當前海底作戰討論多聚焦關鍵水下基礎設施(CUI)攻擊,如電力通信電纜與油氣管道。盡管這些全球信息能源網絡的節點至關重要,在急速演變的海底戰場中它們僅是目標群組之一。未來海底作戰將日益體現為:在布滿傳感器網絡、通信節點、自主裝備樞紐及能源系統的密集戰場爭奪控制權,各類商業、科研與軍用資產均可能列入海底打擊清單。哈德遜研究所2023年報告《突入堡壘:以更強聲學優勢維系美軍主導地位》甚至將即將到來的海底控制權爭奪類比二戰與冷戰時期的空戰:"對手防御體系升級可能壓制美軍海底行動,使潛艇難以執行擊沉大國兩棲艦隊或追蹤俄羅斯彈道導彈潛艇等核心任務,"該研究所國防概念與技術中心高級研究員布萊恩·克拉克(Bryan Clark)與蒂莫西·沃爾頓(Timothy A. Walton)寫道:"為維持海底進攻優勢,美國海軍需借鑒空戰經驗,部署專用于壓制或摧毀敵方海底防御的支援系統。"
固定式傳感器網絡:專為監控咽喉要道、專屬經濟區及公海航路設計的高敏探測器陣列,可持續監視水面/水下行動。切斷、欺騙或干擾其運作將在態勢感知領域制造盲區。
能源與對接站:支撐無人潛航器(UUV)及其他自主海底系統長期原位部署的關鍵設施。包括:美海軍"前沿部署能源通信前哨站"(FDECO)等UUV對接系統;Teledyne Marine公司的"海底超級充電器"等固定能源裝置;潮汐能、熱能或有線供電充電站。
信中繼系統:海底聲學中繼器、光通信鏈路及數據傳輸節點對分布式水下作戰至關重要,并承載海底平臺與水面、空中及天基資產的連接功能。
定位導航授時(PNT)基礎設施:為超出GPS覆蓋范圍的水下裝備提供校準服務的節點,以及本地/區域UUV部署所需的遠程基線(LBL)信標,對持續水下行動不可或缺。癱瘓或欺騙此類設施將導致資產失控,增加任務失敗風險。
模塊化發射系統:裝載無人載具、傳感器或效應器的預置載荷模塊,可在和平時期布設并于武裝沖突時遠程激活。預先摧毀此類系統可消除其潛在的作戰效能。
海底打擊需依托具備精準定位能力、高機動性、可自主實施動能/非動能打擊(通過預編程或遠程更新目標數據)的平臺。多型此類系統已接近實戰部署階段:
安杜里爾工業公司(Anduril Industries)"銅斑蛇"(Copperhead)系"高速水下彈藥"——融合UUV與魚雷特性的混合裝備,含兩種構型:21英寸(533毫米)直徑型號(對標美海軍Mk-48重型魚雷),以及12.75英寸(324毫米)直徑的Copperhead-M型(對標美海軍Mk-54輕型反潛魚雷)。
雷神公司(RTX)"梭魚"(Barracuda)作為有線制導半自主滅雷潛航器,可改造為進攻性海底打擊武器。滅雷行動本質是通過摧毀敵布設的海底動能效應器來爭奪海上戰場控制權的防御性作戰。"梭魚"由無人水面艇(USV)的發射筒投放,可通過增強耐壓性、加長線纜或改用無纜聲學通信實施自主作業,以實現對深海目標的打擊。
萊多斯公司(Leidos)"海矛"(Sea Dart)系專為情報偵察監視(ISR)及反潛戰(ASW)優化的低成本自主潛航器(AUV),具備武器化攻擊海底目標的潛力。其19小時續航能力及600米(1968英尺)潛深支持對多種海底設施的防區外打擊。現有152毫米(6英寸)及226毫米(9英寸)直徑型號,323毫米(12.75英寸)構型正在論證中。
阿雷特公司(Areté)"鮣魚"(REMORA)由海軍小企業創新研究計劃(SBIR/STTR)資助研發,是可拓展的流體動力載荷投送系統,支持從各類UUV外部布設一次性載荷。該模塊通過高強度真空吸附于載體外殼,由載具以高頻穿殼聲學信號指令自主釋放。以諾格公司"蝠鲼"(Manta Ray)為代表的BWBUG可搭載多組"鮣魚"模塊,通過集群化動能效應器實施海底目標打擊。
海底打擊無需徹底摧毀目標即可達成作戰或戰略效果。輕微損傷(如電力傳輸受限、水聽器陣列性能衰減或耐壓殼體破損)即可導致局部區域情報偵察中斷、指揮通信中斷、電池耗盡或預置效應器失效等"任務效能癱瘓"。受損系統的修復或更換需專業船只、遙控潛航器(ROV)及訓練有素人員在高危環境中作業。對手可能因缺乏維修能力或處于對抗環境而無法響應,使輕微打擊轉化為長期戰場癱瘓。
正如空戰發展出針對后勤樞紐、雷達陣列、通信節點及彈藥庫的打擊模式,海底與海床作戰(SSW)將促使國家與非國家行為體不僅攻擊關鍵水下基礎設施(CUI),更將全面打擊水下戰場空間的系統與設施。在戰役層面,海底打擊對保障有人潛艇等高價值水下平臺機動自由至關重要;其更提供了一種在避免暴露身份與引發公開沖突的前提下投射力量、提高對手代價的戰略力量倍增手段。
參考來源:marinetechnologynews
當前及未來可用技術正在且將持續改變作戰環境的本質,這一論斷無可辯駁。然而更具挑戰的是識別哪些技術能使沖突一方對技術弱勢對手形成決定性優勢——尤其是這些技術在多大程度上影響陸地作戰固有的保守性。當前沖突中涌現的技術已呈現趨勢,預示著未來"算法化"戰場的可能形態。本文探討未來二十年戰場的可能圖景,并闡釋高強度沖突中地面部隊在技術飽和戰場運用的挑戰。(注:原文編制過程中未使用人工智能內容生成工具)
未來軍事行動的實施方式將與傳統模式截然不同(Turaj & Bu?ka, 2020)。納戈爾諾-卡拉巴赫(Petrosyan, 2023)、烏克蘭(Hrn?iar & Kompan, 2023; Zahradní?ek et al., 2023)及加沙地帶戰場已顯著展現創新技術引發的變革。這些沖突特征在于:大量使用舊代軍事裝備,輔以一定程度現代技術支撐,實質是源起數十年前的現役武器裝備與現代戰場元素的結合體(Gibradze et al., 2022)。因此稱其為"下一代沖突"并不恰當。同時至少就烏克蘭沖突而言,俄聯邦武裝力量的軍事藝術(尤其沖突初期)呈現高度保守與傳統主義特征:其大規模部署的營級戰斗群在編成、裝備及戰術運用上常不符合現代戰場需求(Grau & Bartles, 2022)。然而這些沖突的鮮明特點是:先進軍民技術(如無人機系統/UAS)正加速融入指揮控制(C2)最底層級的趨勢。該趨勢由技術成熟度與可用性共同驅動。通過多平臺交互或與空基/天基/地基傳感器-效應器的體系化協同(Turaj, 2019),此類系統效能顯著提升,其應用潛力預計將持續擴展。
上述考量促使以軍事專家、指揮官、理論家、學者、研究人員及政界人士為代表的廣泛"軍事共同體"提出關鍵問題:這些技術是否具備"顛覆性"潛力?會否弱化傳統作戰要素的認知?未來能力如何演進?能力如何在地面戰場具象化?軍事藝術將因此發生何種變革?更廣義而言——未來陸地戰場將呈現何種形態?這些問題的答案對建設現代化軍隊具有不可否認的價值,使其能在可預見的未來作戰環境中做好充分準備并有效行動。
當前關于軍事未來的啟發性觀點與未來學預測層出不窮。保羅·沙爾(Paul Scharre, 2019)與羅伯特·拉蒂夫(Robert H. Latiff, 2017)的著作尤具價值。兩位作者近乎一致指出:未來沖突將呈現人工智能(AI)賦能系統的自主特性;作戰將主要在網絡空間展開;陸地領域將由"機器人軍隊"主導——或由士兵遠程操控,或具備高度自主性。他們同時警示這些技術應用的法律倫理問題,強調缺乏深思的技術部署可能引發長期毀滅性后果。
馬爾欽·戈爾尼克維奇(Marcin Górnikiewicz, 2019)對21世紀后期沖突的推演極具啟發性。其研究基于"人類將在短期內取得徹底改變傳統武裝沖突形式與方法的技術突破"這一前提,預言包括"武器"與"武裝斗爭"在內的諸多概念將被重新詮釋。未來作戰潛力將不再由其物理組件的量化參數"乘積"所絕對定義(Varecha, 2020a)。軍事力量運用的重心將發生轉移:雖仍聚焦對手弱點,但未來軍隊的首要目標既非作用于作戰潛力的物理組件,亦非精神因素,而是摧毀敵作戰潛力中恢復耗時極長或具"破壞性"的組分——這類破壞將導致敵方認知功能崩潰。隨著人工智能演進,通過投射虛假視覺/聽覺/觸覺/味覺來針對性干預人腦活動機制的認知將深化,最終引發暫時性癱瘓、精神道德休克及現實感知能力喪失。基于深度個體文化密碼與潛意識決策機制的高科技預測方法,將成為預判對手決策過程的關鍵要素。
這意味著下一代作戰域很可能是涵蓋人類感知、推理與決策全維度的認知空間(Malick et al., 2022)。然而此類活動仍處萌芽階段,因當前尚缺實現上述未來效應的能力。本研究旨在"窺探"近未來,力圖描繪20年內作戰環境(尤重陸地領域)的演進輪廓。
鑒于安全環境演變態勢,未來二十年仍將由歷史上引發軍事沖突的相同因素主導。沖突誘因或包括資源爭奪、經濟/意識形態/社會/宗教差異及影響力角逐(《全球趨勢》, 2021)。本研究預期范圍內,革命性變革不會源自新技術手段或其運用理念的根本轉變。但可預見的是,現代及前瞻性裝備的技術性能參數將根本性改變未來軍事行動的整體認知與實施方式。
傳感器升級、自主化、流程自動化與人工智能的融合將產生深遠影響:技術先進的效應器將更精準、互聯更緊密、響應更迅捷、射程更遠且威力更強。這些因素也將重塑軍事藝術——當前對作戰環境的認知、對普適原則法規的傳統"把握"、兵力運用方式,尤其是過時的"戰術、技術與規程"(TTPs),將無法匹配技術先進軍隊的能力需求。
技術發展與軍事藝術變革之間存在明確關聯性——這種關聯源于創新技術在軍事力量結構中的實施。本研究聚焦未來20年最可能顯著影響常規武裝力量的技術趨勢,這些趨勢將在"算法化"戰場上發揮關鍵作用。此類預測雖具高度抽象性且非直截了當,但對充分發展軍事力量能力至關重要,使其不僅能應對當前威脅,更能應對未來挑戰。本研究目標與貢獻在于:勾勒未來二十年作戰環境發展前景,并闡明技術飽和戰場中地面部隊運用的挑戰。
基于此,作者團隊聚焦兩個核心問題:
研究無意分類描述制造商個體的"革命性"開發項目及技術參數對比,亦不考察技術解決方案或闡明運作原理。技術評估始終基于用戶-決策者視角:這些技術將帶來什么?其融入未來作戰環境"戰斗編成"后,如何影響未來戰場陸地領域的形態?尤其關注在"算法化"環境中對地面部隊行動的潛在影響。
研究采用實證-直覺方法論:
數據通過理論研究方法(分析與綜合)進行檢驗,研究發現采用比較法表述,研究問題通過啟發式預測方法驗證。需特別說明:本文結論僅具預測性,未經嚴格實證檢驗。
當今作戰環境的復雜性與動態性對軍事力量及其多領域發展提出更高要求。關鍵挑戰在于建立并維持戰場態勢感知能力——這對作戰規劃與實施至關重要。隨著作戰環境中事件規模、強度及動態性持續增長,該能力重要性將日益凸顯;未來作戰將作為"跨域行動"組成部分在多個作戰域同步展開。鑒于當前環境特性,信息環境的發展對態勢感知能力影響最為顯著,尤其關乎當前與未來作戰的態勢認知(Fiebich, 2020)。
"洞悉戰場而隱匿己身"自古便是戰場指揮官的圭臬。自18世紀末戰場規模超出單兵目視范圍以來,戰場可視化成為指揮核心需求——催生出觀察員職能體系,通過觀測結果為指揮官構建戰場圖景(Pong, 2022)。數字化既是當代戰場要素,更是未來戰場基石:它賦能指揮官運用博伊德OODA循環(觀察、調整、決策、行動),輔助指揮官藝術化決策作戰系統部署的時機、地點、目的及預期效果。
未來陸地戰場將通過多元傳感器系統實現情報監視偵察(ISR)能力,覆蓋任意地形氣候條件下的物理環境(Rolenec et al., 2022)。陸地領域的數字化態勢圖景將通過寬帶高速加密傳輸,以高清視頻流形式傳遞指揮、遙測與影像信息。這些視頻流源自地面(及地下)、低空與高空多飛行高度、多視角傳感器,傳感器載體不再局限于傳統偵察單位、無人系統(UxS)、機載平臺與衛星。陸地戰場每臺設備乃至單兵都將成為傳感器節點——涉及威脅動態、敵軍部署、友軍定位等全維度戰場信息將實現實時聚合、分析評估與共享。通信設備微型化、多級數據數字化、面向網絡的系統架構及流程自動化,共同壓縮信息流時效,使**通用作戰圖(COP)**能實時覆蓋各作戰域至最低指揮層級。技術進步促使戰場全域融合:除物理域外,"交戰"將同步發生于信息域與認知域;增強現實與虛擬現實支撐的交互模式將成為標準作戰手段。
