學生作者:王希梅,高敬涵
//www.zhuanzhi.ai/paper/2d828976f615c8c8bf691f9235b05fc1
摘要:大規模標記數據集推動深度學習獲得廣泛應用,但在現實場景中收集足量的標記數據往往耗時耗力。為了降低對標記數據的需求,半監督學習側重于同時探索標記和未標記數據,而遷移學習旨在將預訓練模型微調到目標數據中。然而,從頭訓練的半監督自訓練模型容易被錯誤的偽標簽所誤導,而僅僅挖掘有限標記數據的遷移學習方法則面臨模型漂移的挑戰。為了實現數據高效的深度學習,本文提出的Self-Tuning方法設計了一種新的“偽標簽組對比”機制,將標記和未標記數據的探索與預訓練模型的遷移統一起來。在多個基準數據集中,Self-Tuning的性能取得大幅提升,例如,在標簽比例為15%的Stanford Cars中,Self-Tuning相較標準fine-tuning獲得了翻倍的準確率。
arxiv鏈接:
圖表示學習算法的歸納偏差通常被編碼在其嵌入空間的背景幾何中。在本文中,我們證明了一般有向圖可以有效地用一個包含三個成分的嵌入模型來表示: 一個偽黎曼度量結構,一個非平凡的全局拓撲,以及一個明確包含嵌入空間中首選方向的唯一似然函數。我們將該方法應用于自然語言應用和生物學中一系列合成的和真實的有向圖的鏈接預測任務,從而證明了該方法的表征能力。特別地,我們證明了低維柱面閔可夫斯基和反Sitter時空可以產生與高維彎曲黎曼流形相同或更好的圖表示。
我們提出了一種新的參數化方案來解決在大型神經網絡上運用差分私有SGD所面臨的挑戰,這些挑戰包括1) 存儲單個梯度的巨大存儲成本,2) 附加的噪聲嚴重依賴于維數。具體地說,我們用兩個小維的梯度載波矩陣和一個殘差權矩陣來重新參數化每個權矩陣。我們認為,這樣的重新參數化保持向前/向后過程不變,同時使我們能夠在不計算梯度本身的情況下計算投影梯度。為了學習差分隱私,我們設計了重參數梯度擾動(RGP),它擾亂梯度載體矩陣上的梯度,并從有噪聲的梯度中重建原始權重的更新。重要的是,我們使用歷史更新來尋找梯度載波矩陣,其最優性在線性回歸下得到嚴格證明,并通過深度學習任務得到經驗驗證。RGP顯著降低了內存成本并改進了實用程序。例如,我們首次能夠在BERT模型上應用差分隱私,并在e = 8的四個下游任務上實現了83.9%的平均精度,與非私有基準相比,損失在5%以內,但隱私泄漏風險要低得多。
多任務學習(Multi-task learning, MTL)旨在通過對多個相關任務的聯合學習來提高任務的泛化能力。作為對比,除了聯合訓練方案,現代元學習允許在測試階段進行一些不可見的、標簽有限的任務,希望能夠快速適應它們。盡管MTL和元學習在問題表述上存在細微的差異,但兩種學習范式都認為,現有訓練任務之間的共享結構可以導致更好的泛化和適應性。本文通過理論分析和實證調查,進一步了解了這兩種學習模式之間的密切聯系。理論上,我們首先證明了MTL與一類基于梯度的元學習(GBML)算法具有相同的優化公式。然后我們證明了對于具有足夠深度的過參數化神經網絡,MTL和GBML學習到的預測函數是接近的。特別是,這一結果表明,這兩個模型給出的預測是相似的,在相同的看不見的任務。通過實證,我們證實了我們的理論發現,通過適當的實現,MTL可以在一組少樣本分類基準上與先進的GBML算法相媲美。由于現有的GBML算法經常涉及代價高昂的二階兩級優化,我們的一階MTL方法在大型數據集(如微型imagenet)上快了一個數量級。我們相信,這項工作可以幫助彌合這兩種學習模式之間的差距,并提供一個計算效率高的替代GBML,也支持快速任務適應。
最近利用圖神經網絡來處理圖匹配任務的研究已經顯示出了良好的結果。離散分布學習的最新進展為學習圖匹配模型提供了新的機會。在此工作中,我們提出了一個新的模型,隨機迭代圖匹配(SIGMA),以解決圖匹配問題。我們的模型定義了一個圖對匹配的分布,因此模型可以探索更廣泛的可能的匹配。我們進一步介紹了一種新的多步匹配方法,該方法學習如何逐步地改進圖對的匹配結果。該模型還包括虛擬節點,因此模型不必為沒有對應關系的節點尋找匹配。我們通過可擴展的隨機優化方法將該模型與數據擬合。我們在合成圖形數據集以及生物化學和計算機視覺應用中進行了廣泛的實驗。在所有任務中,我們的結果表明,與最先進的模型相比,SIGMA可以產生顯著改善的圖匹配結果。消融實驗研究證實,我們的每個組件(隨機訓練、迭代匹配和虛擬節點)提供了顯著的改進。
