未來任務的有效性。這意味著,一旦被發現,這些能力將被對手廣泛使用,在某些情況下,在安全措施能夠被更新以考慮到新的威脅之前。
私營企業和公共基礎設施。國防部的許多關鍵功能和行動都依賴于簽約的商業資產,包括互聯網服務提供商(ISP)和全球供應鏈,國防部及其部隊對這些資產沒有直接的權力。
全球化。國防部的全球業務與其對網絡空間和相關技術的依賴相結合,意味著國防部經常從外國供應商那里采購任務所需的信息技術產品和服務。
緩解措施。國防部與國防工業基地(DIB)合作,以加強駐扎在DIB非機密網絡上或通過DIB非機密網絡的國防部項目信息的安全性。
2018年國防戰略[22]對美國軍隊在各個領域--空中、陸地、海上、太空和網絡空間--都表示嚴重關切。它進一步承認,當前的國際安全格局受到快速技術進步和戰爭性質變化的影響。為了應對這一挑戰,美國國防部確定了現代化的優先事項,其中包括人工智能/ML、自主性和網絡。網絡是一個獨特的作戰領域,對需要加強指揮、控制和態勢感知以及自主行動的軍事行動來說,具有重大挑戰和潛在的飛躍能力。
2019年聯邦網絡安全研究與發展戰略計劃[23]闡明了用人工智能(AI)模型、算法以及其他領域的人與AI互動來增強網絡安全研究與發展(R&D)的必要性。將人工智能技術納入網絡自主和半自主系統,將有助于人類分析員在自動監測、分析和應對對手攻擊方面以更快的速度和規模運作。這方面的應用包括部署智能自主代理,在日益復雜的網絡戰斗空間中檢測、響應和恢復對手的攻擊。預期成果包括預測固件、軟件和硬件中前所未有的安全漏洞;根據學習到的互動歷史和預期行為,從攻擊場景中持續學習和建模;利用通信模式、應用邏輯或授權框架,防御針對人工智能系統本身的攻擊;半/完全自主的系統減少了人類在網絡操作中的作用。
2020年,美國人工智能國家安全委員會[24]強調了人工智能技術對經濟、國家安全和人類福祉的潛在影響。它指出,美國的軍事對手正在整合人工智能概念和平臺,以挑戰美國幾十年來的技術優勢。人工智能加深了網絡攻擊和虛假信息運動帶來的威脅,我們的對手可以利用這些威脅來滲透社會,竊取數據,并干擾民主。它明確宣稱,美國政府應該利用人工智能的網絡防御措施,以防止人工智能的網絡攻擊,盡管它們本身并不能保衛本質上脆弱的數字基礎設施。
根據北約合作網絡防御卓越中心的數據,至少有83個國家已經起草了國家網絡安全戰略[25]。此外,所有30個北約成員國都發布了一份或多份治理文件,反映了保衛網絡環境的戰略重要性。這種堅定的姿態源于過去20年里發生的越來越普遍和有影響的網絡攻擊。在本節中,我們研究了影響北約盟國的高調入侵的簡短歷史,培養了當前的氣氛,并強調了對更好的網絡保護、威懾、檢測和反應技術的需求。
2003年,一系列協調攻擊破壞了美國的計算機系統。這些攻擊被美國政府命名為 "泰坦雨",持續了三年,導致政府機構、國家實驗室和美國國防承包商的非機密信息被盜。隨后的公開指控和否認,源于準確檢測和歸因于網絡攻擊的困難,成為網絡空間中新出現的國際不信任的特征。
2007年,愛沙尼亞成為一場持續二十二天的政治性網絡攻擊活動的受害者。分布式拒絕服務攻擊導致許多商業和政府服務器的服務暫時下降和喪失。大多數的攻擊是針對非關鍵性服務,即公共網站和電子郵件。然而,有一小部分集中在更重要的目標,如網上銀行和域名系統(DNS)。這些攻擊引發了一些軍事組織重新考慮網絡安全對現代軍事理論的重要性,并導致了北約合作網絡防御卓越中心(CCDCOE)的建立,該中心在愛沙尼亞的塔林運作。
2008年,一系列的網絡攻擊使格魯吉亞組織的網站失效。這些攻擊是在一場槍戰開始前三周發起的,被認為是一次與主要作戰行動同步的協調的網絡空間攻擊。
2015年,俄羅斯計算機黑客將目標鎖定在屬于美國民主黨全國委員會的系統上。這次攻擊導致了數據泄露,被確定為間諜行為。除了強調需要加強網絡復原力外,對這一事件的反應突出了采取行動打擊虛假信息和宣傳行動的必要性。
2017年,WannaCry勒索軟件感染了150個國家的20多萬臺電腦。這種不分青紅皂白的攻擊,由利用微軟視窗操作系統漏洞的勒索軟件促成,鎖定數據并要求以比特幣支付。在幸運地發現了一個殺毒開關后,該惡意軟件被阻止了,但在它導致工廠停止運營和醫院轉移病人之前。
2018年,挪威軍方和盟國官員證實,俄羅斯在歐洲高北地區舉行的三叉戟接點演習中,持續干擾GPS信號,擾亂了北約的演習[26]。"使用天基系統并將其拒絕給對手的能力是現代戰爭的核心"[27]。在過去幾十年里,軍事行動對天基資產的依賴性越來越大,天基資產越來越成為網絡攻擊的理想目標。俄羅斯等國都將電子戰、網絡攻擊和電磁戰斗空間內的優勢作為在未來任務中取得勝利的戰略的一部分。這些國家的現有理論突出了一個重點,即防止對手的衛星通信系統影響其作戰效率。衛星依賴于網絡技術,包括軟件、硬件和其他數字組件。空間系統對于在空中、陸地、海上、甚至網絡領域進行的行動中提供數據和服務是至關重要的。對衛星控制系統或帶寬的威脅對國家資產和目標構成了直接挑戰,并促進了對緩解措施的需求,以實現這些系統的彈性。
2020年,來自亞美尼亞和阿塞拜疆的黑客在納加諾-卡拉巴赫戰爭期間以網站為目標。錯誤信息和舊事件的視頻被當作與戰爭有關的新的和不同的事件來分享。新的社交媒體賬戶創建后,關于亞美尼亞和阿塞拜疆的帖子激增,其中許多來自真實用戶,但也發現了許多不真實的賬戶。這一事件強調了社會網絡安全作為一個新興研究領域的出現[28]。
2020年,一場重大的網絡攻擊通過破壞流行的網絡監控工具Solarwinds的軟件供應鏈滲透到全球數千家機構。據報道,由于目標的敏感性和高知名度,以及黑客進入的時間之長,隨后發生的破壞程度是美國所遭受的最嚴重的網絡間諜事件之一。在被發現的幾天內,全世界至少有200個組織被報告受到了攻擊。
越來越多的趨勢是網絡空間發展的特點。網絡技術在我們生活的各個方面發揮著越來越大的作用。這一趨勢也延伸到了軍事沖突。對網絡技術的日益依賴將帶來新的脆弱性,并侵蝕傳統網絡防御的界限。隨著基礎技術組件和界面的成熟,網絡空間和其他領域,包括關鍵基礎設施、軍事武器系統和綜合生物、物理和量子系統之間的交叉將越來越重要。在本節中,我們確定了將影響網絡空間演變的技術和非技術趨勢,以及ML在其防御應用中的基本效用。
硬件、軟件和協議的可編程性和復雜性日益增加。可編程性的增加帶來了快速的開發和交付窗口,但每一個新的代碼庫都會進一步引入新的漏洞。復雜性的增加導致了未使用的代碼路徑,即軟件臃腫,從而維持了不良的攻擊路徑。第三方和開源硬件和軟件的存在越來越多,這使得快速的原型設計成為可能,但也容易受到不透明的供應鏈和來源損失的影響。
自主性的應用和加速的決策循環是網絡沖突的方向和速度的特征。人類將在機器智能中依賴大數據、增加的計算能力和新型計算算法的匯合。日益增長的網絡速度需要更多地依賴預防妥協、復原力以及與人類專家的最佳人機合作。同時,網絡空間越來越不可信,新興的安全架構規定,需要根據資產和信息對任務背景的重要性來保護它們[29]。
網絡空間的應用范圍越來越多樣化。隨著邊緣設備保持通電和可訪問性,以及低尺寸、低重量和電源設備連接的應用增長,無處不在的連接將增加軍事上對網絡空間的依賴。與網絡物理系統(即物聯網)一樣,新興的生物、物理和量子應用將需要與網絡空間的新接口。這些接口將為網絡防御創造新的機會和挑戰,如儀器和傳感、側信道攻擊和形式驗證。
機器學習(ML)將繼續發展其與網絡空間技術和網絡防御應用的多層面關系。一方面,ML可以增強幾乎所有的網絡技術及其應用(即微電子、網絡、計算架構等的設計、開發和測試)。另一方面,網絡技術的進步(如張量處理單元、量子計算機)可以增強ML能力。鑒于在大量數據中進行模式識別的基本挑戰,ML可以大大改善網絡空間的能力和彈性。
互聯網用戶的數量囊括了世界一半以上的人口[30]。盡管有跡象表明,由智能手機出貨量下降和2020年全球大流行引起的近期增長放緩,但創新繼續推動產品改進。收集的數字數據的迅速崛起是那些增長最快的公司成功的關鍵,通常是通過數據挖掘和豐富的上下文增強,幫助個性化的產品和服務。這導致了對濫用數據、用戶隱私和準備推動市場變化或監管的問題內容的擔憂。隨著數字系統變得越來越復雜,數據越來越豐富,任務也越來越重要,利用的機會和意愿也越來越大。越來越多地,新興技術的網絡安全影響被納入國際外交和國防考慮。最近的例子包括脆弱性平等進程[31]、網絡空間信任與安全巴黎呼吁[32]和算法權利法案[33]。
戰略性的全球需求信號,包括氣候變化和資源短缺,可能會產生新的領土野心和聯盟,導致政治格局急劇變化。例如,由天基太陽能技術產生的電力可能被傳送到地面,這就需要新的關鍵基礎設施和網絡空間的全球存在點。同樣,由自然資源短缺引起的人口變化可能會改變政治和國家安全格局。這些變化將引入新的關鍵基礎設施,并對網絡空間產生依賴性。
軍事行動已經嚴重依賴網絡空間。這種依賴性是一個可以被利用來獲得不對稱優勢的弱點[34]。數字地形的丟失、退化、損壞、未經授權的訪問或利用為對手提供了巨大的優勢,并對軍事目標構成了威脅。近鄰的行為者將繼續試圖破壞網絡空間或反擊進攻性網絡行動。進攻性網絡能力的民主化和擴散將進一步為非近鄰的競爭對手提供具體的優勢。越來越多地,一個國家的能力和影響力可以通過其將消費電子產品武器化的能力來衡量,特別是當這些商業開發的系統將成為軍事應用的基礎。因此,網絡攻擊的范圍、頻率和影響都將增長。
同時,全球化將促使對軍事行動的標準和責任的審查增加。政治和公眾對問責制的要求將因戰爭的日益不透明而受到挑戰。例如,在物理領域開展的威懾行動需要精心策劃的敘述和信息傳遞,與24小時的新聞周期保持一致。然而,進攻性的網絡行動準備實現更加隱蔽的效果,不容易被觀察到或歸因。網絡戰工具已將網絡空間轉化為一個灰色地帶的戰場,在這里,沖突低于公開的戰爭門檻,但高于和平時期。
作戰將越來越多地將網絡與傳統領域(如陸地、海洋、空中、太空)結合起來。戰爭學說、國際條約和一般法律將隨著力量平衡、現有技術和區域沖突的變化而反應性地發展。進攻性網絡工具的民主化將對抗動能領域作戰的傳統優勢。前所未有的連通性和日益增長的民族主義將推動網絡空間繼續被用于不對稱的優勢。世界范圍內的社會動蕩所助長的虛假信息和影響運動將可能蔓延到網絡空間。盡量減少外部影響、執行數據隱私和管理數字內容的愿望增強,可能會推動互聯網的巴爾干化。
這在俄羅斯宣布將其國家部分從全球互聯網中關閉并成為 "數字主權",同時在網絡空間中追求決定性的軍事優勢中已經得到證明。在這個目標中,包括為人工智能系統建立信息安全標準。這樣的新技術應用很可能會影響俄羅斯選擇的實現其目標的方式。例如,Kukkola等人[35]斷言,人工智能可能為俄羅斯提供一個機會,以靈活的方式定義其數字邊界,反映普遍的意見和忠誠度,而不是地理位置。俄羅斯領導層進一步斷言,領導人工智能的國家將是 "世界的統治者",表明這種進步將是變革性的,其影響尚未被完全理解。