信息主導權將前所未有地取決于沖突何方能更快采集數據、精準分析并通過AI輔助實現安全定向分發。AI將為自主裝備自動生成行動選項(Koch, 2022),實現高度冗余性,使行動去中心化乃至完全獨立于人力干預。經濟型傳感器與海量數據處理能力的結合,預示實時信息探測、處理與共享的革命性突破。該能力將成為敵軍高價值目標(HVT),亦可能構成己方力量重心(COG)(?lebir, 2022)。當互聯互通被視為決定性優勢,對手必將全力破壞、降級乃至癱瘓高度互聯的信息依賴系統。提供互聯能力與通用作戰圖的信息系統防護性與韌性將成為關鍵制勝因素(Kompan, 2020)。敵方行動導致的任何功能中斷,都可能使作戰系統從互聯協同網絡退化為碎片化網絡——無法完整及時傳輸可溯數據,最終削弱通用作戰圖效能及作戰系統達成預期殺傷/非殺傷效果的能力(《全球趨勢》, 2021)。因此信息系統技術演進必然與其"韌性"發展深度融合。
未來戰場焦點或將從火力轉向基于指揮、控制、計算機、通信、網絡、情報、監視與偵察(C5ISR)體系的信息力量。然而信息雖可提升武器系統效能與決策效率,其本身尚不足以迫使敵人屈從(至少在研究時限內如此)(Z?na, 2021)。
達成預期作戰效果將依賴日趨先進的效應器。武器裝備與彈藥發展的核心趨勢在于持續融合遠程打擊、高速突防、精確制導與實體摧毀能力的增強。現代武器系統的遠程打擊能力已預示:指揮所(Rolenec et al., 2023)、部隊集結點與后勤設施等傳統認為遠離敵方常規火力而相對安全的區域,正面臨日益嚴峻的威脅(Spi?ák, 2022)。
除射程提升外,武器系統(尤其間接火力)的毀傷精度(Varecha, 2020b)與破壞效能(Varecha & Majchút, 2019)正實現根本性突破。此趨勢源于高精度傳感-打擊系統的整合與火控流程自動化——基于精準目標定位信息、先進彈藥末制導能力,實現預定殺傷/非殺傷效果。未來戰場先進彈藥與游蕩彈藥因微型化與動態特性將更具破壞力且更難探測。電子技術正賦予彈藥新能力:可編程空爆、近炸引信及應對新興威脅的制導功能(Breaking Defense, 2023)。此類系統數量增長、效能提升與相對普及化,不僅威脅作戰體系關鍵節點(指揮所/通信設施/高壓武器系統/后勤設施等),更將危及空中領域全單元,包括小型戰術單位乃至戰場單兵。
探測跟蹤高速飛行彈藥與反制遠程微型機動平臺,始終是核心挑戰。定向能武器(DEW)(尤指激光武器)的持續發展可能帶來革命性反制方案。預計二十年內將實現陸地戰場實戰部署:其射速超越現有及未來機械系統,可癱瘓物理目標及信息/通信/指揮控制系統運行。核心優勢在于即時打擊效應、全氣象條件適用性及多目標覆蓋能力。地下等難以觸及目標亦在打擊范圍內,關鍵價值體現為附帶損傷最小化、目標鎖定高速化以及兵力需求銳減。未來DEW將與各軍兵種協同部署,天基平臺亦將用于干擾敵方衛星通信通道。針對單兵的地面DEW應用(如驅散人群)研究亦在推進(Valouch, 2016)。
當前軍事強國正計劃為步兵配裝激光武器。傳統槍械設計潛力趨近極限,單兵彈道防護進步催生新型單兵武器需求(Kulhánek, 2023)。未來或現微型激光武器替代反器材步槍或與輕武器協同作戰(Extance, 2015)。DEW系統能有效應對無人機群代表的分布式低成本威脅,相較傳統武器將具備更高精度與威力,其**"無限彈藥艙"**特性尤具戰略價值(Lockheed Martin, 2023)。
制約因素在于:除成本外,高度電力依賴構成顯著弊端——作戰損毀供電系統即致癱瘓。陸戰隊列裝受限于尺寸重量問題(需外骨骼或無人地面載具輔助)。國際激光武器使用公約亦限制其應用:禁止造成永久性視覺損傷或不成比例傷害的作戰行為(Kulhánek, 2023)。
被動防護技術亦取得重大突破:壓制紅外特征信號的技術、車體后方投射影像的電子偽裝系統、可完美折射光線使載具隱形的智能材料,代表未來偽裝技術研發方向(Wang et al., 2013)。研究時限內,全頻譜電磁輻射偽裝技術將為作戰單元及單兵提供高可信度防護。
自主性指"系統在編程設定參數內,基于獲取知識與動態態勢感知,無需外部干預即可按預期目標運作的能力"(《北約術語庫》在線版)。在本研究語境中,外部干預特指無需大量人工輸入(Rossiter, 2020)。盡管作戰與保障平臺系統的自主化與自動化水平持續提升(Kopulety & Palasiewicz, 2018),人類仍將參與決策回路("人在回路"),但僅限必要最低程度。其角色在于直接實施戰場指揮(下達指令或授權系統執行特定行動)與復雜作戰管控(Górnikiewicz & Szczurek, 2018)。保留人類決策參與具有顯著優勢:相較人工智能系統,人腦仍是最高級的認知處理系統。AI系統往往脆弱且易在新情境中失誤,而人類智能不僅更具魯棒性,面對陌生動態環境時通常更靈活。盡管人類反應速度不及機器,但在應對新態勢時表現更優(Foster, 2021)。
子流程自主化與自動化及人機交互減少帶來多重效益:最重要的是系統能持續長時間運行,以更高精度與可靠性實現預期打擊效果(如彈藥自主制導),且不受壓力恐懼導致的失誤影響。但決策速度在此特指行動/反應執行時效。
當前及未來軍事平臺的全自主化具有根本重要性。典型案例是防御性反應系統自主探測消除威脅(如迫擊炮彈、火箭彈、巡航導彈或反坦克火箭彈對作戰基地或地面裝備的攻擊)。人類通過目標識別確認威脅并實施反制的傳統決策回路在此失效——因反應時間過短。隨著效應器與彈藥技術發展趨勢(特征為循環自動化、速度、殺傷力、精度、能力與模式提升,如游蕩彈藥與先進彈藥)及陸地戰場密度增加,反應時間將進一步壓縮。另一例證是無人機系統(UAS):若操作員通信鏈路遭敵破壞,將無法授權對已識別目標實施打擊(Foster, 2021)。
無人系統(UxS)的能力發展與自主性提升與人工智能(AI)進步緊密關聯。當前AI已用于增強現有系統性能(如數據采集分析)。第二階段AI將支持決策:指揮控制(C2)流程不變但顯著加速,特定任務(尤其敵方行動方案分析生成比選)將實現全電子化自動處理。基于AI的解析工具(Matiz-Rojas & FernándezCamargo, 2023)與機器學習模型能結合多因素與不確定性,在更廣背景下解讀敵行為模式,從而更精準預測態勢演進場景。軍事決策將高度依賴AI——這不僅源于數據量指數級增長與處理時效要求(Hlavizna et al., 2023),更因優化作戰力量運用的迫切需求。海量數據優先處理能力將成為關鍵里程碑。第三階段AI將直接對抗復雜敵手系統,該能力是實現平臺及全系統更高自主性的核心要素。
各類別無人機系統(UAS)正加速普及,其能力持續增強而成本不斷降低。數千年來,特定時空的兵力集中始終是戰場成敗關鍵(Fuller, 1993)。該原則至今仍被北約奉為作戰準則,但其在未來是否持續關鍵?無人機集群即為佐證:其通過復雜算法持續變換飛行軌跡的快速機動特性,可能導致防空系統軟件無法處理目標模式而失效(Finlan, 2021)。微型無人機集群潛力不僅體現于數量優勢,短期內它們將實現集群通信、自適應調整戰術技術規程(TTPs),并隨態勢變化聚焦目標打擊(Nohel et al., 2023)。這些系統將充當移動干擾器、移動傳感器或無人系統集群,形成邏輯互聯的電磁頻譜"經典部隊集結"假象,致使敵方徒勞干擾無實際兵力的虛假目標信號;而平臺因高度自主性使傳統反制手段(劫持控制權、干擾通信鏈路、定位追蹤)失效。
無人系統(UxS)將在未來戰場扮演不可替代角色:持續替代人類士兵以優化作戰經濟性與兵力效能。未來二十年各層級新型無人系統普及度將持續提升,能力發展聚焦多技術融合傳感器(晝夜攝像機/熱成像儀/聲學/嗅覺/地震傳感)、微型化、電磁特征抑制及協同能力增強。精密"感知規避"系統(含合作與非合作模式)的發展,將使微無人機集群能在最小間隔下密集部署戰場(Vi?nai & Kandera, 2021),實現全地形(含建筑密集區)部署能力,在復雜多層建筑內部(Hrn?iar & Spily, 2011)及有人駕駛空域同步運作。當前概念顯示微型無人機系統將很快配裝至每名美軍單兵,其設計旨在增強遠程威脅探測能力,確保可靠清除隱蔽目標(Pickrell, 2019)。
其核心任務持續覆蓋情報監視偵察(ISR)、目標指示支援、高價值目標(HVT)獵殺、地面部隊護衛與近距空中支援(CAS)、軍用直升機護航(Blain, 2023)及電子戰支援等傳統領域,同時展現出物資/彈藥/食品補給等持續保障、機動支援與反機動措施(布設雷場/開辟通路)、化生放核(CBRN)物質探測清除、爆炸物處置及人員裝備洗消等新興潛力領域。技術發展也將推動反無人機(C-UAS)防空能力顯著進步,具備"獵殺"敵無人機與游蕩彈藥能力的無人機系統或將成為該領域突破方向。
從相對安全的遠程位置對裝備與系統實施半自主控制,現已成為現代戰場固定要素。未來將加速發展徒步/車載部隊與自主系統協同作戰概念——即"有人-無人系統協同作戰"(MUM-T)。該概念定義為"通過同步部署士兵、有人/無人空中地面載具、機器人及傳感器,實現態勢感知增強、殺傷效能提升與生存能力優化"(BAE Systems, 2023)。
未來陸地戰場特征體現為作戰無人系統(UxS)融入部隊編成,例如作為伴隨式陸空協同平臺。基于廣泛算法、機器學習與高速大數據處理,無人系統將逐步實現更高層級自主性:初始階段由操作員遠程操控;待相關概念、技術及操作挑戰解決后,將過渡至部分自主執行任務;遠期或可實現完全自主化。核心效益不僅在于提升作戰系統火力,更在于通過減少有人單元作戰部署,使其聚焦其他任務,從而拓展戰術任務譜系與執行范圍(《航空航天技術》, 2022)。同時無人系統在MUM-T中的普及將量化縮減有人單元部署規模,降低傷亡風險(Zahradní?ek et al., 2022)。
然MUM-T框架內無人系統戰術運用受兩大因素制約:一是物理環境微地形信息處理能力局限(K?i??álová et al., 2022; Mazal et al., 2020);二是目標精確識別(PID)缺失——因系統尚缺可媲美人腦精度的目標性質判定算法庫。現有作戰識別(CID)能力雖可辨識己方單位,仍無法區分戰場人員屬性(敵軍/平民/其他角色)。
可預見時期內,殺傷/非殺傷效果終決權仍歸屬人類操作員或決策者。盡管如此,MUM-T或將成為陸地戰場關鍵創新:通過分布式智能網絡連接的智能模塊化無人系統,將作為有人平臺的力量倍增器。復雜未來作戰環境必然要求無人系統與有人空/地平臺協同編組作戰。技術進步與AI發展將逐步提升軍用無人平臺自主性與冗余度,大幅減輕未來作戰中MUM-T的后勤與認知負擔(《航空航天技術》, 2022)。
自主/半自主平臺獨立性增強將使"人在環內"模式逐步淘汰,減少MUM-T所需操作員數量。通過降低對無人平臺的直接操控強度,有人單元將獲得戰術、戰役乃至戰略層面的更強戰場掌控力。當人類無需操作"非生命體"平臺的導航與目標識別系統時,操作員可聚焦情報分發、作戰編組協同等復雜任務。鑒于無人系統潛力,MUM-T編組內人機比例將隨時間遞減,但純無人編隊的創建部署仍存疑(《航空航天技術》, 2022)。
在未來軍事行動中部署有人-無人系統協同作戰(MUM-T)時,最大挑戰在于將"人類士兵"整合至該體系——正如研究前文所述,與"機器"不同,人類會疲勞且必須在精神、心理和生理層面應對致命無人平臺的動態變化與普及(Yeadon, 2021)。外骨骼系統正是增強部署人員體能的關鍵技術,其大規模應用將催生可稱為"重型徒步步兵"的新兵種或專業部隊(Mudie et al., 2021)。