雖然預訓練語言模型(例如BERT)在不同的自然語言處理任務上取得了令人印象深刻的結果,但它們有大量的參數,并承受著巨大的計算和內存成本,這使得它們難以在現實世界中部署。因此,為了降低預訓練模型的計算和存儲成本,需要對模型進行壓縮。在這項工作中,我們的目標是壓縮BERT,并解決以下兩個具有挑戰性的實際問題: (1)壓縮算法應該能夠輸出多個不同大小和延遲的壓縮模型,以支持不同內存和延遲限制的設備;(2)算法應與下游任務無關,這樣壓縮模型一般適用于不同的下游任務。我們利用神經結構搜索(NAS)中的技術,提出了一種有效的BERT壓縮方法NAS-BERT。NAS-BERT在精心設計的搜索空間上訓練一個大型超級網絡,該搜索空間包含各種架構,并輸出具有自適應大小和延遲的多個壓縮模型。此外,NAS-BERT的訓練是在標準的自監督的訓練前任務(如掩體語言模型)上進行的,不依賴于特定的下游任務。因此,壓縮的模型可以跨任務使用。NAS-BERT的技術挑戰在于,在訓練前的任務上訓練一個大型超級網絡是極其昂貴的。我們采用了塊搜索、搜索空間剪枝和性能逼近等技術來提高搜索效率和準確性。對GLUE和SQuAD基準數據集的大量實驗表明,NAS-BERT可以找到比以前的方法更精確的輕量級模型,并可以直接應用于不同的下游任務,這些任務具有適應的模型規模,以滿足不同的內存或延遲需求。
在不依賴下游任務的情況下評估學習表征的質量仍然是表示學習的挑戰之一。在這項工作中,我們提出幾何成分分析(GeomCA)算法,評估表示空間的幾何和拓撲性質。GeomCA可以應用于任何維度的表示,獨立于生成它們的模型。我們通過分析從各種場景中獲得的表征來證明其適用性,如對比學習模型、生成模型和監督學習模型。
圖神經網絡(GNN)中缺乏各向異性核極大地限制了其表達能力,導致了一些眾所周知的問題,如過度平滑。為了克服這個限制,我們提出了第一個全局一致的各向異性核GNN,允許根據拓撲導出的方向流定義圖卷積。首先,通過在圖中定義矢量場,我們提出了一種方法應用方向導數和平滑投影節點特定的信息到場。然后,我們提出用拉普拉斯特征向量作為這種向量場。在Weisfeiler-Lehman 1-WL檢驗方面,我們證明了該方法可以在n維網格上泛化CNN,并證明比標準的GNN更有分辨力。我們在不同的標準基準上評估了我們的方法,發現在CIFAR10圖數據集上相對誤差減少了8%,在分子鋅數據集上相對誤差減少了11%到32%,在MolPCBA數據集上相對精度提高了1.6%。這項工作的重要成果是,它使圖網能夠以一種無監督的方式嵌入方向,從而能夠更好地表示不同物理或生物問題中的各向異性特征。
基于meta-learning的方法在有噪聲標注的圖像分類中取得了顯著的效果。這類方法往往需要大量的計算資源,而計算瓶頸在于meta-gradient的計算上。本文提出了一種高效的meta-learning更新方式:Faster Meta Update Strategy (FaMUS),加快了meta-learning的訓練速度 (減少2/3的訓練時間),并提升了模型的性能。首先,我們發現meta-gradient的計算可以轉換成一個逐層計算并累計的形式; 并且,meta-learning的更新只需少量層數在meta-gradient就可以完成。基于此,我們設計了一個layer-wise gradient sampler 加在網絡的每一層上。根據sampler的輸出,模型可以在訓練過程中自適應地判斷是否計算并收集該層網絡的梯度。越少層的meta-gradient需要計算,網絡更新時所需的計算資源越少,從而提升模型的計算效率。
并且,我們發現FaMUS使得meta-learning更加穩定,從而提升了模型的性能。最后,我們在有噪聲的分類問題以及長尾分類問題都驗證了我們方法的有效性。
該工作針對基于半監督的醫學圖像算法,提出了一種利用雙任務一致性約束的新方法,將同一個分割問題表示成兩個不同的任務,并鼓勵兩個任務在預定義的表示空間內保持一致,進而充分利用未標注的數據提升深度神經網絡的性能,同時大大降低訓練網絡模型所需要的標注成本。圖片
基于深度學習的方法因為在圖像處理上優越表現而受到廣泛的關注,近年來在圖像識別、人工智能領域不斷取得了性能突破。但是由于深度神經網絡需要依賴大量良好標注的數據,在小數據上很難達到比較好的效果。在醫學圖像領域,數據標注通常需要大量的時間,也需要醫學領域的專業知識,但醫生通常很忙,沒有充足的時間來標注大量的數據,因此從少量標注數據和大量未標注數據來學習以獲得高性能模型變得尤為重要。
基于這樣的問題,本文提出了一種基于雙任務一致性的半監督學習算法,在現有全監督醫學圖像分割算法基礎上,該算法可以充分利用沒有標注的數據進行進一步學習,進而大大提高未標注數據的利用率和促進網絡分割性能。實驗表明,通過引入雙任務一致性,網絡能更穩定的從少量標注數據和大量未標注數據中學習,并顯著提高分割結果。同時與最新的半監督分割算法相比,此方法需要的訓練成本更低,所取得的效果也更好,從而降低了深度神經網絡對標注數據的依賴。