傳統的網絡安全和網絡防御方法依賴于人工數據分析來支持風險管理活動和決策。盡管這些活動的某些方面可以自動化,但由于其簡單性和對問題領域的有限理解,自動化往往是不足的。在這一章中,我們將調查DML應用的文獻,這些應用可以幫助信息安全的持續監控,用于美國國家標準研究所定義的一組安全自動化領域[1]。我們這樣做是為了對最先進的研究現狀、實際實施、開放的挑戰和未來的愿景建立一個結構化的理解。通過這些見解,我們指出了DML在整個網絡安全領域應用的一系列挑戰,并總結了我們的發現。
在不同的安全自動化領域中,我們已經確定了主題和建議未來研究的領域。其中一個反復出現的主題似乎是缺乏實際的實現,也就是說,缺乏高技術準備水平(TRL)。我們懷疑這可能是由于許多不同的原因,例如,未滿足性能預期、數據不足、不合格的深度學習架構、對促進可擴展的DML應用的通用數據存儲和分析解決方案缺乏共識,或研究的初級階段。通過我們的初步調查,我們強調了未來的研究方向和/或阻礙每個安全自動化領域的進一步進展的問題。
惡意軟件檢測。DML應用需要處理惡意軟件如何隨著時間的推移改變其統計屬性,例如,由于對抗性方法(概念漂移)。還有一個問題是關于數據共享,以適應不太可能被釋放到野外的高級惡意軟件,以及一般的數據訪問。此外,還需要研究如何定義能夠代表軟件的新特征,以便進行檢測和歸屬。
事件管理。DML與現有安全控制的整合不足,限制了DML應用的開發程度。在操作化、管理和例行程序方面,以促進標記數據的收集和深度學習模型的開發。
信息管理。DLP系統可以與網絡和終端系統緊密相連,需要對系統有一個深刻而廣泛的了解。在當前的IT安全趨勢下,加強數據保密性,這樣的系統正面臨著數據可訪問性的降低。這絕不是這個領域特有的問題,但卻使DML應用的開發變得復雜。因此,研究機會是存在的,例如,通過與底層操作系統更深入的整合來恢復數據的可訪問性。然而,也有一些課題需要研究描述任何給定數據是否包含敏感信息的條件,以及相同數據的變化如何被識別,而不考慮例如編碼方案。以及當所需的數據在沒有額外分析的情況下無法直接獲得時,如何表示模糊或開放的規則并驗證其合規性。
脆弱性管理。缺乏共識和對公共和足夠大的數據集的訪問,已經被認為是漏洞發現領域的一個挑戰。然而,有一些嘗試可以減少這種依賴性,通過部署預先訓練好的語言模型,例如,對軟件掃描進行模糊測試,以檢測漏洞并協助修補漏洞。我們預見了兩個可以進一步研究的方向:改進深度學習架構或改進數據集及其特征表示。
軟件保證。盡管支持DML應用的技術存在于相關領域,如惡意軟件檢測和漏洞管理。我們還沒有發現在這個領域內研究問題的努力,但當多個DML應用能夠協同工作時,我們期待這種發展。
資產管理。隨著即將到來的資產新浪潮,被稱為 "工業4.0"。其中包括制造業的自動化和數據交換的趨勢,以及移動設備、物聯網平臺、定位設備技術、3D打印、智能傳感器、增強現實、可穿戴計算和聯網的機器人和機器。我們認為,DML的應用可以并將有助于這種未來資產管理的某些方面,然而,哪些方面仍然是一個開放的研究問題,開放的文獻表明,需要探索行業特定的使用案例。
許可證管理。考慮到軟件資產管理(SAM)考慮到許可問題,這里也適用與資產管理相同的未來研究方向。- 網絡管理。移動目標防御(MTD)是一個新興的研究領域,將大大受益于人工智能驅動的方法。
配置管理。我們希望與MTD研究相關的技術可以使配置管理能力受益。
補丁管理。我們已經確定了解決某些問題的研究,如:以風險意識的方式動態調度補丁,自動漏洞修復分析,以及在軟件補丁尚未可用的情況下定位漏洞緩解信息。然而,沒有人試圖將這些納入一個單一的模型,從而創建一個完整的管道。這可能是未來研究中需要探索的一個領域。
最后,我們沒有發現任何證據表明,任何安全領域在DML應用方面的研究都已經完成。所有的領域都有尚未探索的研究領域,這些領域在未來可以并且有望經歷重大的研究。
惡意軟件是指在所有者不知情或不同意的情況下,故意設計成滲入、修改或破壞計算機系統的任何惡意軟件。惡意軟件具有多種形式的數字內容,包括可執行代碼、腳本和嵌入互動文件中的活動對象。下面列舉了常見的惡意軟件類型及其特點。
安全分析師和惡意軟件開發者之間的斗爭是一場持續的戰斗。最早記錄在案的病毒出現在1970年代。今天,惡意軟件的復雜性變化很快,利用不斷增加的創新。最近的研究強調了惡意軟件在促進網絡安全漏洞方面的作用,注意到惡意軟件的趨勢是以經濟利益為動機的目標有效載荷,并提供證據斷言互聯網連接設備的擴散將促進惡意軟件交易[2],[3]。
惡意軟件檢測是指識別終端設備上是否存在惡意軟件,以及區分特定程序是否表現出惡意或良性特征的過程。傳統的基于簽名的方法來識別和描述惡意軟件越來越不利,因為微不足道的改變使惡意軟件可以逃避普通的檢測方法[4], [5]。基于簽名的方法本質上是基于正則表達式的模式匹配,從觀察到的惡意軟件的經驗知識中獲得。從已知的惡意軟件樣本中提取的獨特字節串建立了一個簽名數據庫,通常由終端保護供應商的訂閱服務提供。當反惡意軟件程序收到要測試的文件時,它將文件的字節內容與數據庫中的簽名進行比較。只要惡意軟件不采用規避措施,這種方法是有效的,而且計算效率高(即類型1錯誤低)。然而,隨著簽名的數量和采用棘手的規避措施的增加,模式匹配的計算成本變得很高,而且越來越無效。啟發式方法在一定程度上通過規則解決了這一挑戰,但同時也增加了假陽性率。簽名和啟發式方法的脆弱性是一個長期公認的問題,它促進了對替代和補充技術的研究。
這些補充技術通常是一個艱巨的過程,需要詳盡地結合軟件逆向工程、源代碼調試、運行時執行分析以及網絡和內存取證。靜態分析技術可以識別表面特征,如加密哈希值、大小、類型、標題、嵌入內容和軟件打包器的存在。靜態分析工具包括源代碼和字節碼分析器、數字簽名驗證工具和配置檢查器。動態分析技術可以識別運行時的特征,如對文件系統、操作系統、進程列表、互斥因子和網絡接觸點的改變。動態技術需要大量的專業工具,包括解包器、調試器、反匯編器、解碼器、模糊器和沙箱,通過這些工具可以安全地執行、檢測和觀察可疑文件的行為。許多擁有強大信息安全計劃的軍事組織采用了一種混合方法,通過一系列的技術和工具對可疑的未知文件進行分流和檢查[6]。
盡管采取了全面的方法,但許多工具都有局限性,沒有一種技術可以自信地保證軟件的出處和衛生。例如,軟件打包器的存在和其他混淆文件內容的伎倆阻礙了靜態分析方法。同樣地,通過沙盒進行動態分析的實施成本很高,往往缺乏取證的可追溯性,而且很容易被虛擬的殺戮開關所顛覆,這些開關會對執行環境進行檢測。惡意軟件發現的ML應用可以追溯到20年前。早期的方法依賴于特征向量,如ASCII字符串、指令、n-grams、頭域、熵和動態鏈接庫的導入,這些都是從可執行文件中提取的。這些方法產生了不同的結果。雖然提供了巨大成功的跡象和顯著的準確性,但它們最終缺乏可擴展性,未能跟上不斷變化的威脅,因此必須繼續使用傳統的、精確的簽名。惡意軟件創建和發現的對抗性確保了對手一旦意識到用于識別其代碼的特征就會采用新技術。因此,由于缺乏暗示惡意的明顯或自然特征,這些技術被證明具有局限性。
事件管理包括監測工具和技術,并在必要時對網絡或系統中觀察到的事件作出反應。如果這些事件表明存在惡意或有問題的活動,則可稱為 "警報 "或 "警告"。它們通常被記錄在記錄一個組織的周邊事件的日志中。有大量的工具可以被認為是這個領域的一部分,但我們特別考慮兩個。安全信息和事件管理(SIEM)系統和入侵檢測系統(IDS)。前者致力于通過聚集來自多個安全控制的日志來實現分析。后者部署在戰略位置,分析本地系統或網絡的日志。
數據的分類是軍事領域的一個標準要求。傳統上,紙質文件被標記為 "非機密 "或 "機密 "等標簽,用戶必須遵循嚴格的規定以確保所需的保密性。這種基于紙張的系統的一個特性是文件和其分類之間的直接聯系,因為它是文件的一部分。文件分類的元信息不能與文件本身分開。這在數字環境中不能以同樣的方式實現,因為通常很容易將分類數據與其元數據分開,從而將其分類分開。一些系統試圖保證這種不可分割的聯系。然而,它們只限于邊緣情況。在實踐中,數據被儲存在無數的系統中,被轉移、改變、轉換,并使用難以計數的格式。一些例子是。
以PDF、Office Open XML或純文本等辦公格式存儲的文本文件。
以簡單格式存儲的圖像,如BMP(位圖圖像文件格式)或JPEG;以及
以WAVE或MP3格式存儲的音頻數據。
這些格式中有些提供受保護的元數據,有些則是除了信息之外沒有任何東西的普通格式。
本節重點討論一種通常被稱為數據丟失預防/數據泄漏預防(DLP)的一般方法,它可以處理任意數據。這樣的DLP系統會分析應用于數據的用戶行為(例如,通過電子郵件發送文件或打印文件)是否被給定的規則集所允許。元數據,如分類,可以緩解這一過程,但(在理論上)不是必需的。我們可以把這樣的DLP形式化為一個決策任務,我們要決定一個給定的行動a是否可以按照規則r應用于一個文件d。在白名單方法中,我們把對數據的操作限制在允許的規則中。其他的都是禁止的。黑名單方法則與此相反。除非明確禁止,否則一切都被允許。這兩種方法在網絡安全中都很常見。
我們可以區分兩個主要的系統設計。端點解決方案的工作方式類似于防病毒(AV)。它們監測特定設備上的活動。端點解決方案可以在訪問時以未加密的形式訪問數據(也稱為 "使用中的數據")或主動搜索系統中的數據(也稱為 "靜態數據"),這樣,主要的挑戰是對給定的數據進行分類并應用政策,例如,阻止分類文件被打印或通過不安全的渠道或不受信任的目的地傳輸。網絡解決方案監測數據交換,也被稱為 "運動中的數據"。因此,它們不能在特定的主機上執行規則,而是限制信息交流。網絡解決方案面臨的一個共同問題是,越來越多的網絡流量被端對端加密,因此監測系統無法讀取。介于上述兩種解決方案之間的第三類是基于云的解決方案,其中DLP是對存儲在基于云的系統中的數據進行強制執行。基于云的解決方案似乎非常特別,但它們與端點解決方案相似,因為它們可以在其云中的 "本地 "數據上操作,并與網絡解決方案相似,因為它們可以監測流量。然而,終端可能會在云中存儲加密的數據,這樣云系統可能會受到對未加密數據的較少訪問。
DLP系統面臨以下挑戰:
1)數據獲取。DLP必須訪問數據本身,以分析是否允許某個行動。這對基于網絡的解決方案來說變得越來越復雜。
分析數據。DLP系統必須 "理解 "并對內容進行分類。這意味著,他們必須支持廣泛的不同文件類型。