外骨骼使用熱潮預計將席卷高體能負荷軍種,主要源于裝備武器超重問題(Wu et al., 2021):
? 爆炸物處理(EOD)分隊需攜行排爆裝備
? 步兵單位背負戰斗載荷長途機動
因此外骨骼發展需聚焦穿戴舒適性與武器系統集成能力(含定向能武器)。
這些"戰士戰甲"將降低士兵代謝消耗:外骨骼承擔機械工作(負重/行走),減少后勤需求并允許戰場兵力更分散部署。同時集成先進通信系統與指揮控制(C2)平臺,使未來戰士能"數據賦能決策優化"(Gruss, 2022)。
未來外骨骼將通過增強防護提升戰場生存力:在標準單兵防護外增設防破片層,重點保護要害部位以降低戰損(Bengler et al., 2023)。關鍵技術突破在于未來二十年設計變革——從"額外負重"轉型為"人機一體"作戰復合體。該概念使士兵能在技術飽和戰場作為高級資產(如無人系統)的控制節點,憑借增強火力、生存力與復雜態勢感知能力,成為自主系統的戰場"人形備份"。
人工智能(AI)已被北約列為"新興顛覆性技術"(EDTs)——即能引發多領域突破的快速發展技術(NATO, 2023)。未來二十年AI將爆發式增長,深刻影響全域安全防御需求,并為陸地作戰環境帶來新挑戰。AI結合高級數據分析與"大數據"應用,將根本性改變跨域作戰的信息環境:
? 用于優化"影響力作戰":迷惑對手/轉移輿論支持/直接干預作戰人員認知(Lucas, 2022)
? 提升現代武器系統殺傷效能:在"目標鎖定"環節全面參與"決策-探測-投射-評估"(D3A)流程
? 通過優化資源分配與打擊資產運用,顯著削弱敵軍作戰潛力
自主系統、有人-無人協同及"重型徒步步兵"都將依賴AI提供的通用作戰圖(COP)。AI將逐步接管陸地作戰環境中非必要人力的領域:軍事水文氣象、戰場測繪、分析支援、后勤系統、關鍵基礎設施防護(Jan?o, 2022)及材料工程。第二類AI優勢領域是人類響應過慢的任務:目標探測、電子戰、網絡防護、爆炸物偵排(Agarwala, 2023)。指揮控制與目標交戰等領域未來二十年仍將保持"人機混合"模式——人類干預負責注入軍事藝術,并規避道德法律困境(Morgan et al., 2023)。
AI重點發展方向已明確聚焦:指揮控制、信息管理、后勤保障與訓練(Grand-Clément, 2023)。這些主題領域緊密關聯,有理由預見AI將為地面部隊提供壓倒非AI敵軍的決定性優勢。
"當今軍隊無法對抗21世紀中葉技術先進的超現代化軍隊"的假設看似直觀卻非完全客觀。畢竟軍事史上不乏證偽案例:本世紀前二十年,全球技術最先進的軍隊在伊拉克與阿富汗平叛行動中僅能實施有限作戰。但需明確——此類"挫敗"根源并非單純源于作戰潛力不足。未來二十年最先進軍隊的能力必將劇變,其增長核心加速器在于創新技術整合,這些技術將在互聯性、速度、殺傷力、自主性、可持續性等領域引發陸地戰場顯著變革。這些因素將根本性影響未來作戰中地面部隊的部署理念。未來作戰環境特征體現為多域互聯同步作戰,行動協同增效需求始終顯著。信息環境容量、吞吐量、速度、數據流冗余度及信息處理能力將成為決定性因素。軍事力量運用的核心意圖將是破壞敵方系統完整性與連通性,癱瘓其鏈路。
可預見陸地戰場將由"混合戰斗系統"主導,但人類仍居核心地位。未來二十年指揮控制(C2)作為核心作戰功能仍不會被AI機器取代——人類扮演決策者角色,機器負責全域數據采集處理分析。無人系統(UxS)替代人類執行高危任務,各類平臺由人類遠程管理或(視自主化程度)至少實施遙控。盡管待控占的物理作戰環境規模顯著擴大,作戰本質并未根本改變。但裝備能力將變革,其運用方式與手段將拓展。從未來軍隊作戰潛力物理組件視角看,遠程殺傷性資產(如作戰無人系統/集群、遠程火力特別是火箭炮與身管火炮、先進彈藥及游蕩彈藥)將至關重要。
效應器射程、速度、精度與殺傷力的持續提升,將影響高價值難替代平臺的生存力及地面部隊自身效能。精準地理定位、高精度實時真實戰場態勢感知、持續傳感器互聯與即時自動化效應器響應的結合,意味著近期軍隊可能不再需要(或無法遵循)傳統認為必要的"集中原則"——即通過時間/空間/規模的集中達成目標。應對技術優勢敵軍火力威脅的潛在方案是深化分布式發展:即戰場兵力分散化(含作戰行動分散化)。由此可預期任務、空間、資源與時間受限的戰術行動將增加。有人/無人作戰系統在技術飽和戰場的生存力,將取決于其進入作戰區域的速度、區域內高機動能力及后續撤離重組再部署能力。小范圍密集部署作戰系統、靜態作戰模式、低水平欺騙偽裝、線性單域作戰及其他"經實戰檢驗但過時"的傳統軍事行動方式,將倍增部隊定位風險及隨之而來的即刻壓制風險。
所有已識別技術將構成整體防御能力與威懾基礎,因其確保技術主導權。故任何國家必須發展并落實于安全領域建設。經合理結構整合與流程實施的技術,必將成為質量優勢的決定因素。但若技術擁有方無法全面認知物理環境能力與給定條件,且不能因地制宜運用軍事藝術、創造力及自身能力,則先進裝備潛力在作戰環境中的應用仍將不足。
根據埃利奧特·科恩(Eliot Cohen)的軍事革命認知框架,俄烏戰爭中無人機系統(UAS)的廣泛運用代表著作戰方式的根本性變革——因其展現了新型武器、新型組織形態與新型作戰模式三者的交匯。這種變革深刻體現在部隊籌劃與執行戰役、作戰情報融合及指揮控制模式的轉型中,尤其對戰爭戰役層級產生重大影響。
隨著師級與軍級指揮官如今必須應對持續監視能力(其剝奪了傳統作戰突襲優勢)同時運用縱深打擊與戰役塑造新能力,烏俄兩軍的經驗為戰役指揮官適應新現實提供了關鍵啟示。無人機系統的普及已根本性改變作戰環境,形成近乎持續的戰場監控態勢,對傳統軍事行動理念構成嚴峻挑戰。
本文依據新興實證闡明無人機系統如何體現新型武器、組織形態與戰爭范式,通過俄烏戰爭視角分析其對戰役作戰的變革性影響。繼而探討此次革命對美國陸軍戰役層級的戰略意義,并就其條令體系、組織結構與指揮官培養提出具體建議,以保障其在未來沖突中保持優勢。
無人機應用的演進體現了其如何改變戰役作戰。在2024年初阿夫季夫卡戰役中,烏克蘭軍級指揮官每周在整個作戰區域部署無人機系統,這些系統不僅是戰術資產,更是戰役設計的組成部分。它們實現了作戰縱深的持續監視,根本性改變了部隊規劃與執行行動的方式。更突出的是,無人機系統與戰役火力結合創造了縱深打擊和戰役態勢塑造的新可能性,使指揮官能跨多域多距離同步影響戰場。
烏克蘭軍隊在改造商用無人機技術方面展現出顯著創新,進一步延伸了作戰影響。新美國安全中心防務項目主任斯泰西·佩蒂約翰指出:烏軍常規化使用配備熱成像技術的改裝商用無人機執行夜間行動,實現24小時持續監視打擊能力。戰役層面上,這種持續觀察能力改變了指揮官理解與塑造戰場的方式。
縱深打擊與戰役態勢塑造??。2024年4月別爾哥羅德突襲行動中,烏克蘭部隊協調運用超200架無人機,展示了無人機系統如何賦能戰役級規模的作戰行動。這些將偵察、電子戰和打擊任務整合的行動,根本性改變了戰役規劃與執行的關系。突襲迫使俄軍戰役指揮官調動大量資源防衛后方區域,證明無人機系統使較小規模部隊能實現以往需龐大兵力才能達成的戰役效果。
烏克蘭軍隊開創了運用無人機實施戰術打擊和戰場態勢塑造的創新方式,特別是通過第一人稱視角(FPV)無人機與巡飛彈的整合運用。雖然這些系統射程不及典型縱深打擊武器,但對其作戰半徑內的高價值目標極為有效。烏軍指揮官利用系統低成本高精度特性,發展了"第一人稱視角無人機實時偵察定位+巡飛彈精確打擊裝甲/炮兵/指揮所"等新戰術理念。
??表.俄烏戰爭中無人機系統符合科恩軍事革命標準的應用??
軍事變革標準 | 俄烏戰爭中的證據 |
---|---|
新武器 | ? 無人機系統(UAS)類型空前擴散和多樣化 ? 快速的技術進步(如:波伯重型第一人稱視角轟炸機、沙希德-136) ? 人工智能和機器學習的融合 ? 易獲取且具成本效益 ? 空中力量能力的擴散化 |
新組織 | ? 烏克蘭無人系統部隊的創建 ? 無人機操作員新穎的招募和培訓方法 ? 專業無人機團隊的組建(飛行員、爆炸物處理專家、維護人員) ? 民用無人機操作教育的整合 ? 俄羅斯提出的"以無人系統為中心"的旅級概念 |
新的作戰方式 | ? 戰場在垂直和水平方向上的擴展 ? 新戰術(如:無人機群、無人機編隊) ? 與傳統武器系統的整合 ? 決策和指揮結構的變化 ? 對軍隊和公眾認知的心理影響 ? 戰爭經濟計算的變化 ? 新反無人機戰略的發展 |
實施持續高精度戰術打擊的能力,根本性改變了烏克蘭指揮官準備與掌控戰場的方式。通過系統性削弱俄軍戰斗力并破壞其行動,烏軍得以創造決定性機動與反擊機會。這種戰術創新產生了戰役級影響,使烏軍能在戰爭各階段奪取主動權并塑造有利戰場態勢。但需強調:這類短程系統不能替代真正的縱深打擊能力(如"沙希德"等遠程無人機系統可在敵后深遠區域實施打擊),而是作為補充能力提升烏克蘭軍隊在戰術和戰役層級的整體作戰效能。
俄烏戰場指揮官開創了復雜運用無人機系統的新模式:在支持地面機動的同時實施獨立縱深作戰,促成無人機系統與傳統部隊間新型作戰協同效應。這種整合超越了簡單的支援關系,代表戰役效果思維的新范式。通過實施持續監控并同步開展精確打擊,烏軍指揮官根本性改變了其戰場準備與掌控方式。
例如2022年末赫爾松戰役期間,烏軍運用小型無人機集群識別俄軍防御陣地并引導遠程火力,使其在發動地面攻勢前快速削弱敵軍戰斗力。這種無人機賦能的目標鎖定能力使烏軍指揮官能以空前速度和規模塑造戰場態勢,為成功解放該城的反擊創造有利條件。
大衛·漢布林指出:無人機與炮兵的整合尤為變革性——無人機使烏軍炮兵具備"致命精確度",實現實時火力修正和即時毀傷評估。此能力改變了火力支援計算法則,使指揮官能以前所未有的精度和響應速度部署炮兵。無人機與火炮的配合還使烏軍能在作戰縱深全域打擊目標,包括俄軍關鍵指揮所、后勤樞紐與交通線。
烏克蘭無人系統部隊的創建代表對此作戰革命最全面的組織響應。烏軍2024年組建的"無人系統部隊"(USF)聚焦戰役級整合與效能,區別于傳統軍兵種側重戰術運用的架構。該部隊保留專門的戰役級建制單位,既能支援軍師級作戰,又可實施獨立縱深行動。此組織創新表明:在戰役層級,無人系統需建立力量結構與指揮關系的新范式。以"配備超百萬架國產第一人稱視角無人機系統"支持作戰為目標,該新兵種通過大規模投入無人機技術與組織建設,彰顯烏軍圍繞無人系統重構軍事體系的決心。任命被譽為首位在實戰中有效部署無人機的指揮官——瓦迪姆·蘇哈列夫斯基上校擔任首任部隊司令,印證了高層指揮對無人作戰實戰經驗與專業能力的高度重視。
通過設立無人系統專有兵種,烏克蘭無人系統部隊實現了軍事組織確保戰役成功的根本性變革。此舉加速新戰術、技術與流程的研發推廣,將無人能力重要性制度化,確保其融入作戰規劃與執行的各個環節,由此培育創新適應文化。該部隊為軍隊如何將戰術勝利轉化為戰役優勢提供范本:通過在戰役層級整合專業知識與資源,使成功戰術與技術得以在全軍快速推廣。這種將戰術創新迅速轉化為戰役能力的特點,正是烏克蘭抵抗俄羅斯行動的關鍵因素。
圖:2024年12月20日,德事隆系統公司MK 4.8 HQ"航空探針"無人機系統在阿拉巴馬州紅石兵工廠測試飛行。該型號于2024年末列裝陸軍。
采取差異化組織架構??
俄軍在戰役層面采用顯著不同的組織路徑:嘗試將無人機能力整合進現有指揮體系,同時在更高層級保留專業無人機單位。俄烏兩軍路徑差異凸顯組織適應性對發揮新戰力的重要性。俄羅斯經驗印證將顛覆性技術納入現存組織架構的挑戰,強調面對革命性軍事技術時組織變革的必要性——俄軍試圖將無人機系統嵌入傳統指揮控制體系,限制了其在戰役層級充分運用這些能力。
??戰役作戰新范式??
無人機整合對戰役藝術的變革構成此次革命最深遠影響,標志著無人化時代實施大規模作戰的新認知。傳統基于集中兵力達成突然性的戰役機動理念,在持續監控環境下需根本性重構。烏克蘭戰役指揮官發展出"分布式作戰+欺騙戰術+效果聚合替代兵力集結"的新戰法,將這些變革延伸至戰術適應之外。
??戰役決策機制轉型??