表示規則。規則是決定是否可以對給定的數據采取某種行動所必需的。對于一些規則,如 "不允許轉移標記為機密的文件",規則的表示是直接的。然而,"模糊 "規則要難得多。例如,"不允許轉讓軍事地點的圖片",因為沒有明確的定義,一張圖片是否包含軍事地點。
DML可以應用于所有挑戰,但分析數據是最明顯的挑戰,將在 "當前研究 "中簡要討論。
美國家安全系統委員會(CNSS)詞匯表第4009號將漏洞定義為信息系統、系統安全程序、內部控制或實施中的弱點,可被威脅源利用或觸發[41]。軟件漏洞是指在軟件代碼中發現的可被攻擊者利用的安全缺陷、小故障或弱點[42]。
漏洞管理是識別、分類、補救和緩解漏洞的循環做法[43]。美國國家標準與技術研究所(NIST)將漏洞管理能力定義為一種信息安全持續監控(ISCM)能力,它可以識別設備上的漏洞,這些漏洞很可能被攻擊者用來破壞設備,并將其作為一個平臺,將破壞延伸到網絡上[44]。漏洞管理的目的是確保軟件和固件漏洞被識別和修補,以防止攻擊者破壞一個系統或設備,而這又可能被用來破壞其他系統或設備。
美國家安全系統委員會[59]將軟件保證定義為:軟件按預期功能運行,并且在整個生命周期內沒有故意或無意設計或插入的漏洞的信心水平[59]。NASA技術標準8739.8A中的定義使用了類似的措辭[60]。
軟件保證領域與其他領域相聯系,特別是與漏洞管理領域相聯系,涉及到漏洞掃描和發現,但也涉及到惡意軟件檢測。
網絡安全的最佳實踐需要對構成信息環境的數字資產進行說明[1], [64], [65]。資產管理是指組織維護硬件、軟件和信息資源清單的做法,長期以來被認為是強大的網絡安全態勢的一個組成部分[66]。雖然傳統上是通過配置管理、網絡管理和許可管理的一些工具組合來完成的,但云計算和面向服務的技術的擴散已經導致了更新的解決方案。例如,信息技術資產管理(ITAM)、信息技術服務管理(ITSM)和軟件資產管理(SAM)工具,提供了對技術投資的商業價值核算和最大化的洞察力[67], [68]。
這些解決方案的需求和效用可以通過其需求來描述。獨立評估顯示,ITAM、ITSM和SAM工具的全球市場價值每年在10億至50億美元之間,并列舉了二十多家提供軟件工具或管理服務的技術供應商[69], [70], [71]。這些解決方案對設備、軟件,或者在云服務的情況下,對云服務提供商的接口進行檢測。他們進一步提供工作流程,將資產分配給業務角色和功能。盡管可用的儀器和工作流程功能具有可擴展性,但這些工具的共同特點是能夠感知、查詢和解釋它們所監測的資產的本地數據。更明顯的是,它們作為一種手段,支持最終由人類強加的手工業務流程。
正是通過這一視角,深度學習對資產管理的破壞可以得到最好的實現。現有的工具為監督業務功能的操作員提供信息。雖然它們的實施和有效使用可以幫助減輕安全風險,但它們要求其操作者指定一套配置參數。例如,SAM工具要求其操作者配置如何解釋軟件許可條款和產品使用權。這些工具通過商業智能儀表盤和工作流程建議提供了一定程度的自動化,但由于需要調整,這可能會增加整個解決方案的復雜性,這與直覺相反。
許可證管理工具可以控制軟件產品的運行地點和方式。它們在代碼中捕獲許可協議條款,自動收集軟件使用情況,并計算出成本影響,幫助優化軟件支出。當被軟件供應商采用并集成到他們的產品中時,它們有助于遏制軟件盜版,并提供量身定制的許可功能(例如,產品激活、試用許可、訂閱許可、浮動許可)。當被最終用戶組織采用時,它們有助于遵守軟件許可協議。許可證管理功能經常出現在SAM工具中。
網絡管理工具包括主機發現、庫存、變更控制、性能監控和其他設備管理功能。網絡管理工具通常與資產和配置管理工具的能力相重疊,并增加了便于設備監控和配置的功能。網絡管理同樣包括組織邊界內的那些系統,但為了管理云服務,可能會超出其傳統的范圍。事實上,軟件、網絡和虛擬化技術的爆炸性增長和采用已經推動了多個市場提供一系列屬于網絡管理的工具。
配置管理工具允許管理員配置設置,監控設置的變化,收集設置狀態,并根據需要恢復設置。配置管理跟蹤提供服務的組件之間的關系,而不是資產或網絡本身。管理信息系統和網絡組件之間發現的配置是一項艱巨的任務。系統配置掃描工具提供了一種自動化的能力來審計目標系統,并評估與安全基線配置的一致性。身份和賬戶配置管理工具使一個組織能夠管理身份憑證、訪問控制、授權和權限。身份管理系統還可以實現和監控基于身份憑證的物理訪問控制。軟件配置管理工具跟蹤和控制源代碼和軟件構建之間的變化。與其他安全自動化領域類似,深度學習的應用趨勢表明,正在從人類管理軟件系統向計算機管理軟件系統本身轉變。
補丁管理是指識別、定位和應用補丁到一套管理的軟件的過程,通常是在一個企業環境中。補丁通常以安全為導向,旨在修復軟件或固件的漏洞。由于新的軟件漏洞不斷被發現,補丁管理可能會成為一項困難和艱巨的任務,特別是對于擁有數百臺主機和復雜的軟件庫存的組織。因此,一個強大的補丁管理過程是必要的,以保持一個組織免受惡意活動的傷害。補丁管理因各種挑戰而變得復雜。首先,一個組織必須考慮一個修補機制,以確保眾多主機的安全,包括在家工作的設備、非標準設備、移動設備、以及具有各種操作系統和虛擬設備的設備。此外,補丁可以使用幾種不同的機制來交付,如手動安裝補丁、指導軟件自行打補丁、自動、計劃更新或補丁管理工具(第三方工具或操作系統提供的工具)。由于它既是一個耗時的過程,又對安全至關重要,任何自動化補丁管理的方法都將是非常有益的。
(本節中使用的分類法和術語是根據NIST報告[1],并從Shafee和Awaad的論文[2]中稍作擴展而采用的)。
機器學習的數據驅動方法在ML操作的訓練和測試(推理)階段帶來了一些漏洞。這些漏洞包括對手操縱訓練數據的可能性,以及對手利用模型對性能產生不利影響的可能性。有一個研究領域被稱為對抗性機器學習(AML),它關注的是能夠經受住安全挑戰的ML算法的設計,對攻擊者能力的研究,以及對攻擊后果的理解。AML也對針對深度學習模型的攻擊感興趣。
ML管道中的各個階段定義了這些對抗性攻擊的目標,如輸入傳感器或輸出行動的物理域,用于預處理的數字表示,以及ML模型。AML的大多數研究都集中在ML模型上,特別是監督學習系統。
用于對先前所述目標進行攻擊的對抗性技術可能適用于ML操作的訓練或測試(推理)階段。
人工智能(AI)已經被使用了很多次,因為它們在學習解決日益復雜的計算任務時具有前所未有的性能。由于它也被普遍用于影響人類生活的決策,如醫學、法律或國防,因此需要解釋或說明為什么這種人工智能系統會得出這樣的結論。
傳統的模型,如決策樹、線性和邏輯回歸,通過對特征權重的分析,允許一定程度的可解釋性;而深度神經網絡是不透明的,仍然是一個黑盒子。此外,如圖5-1所示,機器學習算法的性能與解釋訓練過的模型的難易程度之間似乎存在一種反比關系。
2017年,DARPA啟動了可解釋人工智能(XAI)計劃,以解決數據分析(針對情報分析員)以及未來利用強化學習的自主系統的可解釋性問題。在DARPA的報告中,提出了一套創建這種ML技術的方案,在保持高水平的學習性能(如預測精度)的同時,產生更多的可解釋模型,并使人類能夠理解、信任和管理新興的人工智能系統[13]。
文獻對可通過設計解釋的模型和可通過外部技術解釋的模型進行了區分。DL模型不能通過設計來解釋;因此,研究集中在外部XAI技術和混合方法上。Arrieta等人解釋了適用于不同類型的DL模型的技術和混合方法的所有細節。此外,他們解決了一些關于可解釋性和準確性之間的權衡、解釋的客觀性和不明確性以及傳達需要非技術專長的解釋的問題[14]。
超參數是控制學習過程行為的屬性,它們應該在訓練模型之前配置好,而不是在訓練過程中學習的模型參數,例如權重和偏差。它們很重要,因為它們會對正在訓練的模型的性能產生重大影響。
語法(框架)的互操作性。2017年,Open Neural Network eXchange(ONNX)格式被創建為社區驅動的開源標準,用于表示深度學習和傳統機器學習模型。ONNX協助克服了人工智能模型中的硬件依賴問題,并允許將相同的人工智能模型部署到多個HW加速目標。許多框架的模型,如TensorFlow、PyTorch、MATLAB等,都可以導出或轉換為標準的ONNX格式。然后,ONNX格式的模型可以在各種平臺和設備上運行(圖5-2)。
語義互操作性。當數據來自于含義不相同的混合來源時,就不可能了解趨勢、預測或異常情況。語義互用性是指計算機系統交換具有明確意義的信息的能力。為此,無論數據是從單一來源還是異質來源匯總而來,都需要高質量的人類注釋數據集來準確地訓練機器學習模型。
實現語義互操作性的最佳實踐之一是使用原型。原型是一種數據格式規范,它應該盡可能地提供最可用的完整細節。它提供了數據的共享意義。人工智能系統的語義互操作性要求原型是高質量的、基于證據的、結構化的,并由領域專家設計[20]。
與傳統的機器學習方法相比,深度學習在很大程度上依賴于大量的訓練數據,因為它需要大量的數據來理解數據的潛在模式。然而,在某些領域,訓練數據不足是不可避免的。數據收集是復雜而昂貴的,這使得建立一個大規模、高質量的注釋數據集變得異常困難。轉移學習是一個重要的工具,可以用來解決訓練數據不足的問題。它試圖將知識從源域(訓練數據)轉移到目標域(測試數據),方法是放寬訓練數據和測試數據必須是獨立和相同分布的假設,即樣本是相互獨立的,并且來自相同的概率分布。這樣一來,目標域的模型就不需要從頭開始訓練。
深度遷移學習研究如何通過深度神經網絡有效地遷移知識。根據使用的技術,Tan等人[21]將深度遷移學習分為四類:基于實例、基于映射、基于網絡和基于對抗。
1)基于實例的深度遷移學習。源域中與目標域不同的實例被過濾掉并重新加權,以形成接近目標域的分布。用源域中重新加權的實例和目標域中的原生實例來訓練模型。
2)基于映射的深度遷移學習。來自源域和目標域的實例被映射到一個新的數據空間。然后,新數據空間中的所有實例被用作訓練集。
3)基于網絡的深度遷移學習。一般來說,網絡中最后一個全連接層之前的各層被視為特征提取器,最后一個全連接層被視為分類器/標簽預測器。網絡在源域用大規模訓練數據集進行訓練。然后,預訓練網絡的結構和特征提取器的權重將被轉移到將在目標領域使用的網絡中。
4)基于對抗的深度遷移學習。這組技術的靈感來自生成對抗網(GAN)(圖5-3)。一個被稱為領域分類器的額外鑒別器網絡從源領域和目標領域提取特征,并試圖鑒別特征的來源。所有的源和目標數據都被送入特征提取器。特征提取器的目的是欺騙域分類器,同時滿足分類器的要求。
有了低質量的數據,無論機器學習和/或深度學習模型有多強,它都無法做到預期的效果。影響數據質量的過程分為三組:將數據帶入數據庫的過程,在數據庫內操作數據的過程,以及導致準確的數據隨著時間的推移而變得不準確的過程。關于降低數據質量的過程的細節可以在參考文獻中找到。[22].
在使用、導入或以其他方式處理數據之前,確保其準確性和一致性的過程,被稱為數據驗證。現在,數據存儲在不同的地方,包括關系型數據庫和分布式文件系統,并且有多種格式。這些數據源中有許多缺乏準確性約束和數據質量檢查。此外,今天的大多數ML模型定期使用新的可用數據進行重新訓練,以保持性能并跟上現實世界數據的變化。因此,由于任何參與數據處理的團隊和系統都必須以某種方式處理數據驗證,這就成為一項繁瑣和重復的任務。對數據驗證自動化的需求正與日俱增。
一種方法是由Amazon Research提出的單元測試方法[23]。該系統為用戶提供了一個聲明性的API,允許用戶對他們的數據集指定約束和檢查。當驗證失敗時,這些檢查在執行時產生錯誤或警告。有一些預定義的約束供用戶使用,用于檢查數據的完整性、一致性和統計量等方面。在約束條件被定義后,系統將它們轉化為實際的可計算的度量。然后,系統計算指標并評估結果,隨后,報告哪些約束成功了,哪些失敗了,包括哪個指標的約束失敗了,哪個值導致失敗。由于新的數據不斷涌現,該方法采用了遞歸計算方法,只考慮自上一個時間步驟以來的新數據,以增量方式更新度量。此外,該系統自動為數據集提出約束條件。這是通過應用啟發式方法和機器學習模型實現的。
另一種方法是基于數據模式的方法,由谷歌研究院提出[24]。對正確數據的要求被編入數據模式中。所提議的系統采取攝取的數據,通過數據驗證,并將數據發送到訓練算法中。數據驗證系統由三個主要部分組成。一個數據分析器,計算預先定義的足以用于數據驗證的數據統計數據;一個數據驗證器,檢查通過模式指定的數據屬性;以及一個模型單元測試器,使用通過模式生成的合成數據檢查訓練代碼中的錯誤。該系統可以檢測單批數據中的異常情況(單批驗證),檢測訓練數據和服務數據之間或連續幾批訓練數據之間的顯著變化(批間驗證),并發現訓練代碼中未反映在數據中的假設(模型測試)。
盡管深度學習通過使用神經網絡中的多層來逐步分解特征以識別某些特征,但它對數據來源的背景理解較淺,其中背景提供了使某一事件產生的環境或元素,并能為其解釋傳達有用的信息。因此,一個模型最終可能被專門用于訓練數據中記錄的一種或多種情況。因此,這個模型可能對類似的情況有偏見,從而只在這種情況下表現合理。該模型能夠推翻從訓練中學到的經驗,以適應不斷變化的環境。然而,這種能力是受限制的。研究能夠捕捉上下文的模型的動機,通過更強大的、有彈性的、可適應的深度學習來提高任務的有效性。這使得深度學習的使用更具成本效益。
彌補偏見問題的最初努力,始于Bottou和Vapnik[25]提出的局部學習的建議。它涉及到將輸入空間分離成子集并為每個子集建立模型。這個概念本身并不新穎,但由于處理大數據集的應用的復雜性,已經獲得了一些可信度[26]。相反,Mezouar等人[27]沒有發現局部模型比全局模型更值得投資用于預測軟件缺陷。多任務學習(MTL)[28]是機器學習的另一個子領域,可以利用。它將輸入空間分離成多個任務,并利用共享信息,同時考慮到它們的差異。其目的是通過聯合學習和獲取共享表征來提高多個分類任務的性能。Suresh等人[29]試圖在死亡率預測的背景下比較這三種類型的模型。他們的工作表明,多任務模型在整體和每組性能指標上都能勝過全局模型和在單獨的數據子集上訓練的局部模型。不幸的是,似乎還沒有就最合適的模型來捕捉上下文達成最終共識。由于在特定任務的模型之間進行信息共享的技術研究,調整本地/全局模型以適應新的環境,或如何將本地和全局模型結合起來,仍然是活躍的[30],[31]。
在上面提到的所有挑戰中,這個RTG的成員最關心的是分享知識的可能方式。本章討論的問題有兩種可能的方式:分享訓練數據或分享模型:
1)訓練數據共享。從北約演習中收集的數據是有價值的。能夠利用它們將是非常好的。對于數據共享,最可能的是,應該構建一個數據庫。當各盟國的數據庫被加入時,可能會出現語義互操作性的問題(見第6.4節,語義互操作性)。為了保持數據庫的完整性,所有的盟友都應該圍繞一個標準化重新形成他們的訓練數據,并以這種方式向數據庫提供數據。這既費時又容易出錯。此外,數據的質量是至關重要的,在向數據庫提供數據之前應該進行審查(見6.6節)。此外,這種方法是危險的,因為如果對手到達這個數據庫,他們可以在數據中下毒。(關于可能的訓練數據目標攻擊和針對它們的對策技術,見第6.1節,訓練階段攻擊)。
2)模型共享。在句法互操作性工具的幫助下,現在可以共享DL模型了。(見第6.4節,句法互操作性)。使用基于網絡的遷移學習,在北約盟友之間分享特征提取器似乎更有幫助,這樣任何盟友都可以在他們的測試數據上應用他們希望的任何任務的衍生知識(關于遷移學習的細節,見6.5節)。然而,問題是,誰來訓練這個模型,他將使用哪些數據?如果在數據庫中存儲數據是有問題的,那么為了訓練將被共享的模型,授予一個人/實體對所有北約練習數據的訪問權也可能是麻煩的。通常情況下,不存在這樣的平臺,允許每個人使用自己的數據來訓練相同的DL模型。然而,在這種情況下,一種叫做 "聯合學習 "的分散方法似乎是可行的。它是一種分布式的機器學習方法,在這種方法中,一些被稱為客戶的參與者一起工作,在多次迭代中訓練某個機器學習模型。聯合學習最早是在[32]中提出的,它是由一組移動設備執行的分布式訓練模型,這些設備與中央服務器交換本地模型的變化,中央服務器的功能是將這些更新集合起來形成一個全球機器學習模型。一個聯合學習場景由一個中央服務器和一組N個客戶組成,每個客戶都有自己的本地數據集。最初選擇一個客戶端的子集來獲得模型權重方面的共享模型的全局狀態。然后,基于共享參數,每個客戶在自己的數據集上進行本地計算。然后,客戶提交模型更新(即基于客戶本地數據集的本地學習的權重)給服務器,服務器將這些更新應用于其當前的全局模型,生成一個新的模型。然后,服務器再次與客戶共享全局狀態,這個過程要進行多次,直到服務器確定了一個特定的準確度。因此,客戶不需要分享他們的原始數據來為全局模型做貢獻,只要有足夠的CPU或能源資源來處理它所擁有的訓練數據就足夠了。
軍事行動植根于對工業時代危機的實際反應,并由關于規模、殺傷力和覆蓋范圍的假設形成[1]。然而,當代沖突跨越了區域邊界和地理領域。威脅的數量和行為者的范圍在數量和多樣性上都在增長,這與需要與之協調應對的行為者的數量相呼應。利用網絡空間的敵人可以挑戰盟國能夠或愿意作出反應的門檻。對網絡領域的依賴增加了在敵方網絡空間實現支持軍事目標的效果的重要性。最終,軍事行動變得更加動態和復雜。
深度機器學習(DML)已經成為人工智能領域的主要技術來源。可以預見的是,DML對網絡防御之外的軍事應用的影響將是廣泛的,因為它提供了在軍事行動環境中獲得信息和決策優勢的機會。在本章中,我們將研究那些有可能受益并因此重塑網絡防御的軍事應用,超越傳統的保護、威懾、檢測和響應概念。
軍事學說將指揮與控制(C2)定義為 "由適當指定的指揮官在完成任務的過程中對指定的和附屬的部隊行使權力和指導"[2]。指揮與控制是通過指揮官在完成任務時對人員、設備、通信、設施和程序的安排來實現的,以規劃、指揮、協調和控制部隊和行動。傳統的C2結構包括作戰指揮權、作戰控制、戰術控制和行政控制[3], [4]。這些結構植根于物理領域中開展的活動,以聯合行動區為界限,對網絡領域來說,其不足之處越來越多。
軍事理論進一步將[1]網絡行動定義為包括防止未經授權的訪問的網絡安全行動,為擊敗特定威脅而采取的防御行動,為創造拒絕效果而采取的攻擊行動,以及為獲得情報而采取的開發行動[5]。如同在傳統作戰領域(如陸地、空中、海上、太空)中執行的任務一樣,網絡行動也要遵守某些C2結構。然而,與其他領域不同,網絡部隊可能同時在全球、區域和聯合行動區執行任務。因此,網絡行動依賴于集中的規劃和分散的執行,需要對傳統的C2結構進行調整,以實現軍事單位和當局之間的詳細協調。這種結構要求進行規劃、執行和評估的所有各方了解網絡行動的基本行動和程序。聯合部隊執行的物理和邏輯邊界,以及對其使用的優先權和限制,必須進一步在軍事梯隊、國家部隊和聯盟伙伴之間的協調和同步中集中確定。
網絡行動的C2在很大程度上是由傳統的網絡安全技術形成的,比如那些對硬件、軟件、數據和用戶的安全控制進行持續監控的技術[6], [7], [8]。盡管C2現在和將來都是對人的挑戰[9],但新興技術中的共同主題將影響其發展,無論是在網絡領域還是傳統作戰領域。信息技術、傳感器、材料(如電池)、武器的進步,以及越來越多地采用無人駕駛和自主平臺,將推動C2的進化變化。計算機將越來越多地與其他設備連接,并收集或分享數據,而無需人類的干預或意識。在較小規模的設備上增加計算、存儲和帶寬能力將使新的分析技術能夠以更快的節奏提取更多的理解,并更接近觀察點。軍事單位可能進一步需要與一系列行為者互動,并聯合工作以實現共同的理想結果,而沒有任何權力來指導這些臨時伙伴或與他們的信息系統互操作。根據沖突的性質,戰術決策可能需要在不同的層面上進行。甚至完全消除某些網絡空間任務中的地理內涵也是可取的[10]。
總的來說,這些因素表明,分散化和敏捷性是C2架構中非常理想的原則。任何新的架構都可以而且應該支持傳統的等級制度、等級制度內的適應性團隊以及其他分布式環境,同時保持對戰斗空間的情況了解。這些問題包括缺乏網絡社區以外的專業知識,無常的性質、時間和圍繞網絡漏洞的平等,以及任務規劃的集中化[11]。新興的倡議,如美國國防部新興的聯合全域指揮和控制倡議[12],反映了這一概念,即動能、電磁、網絡和信息行動之間的協調相互作用。
分散和保護數據的新興技術可以進一步實現去中心化。分布式賬本技術,即區塊鏈,是記錄資產交易的數字系統,其中交易及其細節同時記錄在多個地方。DML最近提出了一種整合,通過它來克服區塊鏈實施中發現的實際挑戰[13]。同樣,保護使用中的數據,而不是靜止或傳輸中的數據的技術(例如,安全的多方計算、同態加密、功能加密、遺忘RAM、差分隱私)允許對其他方持有的數據進行有用的計算,而不泄露關于數據內容或結構的敏感信息。這樣的技術可以允許不受信任的各方安全地進行DML處理,或者允許多方共同計算有用的結果而不披露基礎輸入。值得注意的是,對抗性的惡意軟件可能會采用這些技術來更好地混淆其操作。雖然這些技術在學術界被廣泛研究,有良好的理論基礎,但特別需要更多的工作來適應軍事用例和可擴展性,以及DML可以提高應用程序的效用的具體實例[14]。