無人系統時代使戰役決策周期經歷深刻變革。軍師級指揮官如今面臨"探測-打擊"時間窗急劇壓縮的環境,同時需處理海量實時情報。烏軍創建新型決策流程:在任務式指揮框架下向低階梯隊下放重要權限,既保持戰役協同性又實現戰機快速捕捉。
人工智能與機器學習同無人系統的結合正重塑戰役決策流程,指向無人系統自主性不斷提升的未來趨勢——烏克蘭開發搭載AI目標識別功能的無人機即為例證。盡管引發人類監管的重要質疑,此發展對戰役指揮控制影響深遠:可能顯著加速決策循環。例如烏軍指揮官試驗具備預設參數自主識別打擊能力的AI無人機系統,雖人類操作員保留武器使用授權權,這些系統仍標志自主作戰的重大邁進。此類系統的運用或將急劇提升作戰節奏,使指揮官能捕捉瞬時戰機并快速響應戰場變化。
然而無人系統自主性提升也對戰役指揮控制帶來嚴峻挑戰。隨著系統獨立行動能力增強,指揮官必須開發確保人員控制與責任追溯的新機制,這需要構建強健指揮控制架構、明確交戰規則及操作員培訓體系。
無人機拓展戰役半徑對沖突地理范圍產生深遠影響。隨著打擊距離持續延伸,前沿與后方的界限日益模糊,挑戰傳統戰場幾何概念,要求指揮官更廣闊地審視作戰環境。此外,無人機遠程打擊能力可能以意外方式升級沖突——當戰場邊界擴展,卷入額外行為體或引發報復的風險隨之升高。指揮官必須審慎評估無人機行動的戰略影響,確保其充分融入整體戰役計劃。
盡管承認無人機系統重要性,陸軍當前現代化戰略仍需大幅擴展以應對此革命性的戰役影響。美國防部"復制者計劃"(旨在快速擴展自主能力)作為一項重要工作,必須融入戰役條令與概念的全面轉型。例如陸軍需制定新條令概念:運用無人機系統支援縱深行動(含情報收集、目標鎖定和打擊任務),這些概念須解決無人系統在延伸距離和爭議環境中運行的獨特挑戰(如通信可靠性、導航精度和生存性)。
陸軍條令還需演進以應對戰役作戰中人工智能及自主系統日益普及的狀況,要求制定明確的倫理法律框架規范系統運用,建立全面操作員培訓與認證標準。條令同時需解決戰役層級人機協同的挑戰(含指揮控制架構、數據管理及決策支持系統)。
職業軍事教育必須發展以適應新作戰環境。陸軍應調整中級/高級軍校課程,強化包含持續監控與精確打擊能力的戰役法更新內容。教育須超越技術認知,培養能將無人能力融入復雜戰役設計的指揮官。例如陸軍院校應在核心課程增設無人機系統模塊(重點是其戰役影響),包含近期沖突中無人機運用案例研究、模擬無人機密集型環境的兵棋推演,以及開發測試新戰役概念的機會。
人才培養項目需更注重培育在復雜數據富集環境中有效運作的認知技能:含臨界思維訓練、應變能力及不確定條件下的快速決策能力。指揮官還須適應向部下授權及在分散式指揮結構中運作的模式。
陸軍還須投資支撐大規模無人作戰的技術基礎設施:含健壯通信網絡、數據管理系統及能處理無人機傳感器海量信息的分析工具。開發含網絡安全和電子防護功能的新系統也至關重要,以確保爭議環境中無人機系統的運行完整性。
美國防部"復制者計劃"為快速擴展自主能力提供框架,要求陸軍構建專屬組織結構以高效部署系統。此框架應包含在戰役層級設立類似烏克蘭模式的專用無人作戰中心,負責開發實施新戰役概念。
陸軍還應考慮組建專職"無人系統司令部",統籌規劃與監管部隊無人作戰能力。該司令部將作為無人系統條令、訓練及裝備發展的核心樞紐,確保全軍形成協調統一的整合路徑。
戰役演習需納入真實無人威脅與戰機要素,使指揮與參謀人員精熟未來作戰環境。陸軍應借鑒烏克蘭經驗:開設無人機操作員與任務規劃師專項課程;建立強調技術精通與戰役整合的無人作戰專屬訓練體系。例如創設針對軍師級參謀的專項訓練項目,核心內容為無人系統融入戰役規劃與執行。該項目應包含:無人機性能邊界理論授課、實裝操作訓練、模擬無人密集型環境復雜性的推演。
此外,陸軍應運用虛擬與增強現實技術構建沉浸式訓練環境,精準模擬無人作戰挑戰。此類環境須為指揮官提供在真實數據富集場景中實踐決策與指揮控制的機會。
例如陸軍需創建支持多域作戰的無人系統運用框架,明確無人機如何與太空、網絡及電子戰能力整合,在戰役縱深產生協同效應。管理無人作戰產生的海量數據是條令必須應對的另一關鍵維度:需制定或完善數據采集、處理、利用與分發準則,明確與聯合部隊及多國伙伴的互操作性與數據共享標準。
圖:烏克蘭無人系統部隊兩名士兵正校準"吸血鬼"無人機。該六旋翼飛行器可攜帶十五公斤彈藥或其他物資。(烏克蘭國家通訊社奧萊娜·胡迪亞科娃攝)
具體而言,陸軍應投入先進數據分析與機器學習能力,實現無人機傳感器數據的自動化處理利用。這些能力需具備戰術層級的可擴展性與可部署性,使指揮官快速洞悉復雜戰場態勢。另一要務是優先發展能在爭議環境中支撐無人作戰的防干擾安全通信網絡,此類網絡須在降級條件下保持運行,確保指揮控制鏈路完整性。
無人機驅動的作戰革命要求陸軍徹底變革其能力體系、組織架構與條令準則。俄烏戰例證明:成功適應不僅依賴技術方案或戰術創新,更需戰役指揮官在戰役設計、參謀機構與決策方式上的根本性轉變。若未能順應這些變革,在未來沖突中或釀成災難性后果——潛在對手正展現出日益精密的無人機作戰運用能力。
未來沖突勝負取決于陸軍能否在保持傳統作戰能力精熟度的同時,將戰役法適配無人化時代。這種轉型需要精準平衡新技術運用與戰役法基本原則的堅守,要求制定符合美國軍事需求與戰略目標的更新方案,而烏克蘭經驗為此提供了寶貴洞察。
正如杰奎琳·施耐德(Jacquelyn Schneider)與茱莉亞·麥克唐納(Julia Macdonald)所論證:成功軍事創新的核心不僅在于采納新技術,更在于開發能將新能力有效融入更廣軍事行動的作戰概念。無人機系統融入作戰革命遠非單純戰術或技術挑戰,其要求從根本上重新思考現代軍隊的戰役層級的作戰模式。
成功駕馭此變革的能力將決定其在未來沖突中的效能。汲取俄烏戰爭經驗并致力改革,陸軍方能引領作戰革命的新時代。最終,陸軍必須通過條令、編制與訓練的深度革新,在充分釋放無人機系統潛能的同時管控其風險挑戰——唯有以整體統籌推進創新,方可確保美軍在未來戰場的持續優勢。
2025年6月13日至24日的伊朗-以色列12日沖突中,人工智能(AI)從輔助性后臺工具躍升為AI增強型指揮控制架構的核心支柱。這些應用于實時情報處理、目標優先級排序及數字影響行動的AI系統,重塑了戰爭節奏與形態。
圖:2025年6月16日,以色列防空系統啟動,攔截特拉維夫上空的伊朗導彈。照片:法新社
其中,美國分析公司帕蘭蒂爾科技(Palantir Technologies)被公開確認與以色列國防部建立戰略合作伙伴關系,據報其提供用于作戰規劃與情報融合的戰場軟件(《耶路撒冷郵報》2025年6月17日)。
美國通過情報合作的隱蔽方式,以及"午夜之錘"行動空襲伊朗核設施的公開介入,在協調關鍵行動與強化AI驅動戰場中發揮核心作用(《政客》雜志2025年6月20日)。由此形成一場跨國算法協調的軍事行動——其指揮中樞位于特拉維夫,通過前沿中心的帕蘭蒂爾儀表板驅動,以華盛頓的戰略協調為基石,并承受著德黑蘭的反制。
這不僅是地區沖突,更釋放全球信號:此戰證實AI已成為地緣政治中的全譜系參與者,從根本上重新定義指揮控制、顛覆傳統威懾理論,并挑戰人類在戰爭與和平決策中的判斷邊界。
以色列作為長期公認的軍事AI先行者,將加沙作戰經驗適配至更廣闊復雜的戰場。雖在加沙行動中聲名狼藉的"薰衣草"數據庫(據報使用AI啟發式方法鎖定約37,000個目標)未直接用于伊朗戰役,但以軍依賴同類AI驅動系統進行目標識別與優先級排序(+972雜志2024年4月)。
這些系統整合衛星影像、信號情報與先期監視數據,引導對伊斯法罕導彈陣地、納坦茲附近防空設施及疑似無人機指揮中心的打擊。簡言之,數據庫本體雖未跨境,但其承載的方法論與算法邏輯已然滲透——標志著以色列AI主導軍事條令的延續性。
AI輔助衛星影像分析與通信攔截助力識別伊朗高價值目標并排序優先級。以軍精銳"8200部隊"(以網絡間諜與信號情報能力著稱)據報與美情報機構緊密協作(《以色列時報》2025年6月18日),共同協調目標鎖定算法并評估伊朗響應模式。
這絕非單純技術援助。美國的介入兼具隱蔽與公開雙重屬性:空襲前對以情報共享已然加速(《紐約時報》2025年6月21日);五角大樓網絡戰部隊據報協助運行伊朗報復場景的模擬推演與預測建模(《防務一號》2025年6月19日)。當空襲啟動時,跨國AI增強框架早已部署就位。
技術落后的伊朗展現出非對稱策略與AI結合如何瓦解高度數字化對手。其使用"沙希德-136"(Shahed-136)無人機雖非首創,但本次以更大規模且更協調的時序部署。這些無人機雖缺乏先進自主導航能力,但與基礎AI程序(如規避誘餌的視覺識別)的結合,代表了低成本高效益的無人機戰術演進。
更具顛覆性的是伊朗運用AI生成內容展開敘事戰:偽造以色列軍官的深度偽造視頻、AI腳本化宣傳片及機器人賬號放大傳播充斥阿拉伯/波斯語社交媒體(布魯金斯學會2025年6月)。盡管以方實施數字反制敘事,這場認知戰實質是算法與算法的對抗,遠超越政府間博弈。
伊朗還利用開源情報(OSINT),通過公開數據——特別以以色列預備役軍人社媒帖文——監測部隊調動并推測打擊優先級(路透社特別報告2025年6月)。此類戰術印證AI如何將最平凡的電子足跡轉化為武器。
以色列"鐵穹"與"大衛彈弓"導彈防御系統能力頂尖,其響應能力在此次沖突中再獲提升。雖無公開證據表明系統獲重大AI升級,但報道顯示機器學習用于優化導彈齊射高峰期的攔截優先級排序(《國土報》2025年6月),減少火力冗余并提升資源管理效率。
"智能射手"等反無人機系統在以色列北部中部激活,證實計算機視覺與人機協同設計在集群攻擊下仍具效能。伊朗大規模無人機攻勢雖未突破防御,卻暴露成本效益鴻溝:伊朗消耗低成本無人機,以軍被迫動用昂貴攔截彈(《防務新聞》2025年6月24日)。
網絡空間方面,據以色列網安官員透露,多年抵御滲透經驗催生的"網絡穹頂"系統,在沖突期間挫敗數十次協同網絡攻擊(以色列國家網絡總局2025年6月25日)。但以基礎設施仍遭破壞:多家水務設施與市政服務中斷(《衛報》2025年6月23日)。
以色列作戰室中,AI不僅輔助決策——更架構決策框架。據報軍事規劃者運用預測模型推演數千種伊朗報復情境(《國土報》2025年6月25日)。這些模擬協助制定打擊序列與最優時機,平衡軍事成功與政治影響。
盡管最終打擊決策仍由人類掌控,AI推演結論具有重大權重。正如某退役以軍上校在《國土報》所述:"當機器告訴你特定打擊引發伊朗報復概率僅14%時,這直接影響你對內閣的建議。"
然而此種依賴滋生深層脆弱性。預測模型無論多精密,皆基于歷史數據、有限輸入及概率邏輯。單次誤判——無論源于錯誤假設或對手欺騙——都可能誘使決策者陷入災難性升級。在分秒必爭且信號混雜的戰場,AI的虛假確定性可能催生人類過度自信,侵蝕傳統軍事決策中的審慎機制。
德黑蘭方面雖更節制但仍有策略地運用AI工具:媒體攻勢通過情感分析工具塑造,追蹤全球受眾對影像及話題標簽的反應(《中東之眼》2025年6月23日)。
這場持續12天的消耗戰逐漸平息時,交戰雙方均宣稱勝利,但現實更令人警醒:伊朗核設施受損卻未摧毀;以色列威懾力雖獲重申,代價卻是附加條件、國際譴責與國內分裂加劇;幕后策劃并維穩沖突的美國,在"全球南方"外交實力削弱——該地區對美國雙重標準的認知已然固化(《外交事務》2025年6月26日)。
唯有AI角色未顯式微。其勝利非刻意謀劃,而是必然結果——在目標鎖定、防御攔截、模擬推演及認知塑造中的核心作用表明,戰爭形態不再僅由將軍決定,更由遠離戰場的數據中心工程師與程序員塑造。
這場12日戰爭不僅是試驗場,也是范式模板——展示AI不僅顛覆作戰執行,更從規劃到認知全面重塑戰爭形態。隨著技術擴散,全球軍事條令以類似不透明且不受監管方式演進的風險同步加劇。
伊以沖突充斥著破壞、混亂與戰略模糊,更悄然標志一種深刻持久的轉變:機器邏輯正無聲替代人類判斷。盡管伊朗、以色列與美國皆有代價,AI卻更加強大、深入且失控。
反思這12天的代價,要追問:誰(或何物)在書寫軍事史新篇章?答案或許不在首都或地堡,而在背景中嗡鳴運轉的服務器機架——永不停歇的推演正重塑未來戰爭。
參考來源:thedailystar
俄烏戰場背景下,常規威懾時代正在急速演變。烏克蘭深入俄羅斯領土的遠程無人機襲擊,徹底顛覆了傳統威懾理論。這類無人化精準攻擊鎖定從預警雷達到關鍵軍事設施等戰略目標。這些行動揭示出全新的威脅計算法則——持久性、精確性和認知影響力成為決定性要素。近期分析表明,此類無人機作戰已改變對手國家內部的風險評估,即使10%至15%的認知偏差也可能導致戰略誤判。隨著常規與核武器界限日益模糊,美國核戰略家正迫切呼吁重構威懾體系。
數十年來,美國核戰略基于一個核心假設:任何針對核指揮控制系統的常規攻擊必將觸發核反擊。冷戰時期演習數據及后續真實事件強化了防務規劃者的這一思維定式。然而烏克蘭對俄敏感目標(包括構成俄預警體系核心的雷達站)的反復無人機打擊,迫使人們重新審視固有認知。克里姆林宮的反應展現顯著克制,將此類侵入視為可控代價而非核升級導火索。從莫斯科多方公開及機密渠道傳遞的戰略克制信號表明:當代威懾機制正從依賴核武暴力,轉向依托打擊精度與意圖判斷的精妙博弈。現代決策者必須認識到,威懾體系需融合更廣泛要素——包括技術驅動的精確性及對手的升級閾值。
以核火力等同于戰略影響力的時代正走向終結。烏克蘭對低成本高精度無人機的創新運用證明,小型平臺足以顛覆傳統安全邏輯。防務智庫最新報告估算:無人機作戰單價不足傳統戰機任務的1%,但在情報獲取與戰術破壞方面的作戰效能關鍵領域卻可媲美。這些無人機深入敵境打擊曾被視作堅不可摧的高價值軍事經濟目標,其作戰模式正挑戰擁核國家對本土可信威脅的長期壟斷。美國規劃者必須重新校準威脅模型,整合非核選項——未來的戰略影響力不僅更經濟,技術復雜性亦遠超以往。
冷戰時期,廣闊疆域、天然屏障與海洋隔絕營造了大國享有絕對安全的幻象。如今這一幻象正在崩塌。烏克蘭的無人機作戰生動證明:即使被認為嚴密防護的區域仍可被滲透。針對俄預警網絡、關鍵能源設施及軍事基地的襲擊揭示:沒有任何領域可高枕無憂。在高度敏捷的自主系統時代,從電網、通信系統到預警雷達等美國關鍵基礎設施風險陡增。鑒于全球無人機市場預計2030年將達近500億美元規模,本土防御戰略亟待徹底革新。快速響應機制、增強態勢感知及反無人機技術投入已非可選項,而是現代威懾體系的核心支柱。
烏克蘭作戰行動最顯著的特征之一,是其能在獲取戰術優勢的同時避免局勢失控升級。這些無人機打擊的成功源于精準的時機選擇、精確打擊及克制的執行。烏軍持續實施間隔性作戰,并精心選擇能突顯國家決心且避免大規模傷亡的目標。這種"雙重信息傳遞"(既達成作戰效果又傳遞政治信號)標志著威懾思維的深刻演進。當今時代,行動背后的光學效應與感知意圖可能和物理破壞同等關鍵。分析指出,對戰略意圖的誤判如今與傳統武力對抗場景一樣,構成非預期升級的重大風險。對美國而言,這意味著建立清晰明確的信息傳遞框架至關重要。此類框架必須使政策制定者與軍事領袖既能展示可信武力,又可避免被對手誤讀為挑釁行為。在行動受嚴密審視且容錯空間收窄的世界里,溝通清晰性已成為現代威懾的基石。
無人機正超越傳統戰場角色,成為不可或缺的戰略資產。現代無人系統承擔多重職能——從監視偵察、情報收集到對關鍵目標的直接精確打擊。其融入作戰體系正以零人員傷亡風險革新軍事行動模式。此外相比有人打擊平臺,這些系統的政治敏感性更低。然而其日益凸顯的地位也帶來誤判風險。隨著近十年主要軍事強國對無人機技術的投資翻倍,必須迅速將其納入整體威懾框架。這需要制定嚴格政策以界定無人機作戰邊界與適用場景,開展指揮官升級管理綜合培訓,并通過公共信息傳遞強化戰略決心而不加劇緊張。技術應用的快速迭代意味著有效整合窗口期短暫,戰略敏捷性至關重要。
未來數十年維系美國戰略可信度,需要超越僅以核武力為錨的威懾模式。盡管核力量依然關鍵,但在當今多域沖突中,其已非塑造對手行為的唯一工具。威懾的未來取決于核與非核能力的無縫整合戰略。這要求制定國家無人機運用綜合條令,明確定義行動閾值、可打擊目標及強效升級管理規程。同時須著力升級本土防御體系,以應對遠程自主無人機攻擊威脅——尤其在太空資產、能源與電信領域。防務預算分析顯示:若北約成員國均達成GDP 2%防務支出目標,聯盟年度預算將增加逾千億美元。若欲在新作戰環境中保持威懾可信度與有效性,此類投資及美國提升技術韌性的同類舉措至關重要。
"空中幽靈"不僅是隱喻,更濃縮了現代威懾的深刻變革。烏克蘭對無人機技術的創新運用,正強力重構長期主導全球安全政策的傳統認知。這種范式轉變挑戰固有觀念,要求美軍戰略快速演進。在混合威脅與技術劇變的時代,全球安全環境比以往更復雜且相互依存。未來威懾將取決于快速適應能力、非線性威脅響應能力,以及構建與威懾對象同等敏捷的靈活防御體系。對政策制定者的警示清晰可見:即刻擁抱這場幻影演進,因為在新興的多域戰場上,任何失誤都可能危及區域安全乃至全球秩序。烏克蘭無人機行動引發的威懾變革尖銳提醒:戰爭創新能使舊范式失效。隨著各國投資高性價比的精準自主系統,威懾計算法則將持續演變,迫使美國及其盟友重新審視戰略條令與防務開支。在這個最微弱的幻影也能顛覆戰略平衡的新時代,敏捷適應與響應能力將成為國家安全的真正標尺。
軍艦、艦員及其漸進式投資開發的武器是美國海上優勢的基石。然而,這種穩健、漸進式且追求精密的(exquisite)技術發展路線,或不足以贏得下一場海戰。
多重動態正削弱美海軍的優勢。首先,區域拒止技術正日益影響海上作戰,導致艦隊、特遣艦隊和特遣大隊需要進一步分散部署。其次,造船成本不斷上升,加之軍艦和武器的精密特性,需要開發成本更低的解決方案以補充高端能力。第三,現代沖突期間技術創新的速度要求采用適應性更強的技術和戰術。
為備戰海戰,現在迫切需要速度、規模、更低成本和創造力。美海軍水面艦隊或許考慮模塊化——特別是集裝箱形式的模塊化能力,以加速戰備。
集裝箱化載荷(Containerized payloads)將驅動海上殺傷力的下一次演進,且多種船型均可搭載集裝箱。集裝箱化載荷具有模塊化、可大規模生產、低成本、平臺無關性以及欺騙性等特點。它們是殺傷力一種基本而卓越的形式。
除了歷久彌新的“有效先射”(fire effectively first)原則外,韋恩·休斯上校(Captain Wayne Hughes)在《艦隊戰術:理論與實踐》一書中確立的“大趨勢”(great trends)很可能仍是下一場海戰的基礎:
作戰活動 (Battle Activity) | 趨勢 (Trend) |
---|---|
A 機動 (Maneuver) | 移動優先級的轉變:從"在敵視野內占位"轉向"占位以實現'有效先射'"。 |
B 火力 (Firepower) | 武器射程持續提升。 |
C 火力對抗 (Counterforce) | 防御重點從"依靠裝甲、艙室分隔、體量和損管實現生存"轉向"依靠隱蔽、欺騙和分散部署"。 |
D 偵察 (Scouting) | 搜索速率持續提升,偵察、監視與情報覆蓋范圍不斷擴大。 |
E 反偵察 (Antiscouting) | 通過干擾敵方偵察行動保護己方免受攻擊的手段日益凸顯。 |
F 指揮控制與反制 (C2 and C2CM) | 臨戰不確定性上升。 |
隨著這些趨勢共同演進,它們對艦隊設計和艦隊戰術產生了深遠影響。高超音速武器和衛星大幅提升了火力與偵察活動的射程,使得區域拒止在任意沖突中很可能出現。非傳統平臺,例如用作偵察兵的海上民兵和非戰斗人員,使機動、火力對抗、反偵察、指揮、控制及對抗(C2CM)進一步復雜化。新興威脅,包括空中和水面無人機母艦,強化了休斯所描述的通過隱蔽、欺騙和分散進行防御的火力對抗(counterforce)趨勢。例如,小型第一人稱視角(FPV)無人機不應僅被視為沿海威脅——它們將進入開闊海域。
海事規劃人員對這些趨勢的理解,推動海軍走向分布式海上作戰(DMO)的艦隊戰術——即在分散艦隊的同時集中效果,分離傳感器與射手。然而,艦隊自身的構成尚未適應這一新興現實。
當前的艦隊架構能夠應對一系列威脅,但火力仍相對集中在大型平臺上,這使得欺騙和分散作戰變得困難。為了在關于這場不斷演變的作戰理論中,實現艦隊的效用、交戰和生存能力,火力、欺騙和分散作戰必須擴展到精密平臺之外。
在分散作戰中,艦隊的需求推動了對搭載于標準20英尺或40英尺運輸集裝箱內的傳感器和武器的需求,從而能增加許多更小型的傳感器和射手平臺。更多數量的平臺將使對手的目標鎖定和武器配對復雜化。小型平臺可能不值得成為昂貴的超高音速反艦彈道導彈的目標。損失搭載集裝箱的低成本且可能是無人駕駛的卡車,將是一種合理的作戰風險。
除了部署于新型低成本平臺,集裝箱化的傳感器和武器也能為現有平臺帶來精密能力。不久前,美海軍還在戰列艦上部署過“戰斧”導彈裝甲箱式發射器。
此外,2023年10月,“薩凡納”號瀕海戰斗艦(USS Savannah LCS-28)從一個集裝箱(此處指洛克希德·馬丁公司的MK70集裝箱,內含四聯裝垂直發射系統(VLS)單元(cells))中發射了標準導彈(SM)-6。集裝箱化載荷的力量——它們承諾帶來的模塊化和適應性——值得我們審視:是否應該為多任務軍艦制定一項正式要求,即需搭載一定數量的集裝箱。
圖:漠風暴行動開始時,一枚BGM-109戰斧對地攻擊導彈(TLAM)從密蘇里號戰列艦(BB-63)上向伊拉克目標發射。(美國國防部圖片)
美海軍優勢受影響的第二個動態是美國造船業的狀況。其已將焦點轉向此問題,但需要更大的產能和及時的產出。美海軍近期的造艦計劃和預算要求建造更多的大型和小型水面作戰艦艇。然而,許多制約因素——最顯著的是成本上升和勞動力挑戰——持續阻礙著艦隊的增長。造船所需成本的增加可能會限制海軍在其當前預算內擴增超出計劃數量的能力,而熟練工人的短缺和基本規模限制可能會繼續阻礙大型一級(Tier 1)造船廠提高產量的能力。
在美國數十個州運營的眾多小型造船廠,可為分布式海上作戰(DMO)擴大其艦隊規模。這些“二級”(Tier 2)或“三級”(Tier 3)造船廠可生產更小型的遠洋船舶。此類船舶的使用曾在霸主(Overlord)無人水面艇(USV)項目中經過原型驗證,并通過這些中型USV的部署和測試而變得成熟。
圖:美海軍無人水面艦艇(USV)Ranger與Mariner)駛過太平洋。
不應小覷此類簡單的“卡車”(trucks);它們不是瀕海戰斗艦(LCS),也不是集成化的“卡車”。它們的優點在于能夠搭載裝載多種不同有效載荷的標準化集裝箱,以響應特定需求。
現代軍艦及其作戰系統是高能力的工程奇跡,但其復雜性使得建造和升級成為專業化且耗時的過程。將所有復雜性容納于一個集裝箱內,能使平臺保持簡單,從而更容易、更快且更便宜地生產。通過標準化的機械和數字接口,一次起重機吊運即可將最新能力部署到幾乎任何尺寸的艦船上。
第三個威脅性動態是技術發展的步伐。在2022年俄羅斯-烏克蘭全面沖突爆發之前,無人機主要執行情報、監視和偵察(ISR)任務,正如在伊拉克和阿富汗所見。到2023年,低成本的第一人稱視角(FPV)無人機已被證明是強大的一次性攻擊平臺。僅兩年后,烏克蘭國防部報告稱,戰場上80%的打擊由無人機完成。鑒于這種被證明的有效性,烏克蘭在2024年采購了超過150萬架FPV無人機,并計劃在2025年采購450萬架。
這如何應用于海戰?請設想下一場戰爭中一個前所未見的海上威脅。在分析該威脅后,迅速設計出一種新系統以安裝在軍艦上進行防御。在2024年環太平洋演習(RIMPAC)期間,“菲茨杰拉德”號驅逐艦(DDG-62)成為美國首艘發射海軍打擊導彈(NSM)的驅逐艦,這滿足了海軍作戰部長九個月前向綜合作戰系統項目執行辦公室(PEO IWS)提出的挑戰。雖然這個時間線超出了通常的預期且體現了一些工作成效,但在下一場戰爭中,花費九個月時間來規劃和在軍艦上安裝一個現有武器系統是不夠的。
將升級后的能力提供給復雜的軍艦所需時間太長了。正如喬納森·格林納特海軍上將(Admiral Jonathan Greenert)在2012年7月《會議錄》(Proceedings)發表的《優先載荷而非平臺》(Payloads over Platforms)中所寫,現代軍艦是“滿載的豪華轎車”,而非具有“即插即用能力”(bolt-on capability)的“卡車”。在下一場戰爭中,將需要識別、整合并規模化應用新興技術,艦隊必須準備好不斷適應和改進該技術。
集裝箱化(Containerization)提供了艦隊制勝所需的快速適應性。將系統容納于集裝箱內,并通過標準化接口與艦船連接,可使增強艦隊的技術能力得以規模化更新,同時簡化在軍艦上的安裝工作并最大限度地減少在造船廠所需的時間。集裝箱化還意味著當某項技術過時,或艦隊優先采用另一類系統時,集裝箱可以快速替換掉。
雖然對于艦隊對分散部署的需求、造船業的挑戰以及戰時技術變革速度的問題,可能存在個別的解決方案,但集裝箱化為所有三個問題提供了一個簡單的解決方案——而且是以更快速度、更大規模、更低成本并融合了所需的創造力的方式實現。所需的基礎支撐技術目前已經成熟,原型艦也已存在。是時候在集裝箱應用上發揮創造性了。
美軍行業合作伙伴和海軍過去幾年的行動已開發了“宙斯盾”作戰系統(Aegis Combat System)的虛擬化,將其從需在特定、已安裝硬件組上運行的軟件,轉變為可在任何可用硬件上運行的“虛擬”軟件。此配置類似于商業領域的“基礎設施即服務”(infrastructure as a service),現可容納于一兩個“鵜鶘”(pelican)防護箱內的現代服務器中;允許對大型戰艦上的作戰系統進行快速更新。也可以被重新用作與集裝箱化的傳感器或武器系統的接口,部署在任何具備可用甲板空間和輔助支持(即空氣、電力和水)的平臺上。借助與“宙斯盾”作戰系統的標準化接口,開放式架構方法將有可能立即集成幾乎任何集裝箱化的傳感器、武器或載荷。
將戰艦和其他小型平臺配置為操作集裝箱化武器和傳感器,類似于智能手機運行獨立應用程序——單個應用程序的開發者只需滿足標準化的接口要求即可。這使得平臺功能的發揮具備了廣泛的創造力和多功能性。同樣,集裝箱化將允許跨多種級別艦船實現功能,并將吸引更多的“開發者”進入軍艦傳感器和武器領域,釋放國防工業的創造力和規模。
載荷選項是無限的,并且必須體現美國在工業、設計和軟件創造力方面的決定性優勢。選項包括武器(垂直發射系統、火炮、水雷、魚雷或定向能武器);傳感器(雷達、聲納、電子戰、反水雷(MCM)、通信中繼、其他指揮、控制、通信、計算機、情報、監視與偵察(C5ISR)或聯合全域指揮控制-C5ISR(C-C5ISR));以及無人機(數百架致命的第一人稱視角(FPV)無人機、小型無人水面艇(USV)、無人機(UAV)或無人潛航器(UUV),采用攻擊或情報監視偵察(ISR)構型)。
載荷的構想還可擴展到后勤支持和未來的網絡或電子戰能力。小型平臺可能只搭載一個集裝箱,而大型平臺可能搭載多個——都是為了支持艦隊需求。所有這些載荷需要的只是一個平臺。如果我們建造它,它們就會被采用。
指揮官們可能會選擇操作載荷來增強高價值單位的防御能力——例如,作為誘餌單元或沿威脅軸線前出,以提供更優的目標定位或火力解決方案(通過雷達或垂直發射系統載荷)。攻擊性火力載荷可以被廣泛分散,并自主深入敵方武器交戰區,在艦隊海上作戰中心提供目標定位解決方案后進行遠程發射。防御性載荷擬在美國海岸巡邏,以支持像“金穹”(Golden Dome)這樣的防護盾。集裝箱化載荷將天生具有欺騙性。擁有標準外觀的集裝箱,對手將無法知道給定的集裝箱是射手、偵察兵,還是兩者兼備。
傳統戰艦在下一場海戰中仍將扮演首要角色——集裝箱化載荷和小型平臺將起到補充和賦能的作用。集裝箱化提供了一條以低成本快速擴展和多樣化的途徑。
集裝箱化的批評者可能會問,“模塊化、小型平臺……我們不是已經在瀕海戰斗艦(LCS)項目上嘗試過這個了嗎?”