DML應用的進展將提供機會,為規劃和執行任務提供更有能力的決策支持輔助[15]。新穎的人/機界面、混合現實合成環境和遠程存在能力將進一步改變作戰人員之間、自動代理、機器和機器人之間的互動方式。這些技術發展共同提供了在復雜作戰環境中加速觀察、定位、決策和行動的潛力。DML將可能改善決策,并通過人機合作促進自主行動。
網絡空間依賴于空氣、陸地、海洋和空間等物理領域。它包括執行虛擬功能的節點和鏈接,反過來又能促進物理領域的效果。網絡空間通常由三個相互依存的層來描述[5]。物理層由提供存儲、運輸和處理信息的設備和基礎設施組成。邏輯層由那些以從物理網絡中抽象出來的方式相互關聯的網絡元素組成,基于驅動其組件的編程。最后,網絡角色層是通過對邏輯層的數據進行抽象而創建的視圖,以開發在網絡空間中運作的行為者或實體的數字代表。
在這些層中的操縱是復雜的,而且通常是不可觀察的。準確和及時的網絡空間態勢感知(SA)對于在一個日益復雜的戰場上取得成功至關重要。這在戰術環境中尤其如此,因為那里有獨特的信息處理和操作限制。政府和工業界正在進行的大量研究和投資旨在提供工具,從網絡數據中開發基本的SA,但在關鍵指標方面沒有提供所需的數量級改進,如成功的入侵檢測概率、誤報率、檢測時間、反應速度、效果的精確性和可預測性、戰斗損失評估的準確性和及時性,以及人類操作員的認知負荷。防御性反應的累積效應可能會超出最初的威脅,這就需要跨區域的考慮以及防御性反應的協調或同步。這些考慮,特別是對戰術戰場而言,需要在連續處理和更接近源頭的行動方面進行突破性創新,對來自多個異質網絡、情報收集、社交媒體和其他多模式來源的信息進行自主融合。
DML可能有助于開發一些方法,在對手利用這些漏洞之前加速發現這些漏洞。同樣,輕量級的入侵檢測系統可以在戰術邊緣的限制下運行,減輕對帶寬和延遲的限制。其他應用包括自動融合來自許多異質網絡的數據,這些網絡具有高度分布、聯合或分層的特性;自動識別來自不同來源(如網絡和系統、情報、社交媒體)以及不同時間尺度和安全敏感性的模式;網絡和任務本體,以促進操作狀態和任務影響之間的映射;以及建模和模擬解決方案,允許自動生成現實的數據集,以促進實驗。
任務保障是一個成熟的概念,在許多工程領域中進行探索,包括高可用性系統、故障分析以及軟件和系統工程[16]。美國防部政策將任務保證定義為:
一個保護或確保能力和資產--包括人員、設備、設施、網絡、信息和信息系統、基礎設施和供應鏈--的持續功能和彈性的過程,對于在任何操作環境或條件下執行國防部的任務必要功能至關重要[17]。
任務保障的根本是洞察那些成功實現目標所需的資源和行動。任務映射是確定一個任務與其基本資源和程序之間的依賴關系的過程。在網絡空間的背景下,這包括信息系統、業務流程和人員角色。網絡空間是一個復雜的、適應性強的、有爭議的系統,其結構隨時間變化。復雜的因素包括。
事故和自然災害會擾亂網絡空間的物理基礎設施。例子包括操作錯誤、工業事故和自然災害。由于需要大量的外部協調和對臨時備份措施的依賴,從這些事件中恢復可能會很復雜。
美國防部的許多關鍵功能和操作都依賴于簽約的商業資產,包括互聯網服務提供商(ISP)和全球供應鏈,國防部及其部隊對這些資產沒有直接的權力。
美國防部的全球業務與對網絡空間和相關技術的依賴相結合,意味著國防部經常從外國供應商那里采購任務所需的信息技術產品和服務。
確保依賴網絡基礎設施的任務的一個關鍵挑戰是難以理解和模擬動態、復雜和難以直接感知的方面。這包括確定哪些任務在任何時候都是活躍的,了解這些任務依賴哪些網絡資產,這些依賴的性質,以及損失或損害對任務的影響。對網絡地形的理解必須考慮到依賴性是如何隨著時間和各種任務的背景而變化的。它需要確定任務和網絡基礎設施之間的依賴程度和復雜性;考慮到相互競爭的優先事項和動態目標。這種洞察力可以確保必要資源的可用性,并幫助評估在有爭議的條件下的替代行動方案。
此外,作戰人員可能面臨復雜的情況,這些情況不利于傳統的網絡防御行動,而有利于保證任務。例如,當計算機系統被破壞時,目前的做法是將被破壞的系統隔離起來。然后,該系統通常被重建或從一個可信的備份中恢復。業務連續性計劃試圖解決在退化條件下的運作問題,而災難恢復計劃則解決最壞的情況。這些方法優先考慮最小的利潤損失,并不迎合作戰人員可能面臨的復雜決策類型,即要求保持一個完整的系統在線,以確保一個關鍵應用程序的可用性,而對手則利用它作為一個杠桿點來獲得進一步的訪問或滲出機密信息。在這樣的條件下,作戰人員需要清楚地了解每個選擇之間的權衡,以及所選路徑的結果對任務和目標的潛在影響。此外,與受到網絡攻擊的企業不同,作戰人員必須考慮到網絡攻擊是更廣泛的綜合效應應用的一部分,必須考慮對手協調使用網絡、電子戰和動能效應的因素。最后,災難恢復計劃可以說是戰爭失敗后的一個計劃。因此,作戰人員需要有效的理論和決策支持系統,要求在被拒絕的、退化的和有爭議的環境中保持任務的連續性。
目前的任務繪圖方法主要分為兩類。首先,流程驅動的分析是一種自上而下的方法,主題專家確定任務空間和支持該任務空間的網絡關鍵地形。這種方法通過主題專家的業務流程建模產生可解釋的結果,盡管這些結果往往是靜態的。其次,人工制品驅動的分析是一種自下而上的方法,來自主機和網絡傳感器的日志和數據被用來推斷網絡資產的使用。這種方法通過數據挖掘、紅色團隊和取證發現產生高保真的分解,盡管其結果沒有提供對執行任務的替代機制的洞察力。目前存在一系列的工具和方法來完成要素任務映射[18]。
人工智能(AI)已經在軍事任務的決策中出現了許多應用,并將繼續加速這一問題領域的能力。潛在的解決方案可以尋求對特定的業務流程進行建模,并使其成為機器可描述的,從而使用戶生成的邏輯可以對這些流程進行 "推理",并協助管理大量的信息或多個費力、復雜、甚至競爭的任務和解決方案集。DML,加上自然語言處理方面的進展[19],提供了特別的前景,因為C2渠道之間的傳統信息交換手段包括通過軍事信息流頒布的人類生成的任務命令。
防御性網絡空間行動(DCO)包括旨在通過擊敗或迫近網絡空間的敵對活動來維護軍事網絡的保密性、完整性和可用性的任務。這就將DCO任務與傳統的網絡安全區分開來,前者是擊敗已經繞過或有可能繞過現有安全措施的具體威脅,后者是在任何具體的敵對威脅活動之前確保網絡空間不受任何威脅。DCO任務是針對具體的攻擊威脅、利用或惡意網絡空間活動的其他影響而進行的,并根據需要利用來自情報收集、反情報、執法和公共領域的信息。DCO的目標是擊敗特定對手的威脅,并將被破壞的網絡恢復到安全、正常的狀態。活動包括事件管理、事件管理和惡意軟件檢測的任務。它還包括情報活動,以幫助理解新聞媒體、開放源碼信息和其他信號,從而評估敵方威脅的可能性和影響。因此,傳統上植根于情報收集活動的DML應用對防御性網絡空間行動具有同等的效用。
數據泄露的頻率越來越高,預示著安全自動化概念和能力的加速采用[20]。只有通過自動分析、響應和補救威脅,組織才有可能大規模地復制經驗豐富的網絡專家的專業知識和推理,并確保更大程度的保護。有兩個特別的技術類別脫穎而出。安全信息和事件管理,以及安全協調、自動化和響應。
安全信息和事件管理(SIEM)技術聚集事件數據,包括安全設備、網絡基礎設施、系統和應用程序產生的日志和網絡遙測。數據通常被規范化,從而使事件遵循一個共同的結構,并通過有關用戶、資產、威脅和漏洞的上下文信息來加強。SIEM平臺有助于網絡安全監控、數據泄露檢測、用戶活動監控、法規遵從報告、法證發現和歷史趨勢分析。
安全協調、自動化和響應(SOAR)技術能夠將工作流程應用于SIEM平臺收集的網絡事件數據。這些工作流程,有時被稱為 "游戲手冊",可自動采取符合組織流程和程序的響應行動。SOAR平臺利用與補充系統的整合來實現預期的結果,如威脅響應、事件管理,以及在廣泛的網絡管理、資產管理和配置管理工具中增加自動化。
總體而言,SIEM和SOAR技術實現了安全過程的兩個關鍵階段的自動化:信息收集和分析,以及響應的執行。新興研究研究了人工智能技術在事件檢測和自動行動方案建議方面的應用,這兩種技術都適用[21], [22], [23], [24], [25]。
隨著互聯系統的規模和范圍的增長,超越自動化的自主性應用對于可擴展的網絡防御是必要的。重要性較低的互聯系統可以由網絡安全傳感器、系統和安全操作中心監控,而關鍵系統,如部署在有爭議的環境中的系統,可能需要自主智能響應能力[15]。
許多任務環境帶來了不利的條件,其中適應性的、分散的規劃和執行是非常可取的。盡管已經探討了聯合網絡行動的好處和挑戰[26],但市場力量繼續推動軟件即服務解決方案,這些解決方案依賴于云計算基礎設施,在國防部預期的操作環境中可能無法使用。云計算的普遍性和對傳統網絡邊界的侵蝕,助長了對外部和越來越不可信的基礎設施的依賴。同時,這種方法往往提供了最佳的規模經濟和能力。
零信任是一種安全模式和一套設計原則,承認傳統網絡邊界內外威脅的存在。零信任的根本目的是了解和控制用戶、流程和設備如何與數據打交道。零信任框架提出了一個適用于企業網絡的安全愿景,包括云服務和移動設備。同時,零信任仍然是一種愿景和戰略,更多的規范性方法仍在出現[27]。其中包括云安全聯盟的軟件定義周邊框架[28],谷歌的BeyondCorp安全模型[29],Gartner的自適應風險和信任評估方法[30],以及Forrester的零信任擴展生態系統[31]。在探索這些設計原則的應用或它們在保證DML應用方面可能發揮的作用方面,人們做得很少。
隨著網絡安全產品和解決方案的生態系統日益多樣化,實現互操作性以協調機器速度的反應將變得至關重要。新興的規范,如OpenC2[32],將使網絡防御系統的指揮和控制不受底層平臺或實現方式的影響。OpenC2提供了標準化網絡防御系統接口的方法,允許執行網絡防御功能的解耦塊之間的整合、通信和操作。這套規范包括一種語義語言,它能夠為指揮和控制網絡防御組件的目的進行機器對機器的通信;執行器配置文件,它規定了OpenC2語言的子集,并可以在特定的網絡防御功能的背景下對其進行擴展;以及轉移規范,它利用現有的協議和標準在特定環境中實施OpenC2。這一舉措和類似舉措的成功將取決于工業界對它的采用。目前沒有類似的方法用于進攻性網絡空間行動,這主要是因為所使用的工具的定制性質。
社會網絡安全是國家安全的一個新興子領域,它將影響到未來所有級別的戰爭,包括常規和非常規的戰爭,并產生戰略后果。它的重點是科學地描述、理解和預測以網絡為媒介的人類行為、社會、文化和政治結果的變化,并建立社會所需的網絡基礎設施,以便在不斷變化的條件下,在以網絡為媒介的信息環境中堅持其基本特征,實際或即將發生的社會網絡威脅"。[33].