模塊化確實是LCS項目的目標之一。但集裝箱化在兩個方面有所不同:復雜性和技術成熟度。LCS任務模塊包含多個系統,需要水兵團隊操作這些系統,并且與LCS平臺存在相互依賴關系。相反,集裝箱將會是簡單的。它們將是自成一體的,并且通過虛擬化技術,它們將擁有標準化的接口和標準化的外形尺寸。它們將與任何搭載平臺的船上系統無縫集成。此外,當新技術未能按時交付時,LCS任務模塊曾出現延誤。而數種集裝箱化武器系統已經過驗證并準備投入生產。集裝箱及其平臺無需過度指定,也無需過度宣傳——它們有局限性,只是對艦隊的補充。
其他人可能擔心集裝箱和小型平臺的殺傷力有限。由于集裝箱化部隊旨在對艦隊起補充和增強作用,因此必須從整體角度看待小型平臺上集裝箱化載荷的價值。六個各搭載四個集裝箱(16個發射單元)的平臺,將提供與一艘驅逐艦相同數量的導彈,而這些導彈的分散部署將使對手的感知和目標鎖定復雜化。此外,如果小型平臺專司進攻火力,驅逐艦就可以偏向于一體化防空反導(IAMD)。其成本要低得多,規模要大得多,對敵威脅的復雜性也會大大增加。
最后,一些人曾主張通過對大型集裝箱船加裝集裝箱化武器來實現其武器化。這些是偽裝成集裝箱船的大型船只,存在可行性、法律和作戰上的挑戰。海軍現在應專注于那些已可部署在中小型平臺上的有效載荷。它們提供了所尋求的分散性、造船廠生產力、成本效益以及整體可行性。
1890年,阿爾弗雷德·塞耶·馬漢(Alfred Thayer Mahan)寫道:“永不停歇的人類進步引起了武器的不斷變化;隨之而來的必然是戰斗方式的不斷變化——即在戰場上對部隊或艦艇的運用和部署。”這在今天仍然適用:正在目睹戰場上艦艇和技術的運用方式在改變。戰爭的本質依然是暴力的,但其特性在演變。
艦隊正在接受訓練并已準備好用分散化、射程更遠的武器和傳感器快速拓展作戰能力。海軍多種形式的在海上預演證明,作為對海上作戰不斷演變的認知的一部分,它正在優先考慮快速適應能力。
將依靠高端多任務軍艦擊敗勢均力敵的對手,而這些軍艦的性能將通過簡化的集裝箱化傳感器和武器得以增強和補充。這些有效載荷可以部署在易于且隨時可以生產的中小型無人平臺或可選擇有人平臺上。水面艦隊已經學會了如何標準化其與輔助系統和作戰系統的接口,這將促進工業生產中的多樣性、創造力和規模化。
參考來源:美海軍
盡管商業與消費產業投入擴展現實(XR)技術研發已數十年,近期突破仍為軍事開辟了諸多新型應用場景。美國國防部研究與工程事務副部長辦公室已將XR人機交互列為美國防部(DOD)14項關鍵技術領域之一。隨著美國防部持續推進XR及相關應用開發,美國會正在考量其對國防授權撥款、軍隊結構及網絡安全的影響。
XR涵蓋三大物理與數字環境類別(圖1):
虛擬現實(VR):完全沉浸式數字環境(例如使用戶置身游戲虛擬世界的視頻游戲)
增強現實(AR):物理環境上的數字對象疊加層(例如在用戶視頻/照片疊加預設特效的Instagram濾鏡)
混合現實(MR):物理與數字環境融合體系,支持實體與虛擬物體交互。區別于AR,MR允許用戶操控物理/數字對象,并在同一混合環境中共享視圖(例如在投影數字地圖上協同標注敵軍位置)
圖1. 擴展現實主要類別
5G與邊緣計算(在“數據源位置或鄰近區域”執行的計算)等關鍵技術將持續拓展XR應用邊界。這些技術可提升數據傳輸速率、增加用戶承載量、縮短延遲時間,從而支撐大規模網絡化應用。美國防部已在劉易斯-麥克科德聯合基地(華盛頓州)與圣安東尼奧聯合基地(得州)測試支持5G的XR應用。
美軍各軍種正探索XR在戰術訓練、飛行訓練、裝備維護、醫療訓練及作戰等領域的應用。
美國防部意圖借力“游戲產業成熟的AR/VR與實況訓練技術”開發定制化XR項目。這可使軍隊開展物理環境中成本過高或風險過大的訓練課目,并實現異地官兵協同訓練。
以美陸軍“合成訓練環境(STE)”為例——這個旨在輔助實況訓練的XR系統,力求讓士兵“在首戰開始前,就能與未來并肩作戰的戰友,在包含城市密林、叢林、沙漠及地下空間的復雜作戰環境中開展實戰化訓練”。STE設計目標是通過高效重復訓練提升士兵專業素養,進而增強戰備水平與殺傷效能。
美空軍運用XR開展飛行訓練以降低成本、縮短訓時、減少機體損耗,同時探索維護訓練應用并構建虛擬機庫體系,“實現各類機型全天候隨地訓練”。美海軍則致力通過XR技術聯通全球工程師與維護人員,實施實時遠程協同維修。
美國防部正研究XR在醫療訓練領域的應用。據空軍表述,XR可“在無需增加人力配置的情況下提升訓練可及性”,為人員短缺的醫療培訓課程提供分布式學習解決方案。
軍方持續推進XR作戰應用探索(圖2)。長期以來,XR技術已融入飛行員使用的平視顯示器(HUD)及頭盔顯示器(HMD)。這些設備能實時提供飛行參數與傳感器數據,強化用戶態勢感知與武器瞄準能力。以F-35戰機HMD為例,其外置攝像頭賦予飛行員360度全景視野,疊加夜視熱成像功能并同步顯示探測目標技術參數(如高度、速度)。
美陸軍正開發“綜合視覺增強系統(IVAS)”——基于微軟商用HoloLens加固設計的平視顯示器。軍方文件表明,IVAS旨在“整合新一代全天候態勢感知工具與高分辨率數字傳感器,打造提升士兵感知、決策、目標捕獲與交戰能力的單一平臺”。
圖2. XR戰場應用示意圖
美國會評估國防部XR軍事應用投資時可能考量以下問題:
XR軍事應用前期開發成本差異顯著,其中耗資220億美元分十年部署的IVAS系統屬最大規模項目。不過XR系統部署后可通過避免人員集中、實彈消耗及平臺損耗降低訓練成本。國會或要求獨立評估XR訓練與作戰應用的潛在收益(如認知過載風險)與成本節約空間,研判是否存在成本更低的替代方案。同時需獲取包含維護需求的XR系統全壽命周期成本預測。
部分XR應用(尤以獨立AR系統)已相對成熟,但更多項目仍處早期階段,面臨技術整合難度或部署測試延遲。國會或將持續追蹤XR系統技術成熟度以判定資金支持力度,并評估配套支撐技術的成熟度與資金保障狀況。
XR應用或對軍隊結構與人員配置產生多重影響:若顯著提升訓練作戰效能,可縮減訓練單位編制或降低總兵力需求(以更少兵力維持更高戰備水平);反之亦可能增加維護保障與網絡安全人員需求,甚至推高總體兵力規模。
分析人士警示XR系統存在網絡安全漏洞風險,可能遭受竊取數據或操控社交交互的“初始攻擊”。此類漏洞或使對手獲取高價值目標數據庫(含訓練數據、武器維護信息、圖像分類、地圖測繪等)及美軍位置情報。
若對手操控XR系統,可扭曲軍事行動協同的通用作戰視圖,導致人員裝備誤判(引發誤傷或平民傷亡),甚至奪取美軍無人系統控制權(如IVAS系統操控微型無人機執行ISR任務的功能)。美國會可要求聽取國防部XR系統網絡安全測試報告,并對存在重大漏洞的系統凍結撥款資金。
當前正值顛覆性技術劇變時代,“人工智能”(AI)領域尤為如此。盡管由商業部門開發且為其服務,人工智能顯露的軍事應用潛力正推動全球武裝力量開始試驗雛形階段的“AI賦能防御系統”。對率先充分理解人工智能、進而改革現有人本中心兵力結構并接納“AI作戰模式”的國家而言,或將獲得顯著的“先發制人”優勢。
澳大利亞國防學院探索了適用于近中期“AI賦能戰爭”的海陸空作戰概念。鑒于大量底層“窄人工智能”技術已在商業領域成熟發展,此舉并非純理論推演。當代人工智能的“通用屬性”意味著其初期應用將嵌入現有作戰層級結構,而非構建全新體系。
本文聚焦空中領域。為集中論述,嚴格限定于“防空作戰”范疇,避免擴展至聯合與聯軍作戰層面。即便如此,仍可探索激發未來思考與備戰準備的作戰概念。關鍵需認知:人工智能是其他技術的“激活劑”。其并非獨立作用體,而是與眾多數字技術協同運作——為這些技術注入某種形式的“認知能力”。
近中期內,人工智能的核心吸引力在于其快速識別模式、探測海量數據中隱藏目標的能力。在為移動系統賦予新型自主性的同時,AI將徹底變革戰場全域的目標感知、定位與識別能力,“戰場隱蔽性”將日益困難。然而人工智能并非完美:其固有缺陷包括“易受欺騙性”“系統脆弱性”“跨任務知識遷移障礙”及“高度數據依賴性”。
因此人工智能的核心作戰效能可概括為“探測與反制”。依托機器學習,AI在“高雜波背景”中識別隱藏目標的能力遠超人類且速度驚人;但另一方面,人工智能也易受多種手段欺騙——其卓越的目標探測能力缺乏穩健性支撐。
“探測能力”構建的起點是在敵方力量可能活動的陸海空天網全域最優位置布設大量低成本“物聯網”(IoT)傳感器。這一理念已在“綜合防空系統”(IADS)中得到部分實踐——通過地面雷達站鏈與“空中預警機”協同探測高低空目標。空戰中“AI賦能防御概念”主張大規模增補現有高成本、數量受限的傳感器部署方式,轉而采用海量具備AI功能的小型低成本地面及機載傳感器。
擴展型物聯網傳感器網絡中的小型單元可利用“邊緣計算”技術,將預處理數據經云端傳輸至融合中心并匯入指揮控制系統。此類微型傳感器雖可搭載主動短程雷達發射器,但受制于“供電瓶頸”而應用受限。更可行的方案是采用被動式物聯網傳感器,探測涵蓋聲學、紫外、紅外、無線電及雷達頻段的電磁頻譜信號。單個傳感器性能或許有限,但當數百個節點數據整合時,便可實現三維空間內的空中目標追蹤與識別。
地面防空物聯網傳感器通常采用固定持久部署,而“無人機”(UAV)搭載的傳感器續航時間可達數小時至一晝夜。新興物聯網技術(如“高空氣球”“微衛星”及“偽衛星”)有望大幅提升續航能力,這些平臺均可集成AI功能。
建設采用被動探測模式的大型物聯網傳感器網絡后,滲透飛行器必須規避雷達、數據鏈及通信等輻射源以防暴露。盡管如此,常規飛機排放的噪音、熱輻射及可視特征仍可能泄露行蹤。因此構建“深層次物聯網傳感器網絡”至關重要:當飛行器接近已知傳感器時或通過機動降低輻射(尤指前向輻射),但深層網絡仍可從側翼及后方探測到規避中的目標——即使其未直接進入主探測區。
AI實現的超大規模物聯網傳感器網絡將部分處理數據經云端輸送至融合設施,由AI執行深度解析。此過程可套用“觀察-研判-決策-執行”(OODA)模型:“觀察”環節AI既作用于各物聯網節點邊緣計算,也參與融合中心數據處理;“研判”階段AI在“作戰管理系統”中發揮核心作用,不僅生成近實時全景空情圖,還能預判敵機行動軌跡;隨后的“決策”AI層基于防空單元可用狀態,向人類指揮官提交按威脅等級排序的攔截目標清單、推薦跨域攻擊最優方案、行動時間節點及防誤傷措施,此時人類通過“人在回路”或“人在環上”模式保持深度介入;經人工批準后,最終“執行”環節由AI主導——自動分配武器至各目標并傳遞制導數據、確保友軍誤傷規避、確認打擊完成狀態、必要時下達彈藥補給指令。
隨著多款高性能無人機投入應用,開發具備“視距內空戰”能力、利用“人工智能”進行戰術決策的無人機,似乎已成為一項明確的工程任務。美國空軍(USAF)計劃在2024年重啟2020年“AI駕駛戰機對抗人類飛行員”的試驗——此次將采用“實體戰術戰機”而非模擬系統。實戰化、經優化的“AI賦能近距格斗無人機”可實現比有人戰機更“小型化”“輕量化”與“低成本化”;若執行防御任務,甚至無需掛載武器即可瓦解敵方空襲。
該無人機可由“指揮控制系統”指派,對敵機實施“攔截”“逼近”并啟動“格斗”。敵有人戰機因此被迫分心應對,“攻擊路徑”遭到干擾,進而暴露于其他有人作戰系統的打擊范圍。若敵機進行規避機動,“燃油消耗率”將激增,可能需提前撤離以返回遙遠的基地。
另一方面,“AI武裝戰斗機”可根據實際戰況,采用“人在環內”或“人在環上”模式運作。但武器掛載會帶來“工程設計難題”:引發“通信穩定隱患”、觸發“武裝沖突法律風險”并衍生“戰術顧慮”。綜合考量下,采用“鎖定-全程伴飛”模式的無人機更具優勢——該型無人機“鎖定”敵機后持續伴飛,實時“廣播”其航跡與詳細參數。
“AI戰斗機”可執行“戰斗空中巡邏”(CAP)或“地面待命攔截”(GAI)任務。CAP任務需要較大機體以保證有效“滯空時間”(同尺寸無人機滯空能力遠超有人戰機),但機體增大將加劇“設計”與“操作”復雜度。執行GAI任務時,無人機可設計得更輕巧(更接近導彈構型),例如美空軍“XQ-58A女武神”驗證機:從固定發射架升空,傘降回收,并可部署于“可移動貨運集裝箱”中。若GAI型AI無人機無需機場,將簡化“多層防空體系”構建流程,更能催生“分布式防空”等創新理念——在物聯網傳感器網絡內分散部署GAI無人機,由指揮控制系統遠程調度實施“快速反應攔截”,與CAP有人戰機“協同作戰”。此類無人機同樣無需武器掛載即可發揮效用。
關鍵在于,此類“AI賦能的綜合防空系統”需明晰“人機任務分工”:人類承擔“高層級認知功能”的決策職責(制定“全局作戰策略”、篩選及“排序目標”、批準“交戰”),AI則執行“低層級認知功能”(如“飛行器機動控制”與“格斗戰術實施”)。
AI的“探測功能”需輔以“欺騙功能”形成作戰效能。攻擊方需充分掌握目標及防御信息以確保打擊成功率。“AI賦能欺騙系統”可在物理戰場與網絡空間全域部署,旨在通過構建誤導或混淆態勢破壞敵方“探測效能”。此類系統還可融入“精密欺騙行動”,發揮協同效應。
廣泛分散的移動式“邊緣計算系統”通過發射可變保真度信號群,可生成復雜電子誘餌。雖可借助道路網絡部署“無人地面載具”模擬機動防空系統等特定功能,但依托“無人機平臺”部署可實現最優機動性。其戰術目標是在短暫攻擊期間遮蔽戰場態勢。
成本更高的方案是采用“無人機電子復制技術”——模擬大量防御戰機在目標區域各CAP戰位升空,營造“防御力量遠超預期”的假象,誘使敵方攻擊編隊因預判高戰損而撤退。“欺騙功能”還可與“被動防御措施”及“作戰路徑選擇”深度集成。機場通常在戰前提前建設,可針對性設計抗打擊能力。但現代“精確制導武器”削弱了“加固工事”的防御效果,“分散部署”成為優選方案。AI技術將使這一分散部署策略的可行性達到數十年來新高。
永久性機場周邊可設若干“臨時起降場”。此類場站設計使用壽命為數周至數月(遠低于永久機場的幾十年)。沖突期間,戰機可在永久機場與臨時起降場持續輪轉。這種機動將與“AI賦能欺騙行動”深度融合,旨在迷惑敵方決策——使其無法確定打擊目標,最終徒勞攻擊無戰機駐扎區域。該戰術通過強化“戰爭迷霧”,操控敵認知模式,精準削弱敵作戰效能。
敵反航空作戰可投入的戰機、“防區外武器”及彈道導彈數量有限。攻擊無戰機駐扎的機場既使有人戰機蒙受不必要損耗,又造成珍貴彈藥儲備浪費(短期沖突中不可補充)。“AI欺騙系統”與“物理分散部署”相結合,既可降低敵空襲效能,又能誘使敵方消耗有生力量。此類分散部署的傳統痛點是:多臨時機場運作戰機需在各點位“復刻后勤支援體系”,導致人力和資源成本激增。AI賦能系統可破解此困局——永久機場可通過“智能物流通道”聯接其大型倉庫與臨時起降場的耗材補給點,當前已有成熟AI技術應用于倉儲端。
現代化倉庫已具備四大特征:“庫存實時監測”“AI機器學習云端大數據物聯網實時訂購”“機器人揀貨”“載具自動轉運”。部分倉庫引入“按需3D打印”技術,滿足老舊設備備件的一次性需求,避免大量占庫。新建的“物流控制中樞”集成多源數字信息,運用大數據分析技術實現供應鏈(含運輸環節)全景實時可視化。同類技術可應用于耗材儲備設施管理。
在補給運輸通道層面,“AI智能物流”可采用“機器人卡車編隊行駛”模式(亦稱“集群隨行技術”):頭車由人類駕駛領航,多輛無人載具緊密跟隨。研發“無人化機場物流卡車”比陸軍補給車技術門檻更低——前者主要在勘測過的鋪裝道路上運行,并可依托GPS導航。
臨時起降場端可全面部署AI賦能系統。通過整合“人工智能”“機器學習”“大數據”“云計算”“物聯網”“自主運行”及“機器人技術”,此類基地能以遠少于現役編制的人員規模高效生成作戰架次:包含“自主加油裝彈”的可服役戰機機器人化保障成為可能;“AI預測性維護”將大幅減少計劃外維修頻次。機場可呈現“無人值守”狀態,由永久基地或異地“工程物流中心”遠程管控,甚至采用“可再生能源+儲能電池”實現半自主供能。
臨時機場的啟用設備或已預置完畢,戰時激活即可。另一種方案是預設基礎設施網絡,待“即插即用”系統與載具通過首輪卡車編隊運抵后,迅速接入機場“體系中的體系”。正如本次聚焦防空的討論所揭示:AI正如同現代版的“機器之魂”,深度滲透多數軍事裝備,勢將開辟空戰新紀元。鑒于空軍轉型常需數十年沉淀,推動這場“未來空戰革新”已刻不容緩。
參考來源:
1 Peter Layton, “Fighting Artificial Intelligence Battles Operational Concepts for Future AI-Enabled Wars,” Joint Studies Paper, No. 4, 2021, //www.defence.gov.au/.
2 Peter Layton, “Algorithmic Warfare: Applying Artificial Intelligence to Warfighting,” Air Power Development Centre, 2018, .
3 Steve Ranger, “What Is the IoT? Everything You Need to Know about the Internet of Things Right Now,” ZDNet, 3 February 2020, .
4 Maj Peter W. Mattes, USAF, “What is a Modern Integrated Air Defense System,” Air Force Magazine, 1 October 2019, .
5 Duncan Stewart et al., “Bringing AI to the Device: Edge AI Chips Come into Their Own,” Deloitte, 9 December 2019, .
6 Michael Spencer, “Pseudosatellites: Disrupting Air Power Impermanence,” Air Power Development Centre, 2019, .
7 Sarah Lewis, “OODA Loop,” TechTarget, June 2019, .
8 Chris Westwood, “5th Generation Air Battle Management,” Air Power Development Centre, 2020, .
9 Joseph Trevithick, “Navy Establishes First Squadron to Operate Its Carrier-Based MQ-25 Stingray Tanker Drones,” The Drive, 1 October 2020, ; and Kyle Mizokami, “Russia’s ‘Hunter’ is Unlike Anything in America’s Arsenal,” Popular Mechanics, 10 August 2020, .
10 Patrick Tucker, “An AI Just Beat a Human F-16 Pilot in a Dogfight — Again,” Defense One, 20 August 2020, ; and Secretary of Defense Dr. Mark T. Esper, “Secretary of Defense Remarks for DoD Artificial Intelligence Symposium and Exposition,” US Department of Defense, 9 September 2020, .
11 “Combat Air Patrol,” Wikipedia, ; and Lt Col Ernani B. Jordao, “An Investigation of the Combat Air Patrol Stationing in an Integrated Air Defense Scenario,” (BS Thesis, Brazilian Air Force Academy, 1971), .
12 Joseph Trevithick, “This Containerized Launcher for the XQ-58A Valkyrie Combat Drone Could Be a Game Changer,” The Drive, 16 October 2019, .
13 Col Daniel Javorsek, USAF, “Air Combat Evolution (ACE),” DARPA, .
14 Miranda Priebe et al., “Distributed Operations in a Contested Environment: Implications for USAF Force Presentation,” RAND Corporation, 2019, .
15 Stefan Schrauf and Philipp Berttram, “Industry 4.0: How Digitization Makes the Supply Chain More Efficient, Agile, and Customer-Focused,” Strategy& and PWC, 7 September 2016, .
16 “Oshkosh Defense Delivers Autonomous Vehicles,” Nation Shield, Military and Strategic Journal, 2 February 2020, .
17 Peter Layton, “Surfing the Digital Wave: Engineers, Logisticians and the Future Automated Airbase,” Air Power Development Centre, 2020, .
近年來,無人機已成為現代戰爭的標志性技術。從小型商用四旋翼飛行器到精密遠程系統,這些無人航空載具(UAV)正深刻重塑戰場形態。其低成本與易部署特性引發全球多國政府的高度關注。這一轉變在持續進行的烏克蘭戰爭中尤為顯著——無人機在情報搜集、目標鎖定及直接攻擊敵方裝備人員等環節發揮著核心作用。
烏克蘭戰場已成為各類無人機技術與反制手段的試驗場。
近期戰例是烏克蘭對俄實施的大規模無人機集群襲擊。數十架無人機經協同編隊深入俄羅斯領土(包括別爾哥羅德、韃靼斯坦及克拉斯諾達爾地區),同步攻擊煉油廠與軍事基礎設施。此舉不僅彰顯烏克蘭日漸增強的敵后打擊能力,更凸顯協同無人機集群構成的重大威脅。尤為重要的是,這標志著基輔方面戰術轉型,將無人機運用推向戰略前沿。
俄方當時宣稱通過電子戰系統與地對空導彈防御攔截了多數無人機。然而后續衛星圖像與開源情報證實:至少部分無人機成功突破防御并造成重大設施損毀。該事件暴露出同時偵測與壓制大量低空小型無人機的極端困難性。
而就在幾天前,據烏克蘭國防情報局向全球披露的戰報:烏方無人機襲擊摧毀了逾40架縱深部署于俄境內的軍用飛機。一位匿名烏克蘭高級軍官向美聯社透露,此次遠程打擊經18個月周密策劃,由總統澤連斯基親自督導實施。
澤連斯基表示,117架無人機從俄聯邦安全局(FSB)地方辦公室附近區域協同出擊。俄羅斯媒體發布的社交媒體畫面顯示,無人機從卡車貨廂的發射容器中升空,于6月1日同步襲擊多個軍用機場的41架軍機,包括A-50預警機、圖-95及圖-22M戰略轟炸機。俄軍此前曾使用圖-95與圖-22轟炸機對烏實施導彈打擊,A-50則承擔偵察與指揮職能。
據美聯社報道,烏克蘭國防情報局官員后續確認此次行動摧毀約34%的俄軍戰略轟炸機隊。俄羅斯國防部承認這些襲擊,并補充說明伊爾庫茨克地區(距烏4000公里)及北部摩爾曼斯克的空軍基地亦有飛機損傷與火災發生。
除直接攻擊外,無人機在前線其他領域同樣發揮關鍵作用。在烏克蘭東部戰場,俄烏雙方部署數千架第一人稱視角(FPV)無人機執行偵察與直接打擊任務。此類無人機常配備爆炸裝置,由佩戴視頻護目鏡的操作員引導實施“自殺式打擊”,可實現精準點殺傷。社交媒體近期涌現大量視頻,展現FPV鎖定孤立無援的單兵實施絕殺的場景。阿夫迪夫卡與巴赫穆特周邊戰事的影像資料還證實:這些裝置被用于癱瘓坦克、摧毀掩體及襲擾步兵單位。
烏克蘭無人機部隊精通商用無人機改裝技術,并能協調廣闊戰線的協同打擊。作為回應,俄軍重點投入電子對抗手段(包括信號干擾與欺騙)以破壞無人機通信導航。
但前線還存在其他限制無人機效能的應對方法。
鑒于現代作戰中無人機應用激增,據報道全球軍隊正研發三類反無人機技術與戰術:動能、電子與程序化應對手段。
電子干擾是最廣泛使用的無人機壓制手段,涵蓋GPS干擾、射頻干擾及信號欺騙。俄羅斯部署“克拉蘇哈”(Krasukha)及“驅離”(Repellent)系列移動式電子戰系統,用于保護關鍵資產并破壞無人機行動。但電子對抗并非萬全之策:多數商用無人機預編程“自動返航”或“跟隨”功能,信號中斷時仍可觸發;現代集群攻擊常采用不依賴持續操控的自主無人機,使其抗干擾能力顯著增強。
導彈、高射炮乃至激光器等傳統防空武器可摧毀無人機,但對高速小型目標常顯成本過高或響應遲緩。這催生了以色列“鐵光束”(Iron Beam)激光系統及美制“郊狼”(Coyote)攔截無人機等專用裝備的發展熱潮。在烏克蘭戰場,雙方更多采用簡易應對手段:包括隨手武器射擊,甚至使用霰彈槍擴大彈著散布面。此外,雷達制導自行高炮(如德國援助的"獵豹"(Gepard)系統)經證實能有效攔截低空無人機。