技術使國家和非國家行為者能夠以網絡速度操縱全球的信仰和思想市場,從而改變各級戰爭的戰場。例如,在DML的推動下,"深度造假 "技術出乎意料地迅速發展,這有可能改變人們對現實的認知、作為信息來源的新聞、人們之間的信任、人民與政府之間的信任以及政府之間的信任。
網絡防御將越來越多地納入反措施,以阻止與網絡領域不可分割的影響力運動。這將需要對部隊甚至社會進行教育,讓他們了解現代信息環境的分散性,存在的風險,以及審查我們消化并允許形成我們世界觀的事實的方法和多學科手段。消除軍隊和他們誓死捍衛的社會之間的任何不信任概念,對全球安全至關重要。
傳統的網絡安全和網絡防御方法是在網絡殺傷鏈的后期階段與對手接觸,而網絡欺騙是一個新興的研究領域,探索在早期與對手接觸的效用,特別是欺騙他們[34]。幾十年前,隨著蜜罐的出現,欺騙性方法在研究界獲得了新的興趣,并被視為推翻網絡防御固有的不對稱性的可行方法而得到重振。欺騙性方法有可能通過給對手帶來不確定性來改變不對稱的局面。同時,欺騙能力可能會帶來更多的復雜性。
網絡欺騙,有時被描述為移動目標防御的一種形式,包含了多個系統領域的技術:網絡、平臺、運行環境、軟件和數據。移動目標技術的設計是為了對付現代系統的同質性,即系統和應用程序之間足夠相似,以至于一個單一的漏洞可以使數千或數百萬(或更多)的設備同時受到攻擊。技術尋求在系統設置之間引入多樣性,使系統的關鍵組件隨機化,從而使攻擊者無法利用相同的特征,并隨著時間的推移改變系統組件,從而使相同的漏洞無法重復發揮作用。許多網絡攻擊是 "脆弱的",因為它們需要精確的配置才能成功,而移動目標技術就是利用這種脆弱性。盡管如此,仍然需要研究網絡指標和有效性措施,以判斷網絡欺騙和其他移動目標技術的成功,以及它們對不同威脅模式的應用。
深度學習技術在計算機視覺領域的快速發展,促進了基于人工智能(AI)應用的廣泛傳播。分析不同種類的圖像和來自異質傳感器數據的能力使這項技術在軍事和國防應用中特別有趣。然而,這些機器學習技術并不是為了與智能對手競爭而設計的;因此,使它們如此有趣的特性也代表了它們在這一類應用中的最大弱點。更確切地說,輸入數據的一個小擾動就足以損害機器學習算法的準確性,并使其容易受到對手的操縱--因此被稱為對抗性機器學習。
對抗性攻擊對人工智能和機器人技術的穩定性和安全性構成了切實的威脅。這種攻擊的確切條件對人類來說通常是相當不直觀的,所以很難預測何時何地可能發生攻擊。此外,即使我們能估計出對手攻擊的可能性,人工智能系統的確切反應也很難預測,從而導致進一步的意外,以及更不穩定、更不安全的軍事交戰和互動。盡管有這個內在的弱點,軍事工業中的對抗性機器學習話題在一段時間內仍然被低估。這里要說明的是,機器學習需要在本質上更加強大,以便在有智能和適應性強的對手的情況下好好利用它。
在很長一段時間里,機器學習研究人員的唯一關注點是提高機器學習系統的性能(真陽性率/敏感度、準確性等)。如今,這些系統缺乏穩健性的問題已不容忽視;許多系統已被證明非常容易受到蓄意的對抗性攻擊和/或操縱。這一事實使它們不適合現實世界的應用,特別是關鍵任務的應用。
一個對抗性的例子是,攻擊者故意設計了一個機器學習模型的輸入,以導致該模型犯錯。一般來說,攻擊者可能無法接觸到被攻擊的機器學習系統的架構,這被稱為黑盒攻擊。攻擊者可以利用 "可轉移性 "的概念近似于白盒攻擊,這意味著旨在迷惑某個機器學習模型的輸入可以在不同的模型中觸發類似的行為。
最近針對這些系統的對抗性攻擊的演示強調了對抗性行為對穩定性影響的普遍關注,無論是孤立的還是互動的。
也許最廣泛討論的攻擊案例涉及圖像分類算法,這些算法被欺騙成 "看到 "噪聲中的圖像,即隨機產生的不對應于任何圖像的白噪聲被檢測為圖像,或者很容易被像素級的變化所欺騙,因此它們將一輛校車分類為鴕鳥,例如。同樣,如果游戲結構或規則稍有改變,而人類不會受到影響,那么表現優于人類的游戲系統(如國際象棋或AlphaGo)就會突然失敗。在普通條件下運行良好的自動駕駛汽車,只要貼上幾張膠帶,就會被誘導轉向錯誤的車道或加速通過停車標志。
許多北約國家利用人工智能和機器學習來改善和簡化軍事行動和其他國家安全舉措。關于情報收集,人工智能技術已經被納入在伊拉克和敘利亞的軍事行動中,其中計算機視覺算法被用來檢測人和感興趣的物體。軍事后勤是這一領域的另一個重點領域。美國空軍使用人工智能來跟蹤其飛機何時需要維護,美國陸軍使用IBM的人工智能軟件 "沃森 "來預測維護和分析運輸請求。人工智能的國防應用還延伸到半自主和自主車輛,包括戰斗機、無人機或無人駕駛飛行器(UAV)、地面車輛和船舶。
人們認為對抗性攻擊在日常生活中相對罕見,因為針對圖像分類算法的 "隨機噪音 "實際上遠非隨機。不幸的是,對于國防或安全技術來說,這幾乎是不可能的。這些系統將不可避免地被部署在對方有時間、精力和能力來開發和構建正是這些類型的對抗性攻擊的環境中。人工智能和機器人技術對于部署在敵人控制或敵人爭奪的地區特別有吸引力,因為這些環境對于我們的人類士兵來說是最危險的環境,在很大程度上是因為對方對環境有最大的控制。
在意識到人工智能發展和應用的技術領先的重要性后,北約于2020年在多國能力發展運動(MCDC)下啟動了人工智能、自動化和機器人技術的軍事用途(MUAAR)項目。該項目的范圍是開發概念和能力,以應對開展聯合聯盟行動的挑戰,并對其進行評估。項目的目標是評估可能受益于人工智能、自動化和機器人技術的當前和未來的軍事任務和功能。它還考慮了效率和成本節約方面的回報。
在國防應用中,對抗性地操縱機器學習分類器所帶來的危險的例子很多,嚴重程度各不相同。例如,致命的自主武器系統(LAWS)可能會將友軍戰車誤認為是敵軍戰車。同樣,一個爆炸裝置或一架敵方戰斗機可能會被錯誤地識別為一塊石頭或一只鳥。另一方面,知道人工智能垃圾郵件過濾器跟蹤某些單詞、短語和字數進行排除,攻擊者可以通過使用可接受的單詞、短語和字數來操縱算法,從而進入收件人的收件箱,進一步增加基于電子郵件的網絡攻擊的可能性。
綜上所述,人工智能支持的系統可能會因為對抗性攻擊而失敗,這些攻擊是故意設計來欺騙或愚弄算法以使其犯錯的。這種攻擊可以針對分類器的算法(白盒攻擊),也可以通過訪問輸入來針對輸出(黑盒攻擊)。這些例子表明,即使是簡單的系統也能以意想不到的方式被愚弄,有時還可能造成嚴重后果。隨著對抗性學習在網絡安全領域的廣泛應用,從惡意軟件檢測到說話人識別到網絡物理系統再到許多其他的如深度造假、生成網絡等,隨著北約增加對自動化、人工智能和自主代理領域的資助和部署,現在是時候讓這個問題占據中心位置了。在將這些系統部署到關鍵任務的情況下之前,需要對這些系統的穩健性有高度的認識。
已經提出了許多建議,以減輕軍事環境中對抗性機器學習的危險影響。在這種情況下,讓人類參與其中或在其中發揮作用是至關重要的。當有人類和人工智能合作時,人們可以識別對抗性攻擊,并引導系統采取適當的行為。另一個技術建議是對抗性訓練,這涉及給機器學習算法提供一組潛在的擾動。在計算機視覺算法的情況下,這將包括顯示那些戰略性放置的貼紙的停車標志的圖像,或包括那些輕微圖像改變的校車的圖像。這樣一來,盡管有攻擊者的操縱,算法仍然可以正確識別其環境中的現象。
鑒于一般的機器學習,特別是對抗性機器學習,仍然是相對較新的現象,對兩者的研究仍在不斷涌現。隨著新的攻擊技術和防御對策的實施,北約軍隊在關鍵任務的行動中采用新的人工智能系統時需要謹慎行事。由于其他國家,特別是中國和俄羅斯,正在為軍事目的對人工智能進行大量投資,包括在引起有關國際規范和人權問題的應用中,北約保持其戰略地位以在未來戰場上獲勝仍然是最重要的。
Elie Alhajjar博士是美國陸軍網絡研究所的高級研究科學家,同時也是紐約州西點軍校數學科學系的副教授,他在那里教授和指導各學科的學員。在來到西點軍校之前,Alhajjar博士曾在馬里蘭州蓋瑟斯堡的國家標準與技術研究所(NIST)從事研究。他的工作得到了美國國家科學基金會、美國國立衛生研究院、美國國家安全局和ARL的資助,最近他被任命為院長的研究人員。他的研究興趣包括數學建模、機器學習和網絡分析。他曾在北美、歐洲和亞洲的國際會議上展示他的研究工作。他是一個狂熱的科學政策倡導者,曾獲得民用服務成就獎章、美國國家科學基金會可信CI開放科學網絡安全獎學金、Day One技術政策獎學金和SIAM科學政策獎學金。他擁有喬治-梅森大學的理學碩士和數學博士學位,以及圣母大學的碩士和學士學位。
軍事規劃人員往往只關注個體能力的發展,而不考慮他們如何與國家其他部隊協同工作,更不用說盟軍了。與任何優秀的交響樂團一樣,協調這些能力需要一個世界級的指揮家。指揮和控制(C2)系統及其操作員在軍事上相當于指揮家的角色。直觀地說,改進的C2系統可以提高作戰效率和效力,相當于交響樂團更迅速地演奏,并努力爭取完美的表演。然而,什么才是真正的C2改進,如何評判這種改進?是不是簡單地說,如果在戰略層面的成本/效益比得到改善,同時控制相同的效果交付工具,就可以認為新的C2系統更好,還是改進涉及更多的方面?這種改進的主要因素可能是整體速度的提高和友軍減員的降低。假設兩個相互競爭的系統在戰術層面上一對一的公平決斗的結果是相對統計學上的拋硬幣,這種公平的平衡需要受到從戰術層面到戰略層面所獲得的優勢影響。下面將探討一些選項的好處及弊端。
一種扭曲平衡和改善單個系統交付效果的方法是實現比對立系統更好的態勢感知 (SA),這應該能夠實現優化和更快的決策。這就要求在每個過程(如計劃、部署、交戰)中都能及時獲得所有必要的信息,以創造優勢。這通常也被稱為信息優勢。北約及其國家可利用來自各個領域的大量主動和被動傳感器(包括技術和人力),產生了大量的數據。接下來的步驟是將數據轉換為信息,然后可能轉換為知識,接著是將其傳播給所需的用戶。假設國家來源的數據和信息的持續共享,需要決定什么可以、將必須被傳遞,以及傳遞給誰。在傳輸之前,知識到信息的轉換需要信任,但也需要在為多個用戶服務時利用較少的帶寬以節省時間。應用于數字內容的信任有時被稱為電子信任。然而,這減少了地方指揮官/操作者進行背景分析的選擇,這反過來又強調了對數據/信息真實性的需求。此外,可用的數據/信息越多,就越需要確定 "什么是相關的 "以創造優勢。實際上,這只能在接近收集點時進行,除非客戶確切知道他實際需要什么。隨著可用材料數量的不斷增加,再加上通過現有網絡分銷的瓶頸,這種可能性變得越來越小。此外,隨著數據量的增加,對計算機化分析支持的實際需求也在增加,這對于檢測、分類、識別和相關數據的分類都是如此。這就是不斷發展的人工智能(AI)、大數據、深度學習和量子計算等領域可以幫助提高速度和效率的地方。
這種增強的效率也有其缺點。我們不僅要思考和處理新類型的錯誤信息,因為它對人工智能的意義與對人類操作者的意義不同,而且還需要對錯誤信息的潛在最終接受者進行相應的培訓。人類的決策過程基于兩種類型的推理:1)更耗時的深思熟慮的推理;2)常規決策的自動推理。研究表明,人類在與自動化系統互動時,傾向于使用更多的自動推理。系統越快,操作者就越不可能慎重推理。關于殺手機器人的辯論圍繞著自動或自主決策展開,在使用致命武力時缺乏有意義的人類控制。這可以通過將這些決定權留在人類手中來避免。然而,如果操作者沒有經過良好的訓練,在某些情況下,結果可能沒有什么區別。