除硬件方案外,前線部隊通過戰術調整降低無人機威脅。烏軍精于運用偽裝、煙霧及誘餌欺騙操作員,部隊機動常選擇低能見度時段,單位頻繁轉移陣地規避偵測。有報道稱甚至采用充氣假目標誘導攻擊火力,掩護真實坦克、裝甲運兵車等裝備。上述措施配合便攜式雷達、聲學傳感器及人工瞭望哨使用,可預警來襲無人機,為地面單位爭取反應時間或尋求掩體。
北約等軍事聯盟正投資構建分層反無人機系統,整合傳感器、電子戰工具、動能攔截武器及人工智能驅動的指揮系統。其核心目標可概括為:在不同環境中實時偵測、追蹤并摧毀無人機。
由此,定向能武器(如激光與微波系統)等新興技術有望提供針對無人機集群的性價比防御方案——至少在相對開闊區域適用。英國陸軍已測試能精準擊落無人機的激光武器,其附帶損傷可控制在最低限度。
然而迄今尚無單一反制手段被證實完全有效,尤其針對集群式自主無人機。隨著無人機技術日益精密與普及,軍事規劃者必須采用融合技術、戰術及訓練的多層防御策略,以有效應對這一漸長的威脅。烏克蘭戰爭不僅暴露全球頂級軍隊的脆弱性,更在決定未來戰爭走向的關鍵領域加速了技術創新。
參考來源:intellinews
烏克蘭大規模使用無人武器平臺反映了現代戰爭的快速演變,由于反制措施的出現,戰術優勢往往轉瞬即逝。隨著烏克蘭增加遠程無人機的生產,這一激增凸顯了烏克蘭在防御中對無人系統的日益依賴。戰爭經驗表明,無人系統現已成為軍事戰略不可或缺的組成部分,其成功依賴于適應性與創新。
2024年底,烏克蘭總統澤連斯基宣布計劃在2025年生產近30,000架遠程無人機。2024年10月,烏克蘭國防部報告稱,十個月內已簽訂160萬架各型無人機采購合同,總價值超1,140億格里夫納(約合25.5億歐元)。該數字涵蓋偵察無人機、遠程打擊無人機、第一人稱視角(FPV)無人機等類型,但并未完全體現全年采購總量——安全局、國民警衛隊、內務部等機構另有獨立采購合同,且部隊與志愿組織直接通過公開市場購買后移交軍方。據國防部第一副部長伊萬·哈夫里柳克透露,自2025年初以來,烏軍每月接收約20萬架無人機(含FPV),較2024年一季度月均2萬架的接收量實現驚人十倍增長。
盡管數據亮眼且較2024年顯著進步,但大規模作戰環境下對各類無人機的巨量需求將持續存在。因此,即使當前采購規模可觀,烏軍仍可能繼續擴大無人機采辦。俄羅斯在攻擊遠離前線的烏克蘭城市(對平民施加心理壓力)時,也更多采用單向攻擊(OWA)無人機而非導彈。俄方同樣在提升無人機產量(包括"天竺葵"與誘餌無人機),因其戰略航空力量壽命有限,且彈道導彈成本遠高于無人機,極少用于精確打擊。
圖:烏克蘭無人系統的發展
俄羅斯的單向攻擊無人機持續升級,戰術運用也不斷革新。俄制造商測試反電子戰(EW)系統手段以增強抗干擾能力,同時提升速度與機動性參數,并試驗大當量炸藥、多類型彈頭與其他裝備的載荷配置。然而,國際社會仍能制約俄羅斯本土無人機生產升級,因其零部件高度依賴進口。烏克蘭的情況則不同,因其需實施500公里甚至超過1000公里的打擊——特定類型無人機專為此設計,因烏軍目前缺乏其他可覆蓋此射程的武器。
2024年的關鍵趨勢是雙方戰線各類無人系統數量顯著增加。當前階段,無人機已能幾乎每日攻擊俄羅斯邊境及縱深1500公里內的煉油廠、國防企業與軍事設施。烏克蘭2024年實現質變突破:2022年未實施此類打擊,2023年遠程攻擊鮮有無人機參與。2024年11月6日夜,烏軍襲擊距烏1500公里的里海艦隊卡斯皮斯克基地,擊中多艘導彈艦——此前最遠打擊記錄為1200公里(包括韃靼斯坦共和國國防工業目標)。烏軍總司令亞歷山大·瑟爾斯基宣稱打擊范圍已達1700公里。整個2024年,烏軍摧毀俄境內377個目標,多數為無人機直接攻擊所致。此類打擊在2025年仍將對俄構成重大挑戰,因其無法在廣袤領土全面部署有效防空。數據印證無人機突襲成效:至2024年底,俄煉油產能因無人機攻擊跌至12年來最低點。
當前烏克蘭約有500余家企業從事無人機生產,其中240余個項目已獲國防部認證。獲準向烏軍供機的企業數量持續增長。自2022年2月全面戰爭爆發以來,烏方已研發多類新型無人機,包括大型攻擊多旋翼機、中國"御"系列無人機仿制型號、海上無人系統("海軍無人機")及用于補給撤離的無人地面載具(UGV)。烏克蘭系統的獨特優勢在于可即時投入實戰檢驗,發現問題后迅速升級改進,這使得其產品在國際市場具備潛在競爭力——以抗電子戰能力與實戰驗證的升級能力見長。
圖:Shark-M無人機
明星機型解析
烏克蘭無人機型號體系令人矚目,若干明星機型尤為突出。全面入侵前,烏克蘭已生產"萊萊卡-100"等偵察/攻擊無人機。該型機由Deviro公司2017年設計,可在強電磁干擾與GPS拒止環境下持續飛行4小時,覆蓋100公里范圍。2024年,烏克蘭特種系統公司(Ukrspecsystems)推出的"鯊魚"偵察無人機投入實戰,抗干擾性能突出,偵察半徑達80公里。其改進型"Shark-M"航程擴展至420公里,留空時間增至7小時。該公司PD-2無人機兼具偵察與打擊能力,可攜帶3公斤爆炸載荷。烏克蘭航空系統公司研制的"瓦爾基里"戰術偵察無人機憑借隱身特性廣受好評。
實戰驅動創新
戰場現實迫使制造商聚焦開發戰前未有的單向攻擊(OWA)無人機。此類機型現可實現1000公里以上高精度打擊,典型代表包括:
? 安東諾夫An-196"柳特伊"無人機:精準投送爆炸載荷至1000公里外目標
? "魯巴卡"小型OWA無人機:與"柳特伊"協同實施集群突防,單次攻擊可動用超百架次混淆俄防空系統
圖:Shark-D無人機
高光作戰案例
UKRJET公司研制的"海貍"遠程游蕩彈藥因襲擊俄煉油廠與莫斯科等行動聲名鵲起。公開視頻顯示,烏軍還將A-22"狐蝠"輕型運動飛機改裝為無人打擊平臺,可攜帶200公斤載荷實施1200公里精確打擊。此類改裝機的未來發展方向包括可重復使用化改造,使其具備投擲250公斤FAB-250航彈后返航能力。若成功實施,此類打擊將進一步削弱俄戰略航空戰力與能源產能。
烏克蘭研發的無人系統具備顯著的現代化升級潛力。2024年,烏克蘭國防部簡化無人機認證測試流程,周期從六個月壓縮至一個月以內。通過在戰斗區域直接測試無人機,技術開發與升級周期得以大幅縮短。
無人系統發展的下一步可能涉及:增加無人地面載具(UGV)數量、引入人工智能功能、提升無人機技術特性、開發反無人機攔截器。
例如,FPV無人機作戰半徑持續擴展。早期商用無人機航程僅5公里,現借助中繼器增至約20公里。由于前線電子戰(EW)密度激增,2024年光纖制導無人機使用量上升(俄軍增幅顯著),2025年烏軍或擴大列裝規模。此類無人機主要任務包括攻擊敵方干擾器,為無線電控無人機開辟作戰空域。
烏軍還首創無人機攔截戰術,用于對抗俄軍攻擊與偵察無人機。攔截型無人機飛行時速可達280公里,攜帶0.5公斤爆炸載荷;甚至采用低成本攔截方式——如用木棍撞擊目標螺旋槳。此類方法成本遠低于傳統防空導彈。烏方正尋求國際合作,例如"Brave 1"創新項目測試德國"泰坦"攔截無人機(時速300公里)。制造商計劃為其加裝機器視覺自動瞄準系統,并愿與烏克蘭開發者持續合作。
圖:授權在烏克蘭武裝部隊使用的Gulliver UGV
繼黑海無人艇(如"馬古拉V5")成功作戰后,2025年無人化趨勢將向陸域擴展。烏軍UGV將更多用于補給、布雷/掃雷、醫療后送,以及搭載機槍、反坦克導彈或爆炸載荷實施火力支援。2024年11月,烏克蘭國防部與"Brave1"平臺測試100臺UGV,預計近期列裝部隊。
結論
烏軍無人平臺的發展與應用揭示現代全面戰爭下戰場的快速演變。由于反制措施加速涌現,生產與認證周期被極致壓縮,技術優勢轉瞬即逝。對抗雙方持續尋求新方案,導致技術競賽隨沖突延長不斷加速。
戰爭經驗表明,無人平臺已成為現代戰爭不可或缺的組成部分,相關技術將深度融入軍事條令與戰略。制勝關鍵在于快速適應與創新,未來將更依賴人工智能整合、增強自主性與高質通信協同。
現代戰爭形態正經歷深刻變革,其核心驅動力之一是無人機系統(UAS)的廣泛擴散。從精密偵察平臺到改裝攻擊型商用四軸飛行器,這類曾屬技術先進軍隊專屬的裝備,如今已遍布全球戰場。無人機提供的持續監視、精確打擊乃至集群協同作戰能力,構成復雜非對稱威脅。因此,發展并部署高效反無人機技術(C-UAS/C-UAV)已成為保護空域、人員與關鍵資產的戰略競賽核心。
無人機威脅的崛起源于多重因素。首先,可獲取性與低成本使空中能力"民主化"。商用現貨(COTS)無人機價格低廉,可簡易改裝搭載手榴彈或小型炸藥等臨時彈藥,使非國家行為體、叛亂組織與恐怖集團獲得與正規軍相當的空中打擊能力。
其次,無人機具備無與倫比的通用性。小型無人機是理想的情報、監視與偵察(ISR)工具,可提供曾需昂貴大型裝備才能實現的實時戰場感知。它們能隱蔽滯留、引導炮火或追蹤敵軍動向。大型無人機則扮演精密打擊平臺或電子戰工具角色。"游蕩彈藥"或"神風無人機"的出現進一步模糊偵察與直接攻擊的界限——這類裝備可自主搜索目標后俯沖自毀攻擊。
第三,小型無人機的探測與追蹤具有天然難度。其低空飛行特性、微小雷達截面、微弱熱信號及靜音操作,可規避多數針對大型高速飛行器設計的傳統防空系統。集群攻擊的可能性加劇挑戰——大量無人機通過數量壓制突破防御。近期烏克蘭與中東地區的沖突清晰展現了無人機的毀滅性效能及反制措施的迫切需求。
反無人機技術的必要性體現于多層次。其核心在于部隊防護——無人機對前線士兵、前進基地、運輸車隊及關鍵基礎設施構成直接致命威脅。若無可靠反制手段,士兵將暴露于持續空中監視與突襲之下,士氣與作戰效能將受重創。
除直接威脅外,反無人機技術對維持作戰安全(OPSEC)至關重要。敵方ISR無人機可暴露部隊位置、動向、補給線與戰術意圖,剝奪突襲優勢并增加己方傷亡。壓制此類ISR平臺是保持戰術優勢的關鍵。
反無人機技術還確保機動自由度。無人機的持續威脅會限制部隊移動,迫使采用可預測行動模式或高強度偽裝,從而遲滯行動節奏并妨礙任務達成。有效反制手段可恢復部隊信心,提升作戰靈活性。此外,保護高價值資產、指揮中心、后勤樞紐乃至民用關鍵設施免受無人機攻擊,亦是其核心職能。
有效反無人機系統的開發涉及多階段流程,通常稱為"殺傷鏈"——即探測、追蹤、識別與摧毀。
探測環節:常為最具挑戰性階段。鑒于單一傳感器無法應對全類型無人機,通常采用分層多傳感器融合方案:
· 雷達系統:專為捕捉低雷達截面、慢速移動的小型目標設計。
· 射頻(RF)傳感:偵測無人機與操作者間的通信鏈路。對多數商用無人機有效,但對預編程路徑或加密信號傳輸的自主無人機效果有限。
· 光電/紅外(EO/IR)攝像頭:通過可見光與熱成像進行目視識別與追蹤,晝夜適用。
· 聲學傳感器:捕捉無人機螺旋槳聲紋特征,適用于短距離探測。
追蹤與識別:潛在目標被探測后,采用融合人工智能與機器學習(AI/ML)的算法整合多傳感器數據,確認目標屬性(區分無人機與鳥類等)、評估飛行軌跡并判定威脅等級。
攔截/摧毀:確認敵意無人機后,可啟用多種"效應器":
· 動能解決方案:物理摧毀或癱瘓無人機。包括反火箭炮與迫擊炮系統(C-RAM)、速射炮、專用空爆彈藥、小型制導導彈、發射網彈或攔截無人機。
· 電子戰(EW)/非動能解決方案:無物理接觸式干擾。適用于避免附帶損傷的環境。手段包括:射頻干擾、信號欺騙/劫持(接管或偏轉無人機控制/GPS信號)、定向能(DE)武器——高功率微波(HPM)燒毀電子元件或高能激光(HEL)物理損毀/致盲傳感器。
盡管技術快速進步,反無人機領域仍面臨重大挑戰。"成本交換比"是核心關切——使用昂貴導彈擊落廉價無人機往往不可持續。無人機技術的快速迭代迫使反制系統必須持續進化。應對依賴射頻鏈路的集群攻擊與全自主無人機仍具極高難度。此外,在城區或民用區域部署效應器(尤其是動能武器或強干擾裝置)需審慎考量附帶損傷、空域管制規則與交戰原則。
反無人機技術的未來在于更高度的集成化、自動化與創新。人工智能與機器學習(AI/ML)將在威脅快速探測、分類與優先級判定(特別是應對集群攻擊)中發揮關鍵作用。隨著技術成熟,定向能武器(尤其是激光)將實現光速攔截并降低單次打擊成本。跨平臺與單位的傳感器數據共享網絡化系統將構建更全面、更具彈性的反無人機防護盾。具備自主獵殺能力的專用反制無人機研發亦成新興領域。
無人機系統的擴散已不可逆地重塑現代戰場。反無人機技術不再是邊緣能力,而成為全球軍事與安全機構的必備核心能力。精密探測、追蹤與攔截機制的持續發展,標志著奪回低空制空權、抵御空中威脅升級的關鍵努力。這場技術軍備競賽對保障人員安全與21世紀復雜沖突中的作戰勝利至關重要。
參考來源:americangrit