以地基防空和導彈防御(SBAMD)系統為例,外部提示數據允許優化排放控制,因此,輻射檢測較晚,電子對抗措施較少。這也支持優化攔截點和采用先進的火力控制概念,如遠程交戰或發射。然而,在伊拉克自由戰中,SBAMD部隊發生了幾起自相殘殺事件后,美國國防部的一份報告指出有三個不足之處,導致了這些有時是致命的情況。首先,關鍵的識別系統表現不佳;其次,防空系統嚴重缺乏安全保障;第三,SBAMD的作戰概念與實際作戰條件不符,但操作人員卻被訓練成信任該系統。這支持了這樣一種觀點,即技術方案需要與作戰要求同時進行,最重要的是,需要進行充分的培訓。
軍事行動的總體效果取決于所使用的能力和其使用的方式。加強其中之一肯定會改善結果。然而,僅僅優化現有的能力和程序以達到必要的效果會有局限性,例如技術上的限制或程序上的不足。這可能需要開發全新的方法或能力。最后,新方法或性能力需要提供預期的效果,同時保持對突發情況的穩健。
一對一或一對多的交戰是每一次軍事對抗中的單個拼圖,然而,總體目的是在使用軍事力量時實現預期的最終戰略狀態。除了單個系統的有效性,軍事行動的藝術是協同使用選定的軍事力量以創造整體優勢。在作戰/戰術層面,目標是盡可能地協同使用各個系統。近幾十年來,顯著增加的態勢感知(SA)使軍事行動從更注重消耗的方法轉向更注重效果的方法。此外,軍事力量網絡化的能力使聯合和合成作戰越來越有活力。在目前的北約作戰中,一個聯合部隊分部領導各個領域的組成部分(如聯合部隊航空分部),這些組成部分在各自的領域提供能力。例如,這就需要聯合部隊對目標和受保護的資產進行強有力的聯合協調,同時仍然采用以領域為中心的方式來關注效果交付本身。在這方面,一個由空中部門領導的SBAMD單位可以為陸地部門要求的資產提供掩護,或者為攻防一體化接受陸地或海軍的支持。盡管進行了聯合協調,但領域規劃仍主要停留在領域分部層面。獲得優勢的一種方法是比對手的規劃周期更快規劃和執行,不讓對手有機會獲得最佳執行。我們所有可用的效果,將有助于把問題空間轉化為我們所期望的最終狀態,可以被視為解決方案空間,整體SA越好,軍事規劃者就越能定義和理解問題空間。當從效果方面考慮時,需要最大限度地提高應用某種方法或能力的預期成功幾率。有兩種方法可以實現這一點:使用新的武器,如高超音速滑翔飛行器,通過利用對手的能力差距來保證高成功概率,或者通過結合一個或多個領域的各種能力來削弱有效的反制措施。每一個交付的效果都會改變我們的問題空間,從而對我們的規劃產生后續影響。目前,空戰和相關的空中任務指令通常以72小時為周期進行規劃和執行,以便適應問題空間的變化。在現有網絡和現代軟件工具的支持下,通過在聯合層面上對問題和解決方案空間的最佳認識,這一過程可以被簡化,以減少規劃周期長度,并包括更有力地利用多個領域能力來實現一個目標的解決方案,而不需要廣泛的協調。
此外,在多效應任務中,支持單位和被支持單位之間的關系應該變得更加靈活,因為所選擇的指揮關系結構可以是臨時的、取決于效應的,而不是以任務為中心的長期關系。這種更加集中的規劃和分布式的執行,將進一步把領域內的組成部分轉變為主要是能力保管者和效果提供者。軍事決策空間將在C2層次中向上移動,最低級別的軍事實體規劃成為強大效果的提供者或貢獻者,而強大必須從多領域的角度來定義。這可能也會影響到哪些國家以及如何向北約作戰派遣部隊,因為臨時的、靈活的部隊規劃可能會受到國家紅牌持有者概念的阻礙。對于戰術層面的執行,變化的程度取決于戰術能力在影響戰斗空間和提供更廣泛效果方面的通用性。高度機動的航空資產,特別是那些擁有各種有效載荷的資產,可以比以前更加靈活和有效地使用。一般來說,SBAMD系統將大大受益于改進的SA,導致優化的射擊和排放控制理論,更好的分層防御的射擊管理和整體上更好地利用防御庫存。然而,單位的機動性水平將對靈活使用決策的附加值產生重大影響。長程SBAMD部隊的機動性相對較低,這將不允許非常快速的長距離重新部署以應對臨時的任務變化。然而,短程SBAMD部隊具有較高的機動性,將能夠以更靈活的方式提供覆蓋。在聯合層面上,隨著SA的大幅增加以及規劃和執行工具的增強(如AI功能),有可能使類似于全域聯合作戰的結構成為現實。反過來,這可以使規劃到執行的周期更快,讓對手陷入多域的困境,并集中精力采用基于效果的方法來實現預期的最終狀態。盡管聽起來很有希望,但這種方法至少有兩個必須考慮的弊端。
在新技術成就的基礎上發展新的C2結構并不是一個原創的想法。我們可以假設我們的潛在對手正在研究類似的概念,同時他們也在加快作戰節奏。保持足夠的SA以充分了解問題空間將變得更加復雜。此外,我們的決策周期必須不斷加快,以便能夠向對手的規劃過程注入影響。由于在處理速度方面,使用人類操作員本身就是一個限制因素,新的C2結構必須越來越多地依賴技術解決方案。這可能會導致軍事上的技術奇點、戰場奇點,即人類的認知不再能跟上機器的速度。因此,在計算機、人工智能或深度學習的幫助下開始加速未來戰爭的進程,我們必須意識到對整個進程的后果。此外,我們的倫理和司法框架也必須解決這個難題。暫時讓我們考慮一下,這個挑戰是可以應對的,并創造一個未來戰爭可行的C2結構。人類行為者/操作者,從政治/戰略層面到戰術層面,都需要適應并訓練在這樣的環境中發揮作用。以快節奏、多領域的效果來思考問題,需要專業的、有能力的人員。由于從工程角度來看,針對現有能力的開發比較容易,因此可以假設未來的對手會設計一些方案來中斷或否定這種新環境。例如,對手可以使用量子計算來破譯我們的安全通信,這將大大影響數據/信息的可用性、可信賴和保密性。因此,需要準備、提供和演練一項應急計劃。這個應急計劃不僅需要提供用于規劃、執行和通信的后備技術,而且還需要保持熟練掌握未來和當前C2結構的人員能力。由于軍事設備和可用時間有限,這可能成為資源管理的一個挑戰。目前的一個例子是我們對定位、導航和定時(PNT)系統的依賴,如全球定位系統(GPS)。因此,士兵們需要能夠利用PNT的好處,認識到干擾的可能性,但也要保留在沒有GPS的情況下執行任務的能力。在SBAMD領域,GPS干擾的一個很好的例子是,在沒有PNT服務的情況下,要準確安置傳感器和射手以進行正確的交戰,并提供一個明確的空中畫面。因此,有無GPS的兩種方法都必須不斷地進行實踐。然而,在未來復雜的C2系統中,對技術解決方案的依賴程度越來越高,也有類似的問題。整個系統需要準備好在任何情況下都能發揮作用。未來C2結構的基礎技術越強大,從核心(如情報、監視和偵察平臺或規劃/執行工具)到使能系統(如通信網絡或PNT)都包括在內,我們就越不需要考慮遺留問題;但這將是昂貴和費時的。系統的穩健性被定義為在特殊輸入或壓力條件下的正常運行,只能針對目前可以想象的所有條件和輸入進行測試。因此,穩健性需要不斷地重新評估和不斷地維護,特別是在一個快速發展的環境中。
技術創新一直使軍事戰爭得到改進。然而,若僅僅因為技術上是可行的,這并不意味著它可以被輕松地納入,或沒有副作用。優化的SA和更有能力的工具總是能讓我們更好更快地規劃和執行。然而,這種能力需要在所有預期的情況下盡可能地強大,并有適當的后備方案作為支持。所有人員都必須在這兩個世界中得到充分的教育和訓練,并能夠在兩者之間無縫切換。此外,由于技術支持而提高的軍事行動速度,必須在道德和法律框架內與人的能力保持平衡。系統越是復雜,就越需要強調在不斷發展的環境中保持穩健和彈性。這不是一次性采購C2工具包的問題,而是系統的不斷發展和對各級操作人員進行必要的教育和培訓。給管弦樂隊一些新的樂器或新的指揮,肯定需要微調、持續的排練和真正的表演審查,總是有一個后備選項來復制熟悉的質量標準以滿足聽眾的期望。
然而,在選擇進化我們的C2系統的道路上,沒有真正的選擇,因為潛在的對手也會這樣做,從而有可能獲得決定性的、難以匹敵的優勢。潛在的專制對手在使用新興技術(如人工智能、深度學習)方面的法律和道德約束可能要少得多,因此可以不受限制地發揮這些能力。因此,我們的系統不僅需要跟上這一步伐,還需要有能力用其他手段彌補使用限制,讓我們保持競爭力。
作者:
安德烈亞斯-施密特中校:1993年加入德國空軍。在軍官學校學習后,他在慕尼黑的德國武裝部隊大學學習計算機科學。自1998年以來,他在地基防空,特別是 "愛國者 "武器系統方面建立了廣泛的背景。他開始擔任戰術控制官,隨后在不同的 "愛國者 "部隊中擔任偵察官、炮臺執行官和炮臺指揮官。此外,他在德克薩斯州的布利斯堡有兩個不連續的任務。他第一次任務的主要是為德國PATRIOT辦公室進行戰術層面的武器系統行為的美國和歐盟雙邊研究。在他的第二次任務中,他是德國空軍防空中心的綜合防空和導彈防御的主題專家(SME)。在這之間,他曾在前空軍分部擔任A3C的任務。目前,他是JAPCC的綜合防空和導彈/彈道導彈防御SME。
互動、討論和各種信息的交流使網絡成為今天的場所。文本、圖像、視頻,甚至諸如地理空間和健康數據等信息都以前所未有的規模被分享。網絡上的這種信息交流為各種數據驅動的應用產生了一個廣泛的、可自由訪問的數據源--有多種機會,但也有風險。在本文中,我們介紹了研究項目ADRIAN--"在線網絡中依賴權威的風險識別和分析 "的總體思路,該項目致力于研究和開發基于人工智能的方法,以檢測基于異質性在線數據集的個人和機構的潛在威脅。我們將首先監測選定的社交運動應用程序,并分析收集的地理空間數據。在第二步,體育應用和社交媒體平臺的用戶資料將被關聯起來,以便能夠形成一個個人集群,并能夠識別潛在的威脅。由于所謂的 "數字孿生 "可以通過這種方式重建,因此會產生敏感數據。如果這些數據也能與其他機密數據相關聯,就有可能估計出個人、團體或地點所受威脅的合理性。
現代網絡是基于互動、討論和信息交流的。然而,網絡也為數據驅動的應用創造了一個巨大的、可自由訪問的信息源。由于網絡上用戶生成的數據以自動化的方式與現有資源有效地聯系在一起,即使是無意中透露的個人信息也會產生破壞性的后果。因此,即使是微不足道的,有時是無意披露的信息也會對個人、團體或整個組織產生潛在的有害影響[1,2,3]。盡管服務提供商現在有責任和利益來確保網絡上用戶數據的安全和隱私,但這些數據被濫用、泄露,或者公開的信息被用來對付原始創建者[4]或政府機構[5]的情況越來越多。執法部門和其他人群在社交媒體平臺上面臨著越來越多的潛在威脅,這不僅僅是自2020年美國發生暴亂以來。特別是,社交媒體賬戶和帖子(如Twitter或Instagram)與流行的體育應用程序的跟蹤和位置數據的收集和鏈接,使用戶和他們的親人可以被識別,使他們可以追蹤,成為網絡攻擊的潛在目標(如網絡跟蹤,doxing,身份盜竊)[5,6]。在這種情況下,另一個與安全有關的方面是,可以利用收集到的跑步路線的地理空間數據來定位軍事基地[7]。由于不是所有的信息本身或組合都會造成威脅,單純的數據最小化、限制數據訪問、數據規避和預防工作是不夠的[8]。在研究項目ADRIAN--"在線網絡中依賴權威的風險識別和分析"中,我們采取了主動搜索、建模、預測和突出網絡威脅的方法,并特別針對政府機構進行研究。我們的方法的目標是自動監測選定的(體育)應用程序,并分析其收集的數據,將其與社會媒體資料相關聯,形成個人集群,以確定潛在的目標并評估其風險潛力。這是基于處理文本(如推文)、圖像(如建筑物前的自拍、地圖)和地理空間信息(如跑步路線)。這意味著我們正在處理一個異質的數據集。由于它的構成,對處理方法的要求也非常不同。由于在數據分析和知識提取過程中可以通過這種方式重建所謂的 "數字孿生",因此產生了極其敏感的(元)數據[6]。通過將這些信息與其他分類數據相關聯,就有可能確定相應(群體)個人或地點的威脅可信度。為了實現這些目標,技術實施必須結合信息檢索方法和法醫語言學的方法。此外,網絡分析和聚類的方法將被用來開發新的評估功能,以根據披露的信息識別目標(人、地點等)。
在本文中,我們介紹了我們對這一主題的理解,也介紹了我們的方法和我們的原型,我們正在不斷地開發。本文的組織結構如下。在第2節中,我們回顧了當前的研究現狀,重點是現有的方法和定義,因為通常缺乏統一的術語。在第3節中,我們介紹了我們自己在ADRIAN中采取的方法,從有針對性的數據收集、數據聚合和充實以及交互式可視化開始。在第4節中,我們介紹了我們在原型上的工作,并在第5節中討論了我們的方法,然后在第6節中得出結論并提出展望。
本文件是北約 IST-151 研究任務組 (RTG) 活動的最終報告,題為“軍事系統的網絡安全”。該 RTG 專注于研究軍事系統和平臺的網絡安全風險評估方法。 RTG 的目標如下:
? 協作評估軍事系統的網絡安全,并在 RTG 的北約成員國之間共享訪問權限;
? 在 RTG 的北約成員國之間共享風險評估方法和結果;
? 將 RTG 的北約成員國使用的評估方法整合到一個連貫的網絡安全風險評估方法中,以使北約國家受益。
軍事平臺比以往任何時候都更加計算機化、網絡化和受處理器驅動。他們大量使用數據總線,如 MIL-STD-1553A/B、CAN/MilCAN、RS-422/RS-485、AFDX 甚至普通以太網,以及戰術通信的舊標準,如 MIL-STD-188C 和 Link 16。此外,捕獲器、傳感器、執行器和許多嵌入式系統是擴展攻擊面的額外無人保護的潛在輸入。結果是增加了網絡攻擊的風險。然而,這些平臺的持續穩定運行對于軍事任務的成功和公共安全至關重要。
軍事系統和平臺是網絡攻擊的首選目標,不是因為它們像消費電子產品那樣普遍,而是因為它們潛在的戰略影響。一旦受到影響,就可以實現各種短期和長期影響,從拒絕能力到秘密降低其有效性或效率。因此,軍隊必須在各個層面解決網絡安全問題:戰略層面,同時獲取平臺和系統;作戰層面,同時規劃軍事任務和戰術。
北約國家擁有大量可能面臨網絡攻擊的軍事平臺和系統。因此,北約將受益于利用當前的流程和方法來設計更安全的系統并評估當前系統的網絡安全。
本報告介紹了針對軍事系統和平臺量身定制的網絡安全評估方法,該方法由 RTG 團隊成員合作開發,并建立在他們的經驗和專業知識之上。團隊成員已經使用的流程被共享、分析、集成和擴充,以產生本報告中描述的流程。本報告的目標受眾是愿意評估和減輕其軍事系統的網絡安全風險的決策者。
圖一:網絡安全評估過程的五個主要步驟。
第 2 節介紹了 RTG 團隊在其存在的三年中用于開發流程的方法。第 3 節列出了可以應用該過程的系統的一些特征。最后,第 4 節描述了評估流程,而第 5 節總結本報告。
軍事平臺比以往任何時候都更加計算機化、網絡化和受處理器驅動。這導致增加了網絡攻擊的風險。然而,這些平臺的持續穩定運行對于軍事任務和公共安全的成功至關重要。
絕對的網絡安全是不存在的。必須通過迭代風險評估持續管理網絡安全。傳統 IT 系統存在許多網絡安全風險管理框架和流程。然而,在軍事平臺和系統方面,情況遠非如此。本文檔介紹了針對軍事系統量身定制的網絡安全風險評估流程。該流程由北約 IST-151 研究任務組 (RTG) 活動的團隊成員開發,該活動名為“軍事系統的網絡安全”。該過程可以應用于傳統的 IT 和基于固件的嵌入式系統,這些系統在軍事平臺和系統中無處不在。
威懾是一種說服形式,旨在操縱潛在攻擊者的成本收益分析,并說服他們對防御者采取行動的成本超過其潛在收益(Brantly,2018;Wilner,2017)。通過懼怕后果來防止(目標)做出不受歡迎的行為(美國(美國)國防部(DoD),2008 年;Taipale,2010 年)。威懾與強制不同,它側重于使用事前行動進行預防。在未來可能升級的威脅下,強制力使用權力迫使對手事后采取所需的行動(Brantly,2018 年)。
通常使用兩種類型的威懾:懲罰威懾和否認威懾。懲罰威懾取決于對潛在攻擊者進行報復的威脅。這種以牙還牙或等效的報復策略增加了攻擊者的感知成本。拒絕威懾向潛在挑戰者發出信號,表明他們將不會成功。這種不可穿透性策略會從攻擊者的感知利益中減去。
在物理世界中,威懾旨在阻止針對有形資產的特定行動。在這個領域,最常見的懲罰威懾形式是使用核武器。這些武器本質上是對潛在挑戰者的生存威脅(Brodie 等,1946;Brantly,2018)。一場全面核戰爭可能會受到威脅,但從未為實現合理的政治目標而戰(弗里德曼,2004 年;布蘭特利,2018 年)。拒絕威懾可能包括加強對關鍵基礎設施的防御,以拒絕攻擊者的訪問。例如,可以通過安裝更多的安全機制和更高的墻壁來嚴密地保護目標。
在網絡領域,威懾比物理領域更復雜。數字攻擊超越了地理和政治界限。它們通常是高度動態的,人類感官難以察覺(Moisan 和 Gonzalez,2017;Sokri,2019b)。網絡攻擊可能導致信息資產的攔截、降級、修改、中斷、制造或未經授權的使用。信息資產可以基于物理(例如硬件)或邏輯(例如軟件)(Sokri,2019a)。
網絡攻擊可以分為兩大類:有針對性的攻擊和機會攻擊。有針對性的攻擊需要付出很大的努力,并且有可能對防御者造成重大損害。拒絕服務和信息竊取是典型的針對性攻擊。相比之下,機會主義攻擊具有多個中間目標,需要的工作量很小,而且往往造成的破壞較小。病毒和垃圾郵件是典型的機會性攻擊。
網絡威懾中最具挑戰性的問題是歸因困境(Wilner,2017)。確定攻擊的責任人可能非常困難且耗時。因此,數字空間中任何懲罰威懾的可信度將取決于責任歸屬。 (格拉澤,2011 年;布蘭特利,2018 年)。由于拒絕威懾不需要識別潛在的攻擊者,它可以用來減輕這種依賴(Bordelon,2016)。
當給定威脅遇到信息系統中的漏洞時,就會出現網絡風險。在這種情況下,威脅是意外事件的潛在原因,而漏洞是信息系統中的弱點(Sokri,2019a;Zhang,2012;Bowen 等人,2006)。為了最大限度地降低針對信息資產的數字風險,防御者應至少了解兩個要素:(1)成功攻擊的概率和(2)相應的潛在損失(Brantly,2018;Glaser,2011;Schneidewind,2011;Branagan, 2012)。
為了保護他們的信息資產免受攻擊性網絡攻擊,政策制定者越來越傾向于通過拒絕進行威懾(Taipale,2010 年)。通過拒絕進行數字威懾的一個關鍵決策變量是防御者在安全方面的投資水平。為了保護潛在目標,防御者可以通過投資信息安全來降低攻擊成功的可能性。例如,投資可能會降低目標公司的脆弱性。
本文的目的是展示如何使用具有披露機制的順序博弈,在網絡空間中制定作為防御策略的拒絕威懾。它顯示了博弈論對網絡威懾的適用性。該論文通過使用更直觀的成功攻擊概率,提供新的威懾博弈公式來擴展現有模型。它還結合了隨機模擬和博弈論方法來處理輸入數據中的不確定性。例如,模擬可以通過將模型變量和參數的靜態值更改為統計分布來合并模型變量和參數的不確定性。
考慮在兩個對抗智能體之間進行的順序安全博弈:防御者 D(領導者)和戰略攻擊者 A(跟隨者)。防御者預測攻擊者的反應,確定并可靠地傳達安全投資以保護信息系統。例如,防御者可以公開發布他在 (1) 檢測和預防技術(如防病毒軟件、防火墻和入侵檢測系統 (IDS) 等)和 (2) 物理監控和檢查程序方面的投資水平(Sokri,2019b)。稅務機構通常通過披露其審計策略來阻止逃稅(Cavusoglu 等,2008 年)。
攻擊者觀察防御者的決定,并以一定程度的攻擊意愿做出反應。真正的攻擊意愿是潛在的,因此無法直接觀察到。它被建模為攻擊者為破壞系統而付出的預期努力。攻擊者的努力對應于網絡殺傷鏈的第一個活動(Mihai et al., 2014)。這些活動特別包括(但不限于): 1. 偵察——收集系統信息的過程, 2. 武器化——分析收集的數據以選擇適當的攻擊技術的過程,以及 3. 交付——過程將武器傳輸到目標系統。
在此介紹之后,下面的第 2 節對將證券投資作為威懾因素的文獻進行了全面回顧。第三節,建立網絡空間威懾的新博弈論模型。第 4 節,計算 Stackelberg 均衡。第 5 節對主要結果進行了正式討論。第 6 節指出了一些結論性意見。
在決定是否減輕或接受網絡攻擊對武器系統的風險時,最重要的考慮因素是它如何影響作戰任務——也稱為任務影響。然而,對整個空軍的每個系統和所有任務進行全面評估是不切實際的,因為每個系統都很復雜,有大量潛在的漏洞需要檢查,每個漏洞都有自己復雜的威脅環境。
進入網絡任務線程分析框架。為了分析任務影響,作者提出了這種旨在同時實現幾個目標的新方法:足夠全面,可以在美國空軍的每個任務的規模上執行,但信息量足以指導決定接受或接受減輕特定風險。此外,該方法非常簡單,可以在不超過幾個月的時間內執行,并且可以根據需要進行更新。
該框架遵循自上而下的方法,從捕獲所有關鍵任務元素的整個任務的“線程”(映射)開始,然后是支持其執行的系統。雖然作者并未將網絡安全風險評估問題簡化為交鑰匙解決方案,但他們提出了有用的方法來分類與任務成功最相關的領域,同時將對漏洞和威脅的詳細調查限制在最關鍵的領域。他們的框架旨在大規模完成,適用于各種場景,并明確其工作方式。
00 報告研究的問題
01 主要發現
1.1 在合理的資源支出下分析大規模的任務影響是一個主要的挑戰
1.2 隨著新系統的引入、舊系統的修改以及戰術、技術和程序的發展,執行任務的方式發生了變化
1.3 網絡空間的特點之一是冗余無效
1.4 失去指揮和控制可能會在沒有任何系統或組件故障的情況下損害任務
1.5 當決策者不了解分析的工作原理時,他們通常會恢復直覺和判斷
02 建議
要大規模執行任務影響評估并節省工作量,請使用系統工程熟悉的方法和可用于分類的任務關鍵性標準組合。
定義任務時,不要包含任何系統。在分析的后期介紹特定系統的作用。
將隨著時間推移相對穩定的工作與需要在系統生命周期中更新的分析分開。
盡可能使用現有的和經過驗證的技術以保持透明,以便決策者了解分析的工作原理及其局限性,并信任它來指導決策。
應用網絡分離的概念來解決冗余問題。
在任務和系統級別合并功能流程圖,以解決對手指揮和控制分析問題。
為了全面驗證和驗證網絡任務線程分析框架,空軍應該在各種不同的任務中應用和測試它。
03 報告目錄
第一章
評估武器系統網絡安全風險的一些注意事項
第二章
評估任務影響的原型框架
第三章
框架的討論