亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

自2008年以來,水面作戰軍官學校(SWOS)一直在使用一個360度反饋計劃來指導水面作戰軍官(SWO)的表現和領導能力。然而,目前使用的評估工具是基于為企業界設計的商業現成模型,并不是為水面作戰軍官群體量身定做的。鑒于最近發生的船舶碰撞事故,海軍認識到關鍵的決策技能和領導力對SWO來說是至關重要的,一個量身定做的360度反饋計劃可以更好地支持他們的領導風格的發展。此外,目前的評估并沒有提供關于水面作戰軍官有效領導和管理所需的核心能力的洞察力,正如水面作戰軍官要求文件(SWORD)中所定義的那樣。因此,海軍可以通過改進360度反饋的方式,并將其作為更大的專業發展職業道路的一部分,在2019年,海軍水面部隊指揮官指示對目前的360度反饋進行升級,以更好地適應水面社區的需要。

360度反饋是一種評估方法,它從多個來源收集關于一個人的行為的信息,如主管、同僚和下屬。它可以提供有價值的信息,從多個角度識別和解決不足之處,并發揚當前的優勢,這使得它比標準評估更有利。研究表明,這種形式的反饋可以提高績效,美國海軍在2007年采用了自己的版本,用于軍官的領導力發展。在水面部隊中,這種評估是由初任軍官(DIVO)和部門主管(DH)在其職業生涯中進行的,評估者由高級軍官、DIVO或DH的同事以及高級和低級士兵組成,以收集對其領導能力的從上到下的全面了解。

海軍使用的評估是由全球組織咨詢公司Korn Ferry提供的,完全圍繞領導力發展的概念設計。該評估包含總共68個問題,分為14種技能和一種混合技能。這些技能被進一步細分為四個關鍵的領導力領域:思想、結果、人員和個人領導力。

這項研究的目的是協助水面作戰軍官司令部(SWOSCOM)評估和改進他們的360度反饋計劃。雖然評估是為企業界設計的,而不是為水面社區設計的,但評估的某些方面可能仍然有助于保留。該研究探討了不同的評估員如何評估個人,并確定了對整體評估有效或無效的問題和技能,應考慮保留或修改。通過將無監督和有監督的機器學習方法,以K-means聚類和隨機森林的形式,應用于100個隨機選擇的360度反饋評估,本論文的目的是幫助奠定一個框架,以開發一個更新的評估工具,為水面社區定制評估問題。

數據被分成每個評估者的五個主要數據集: 自我、老板、同行、你所領導的人(PYL)和其他老板(OB),并進行了初步的探索性數據分析(EDA),以初步了解這些回答。EDA顯示,平均而言,自我評分者比其他評分者對自己的評價更嚴格,PYL對他們所評分的個人評價最高,而老板、OB和同伴評分者對個人的評價都差不多。我們還研究了所有測評者對每個問題的回答中的差異,發現個人領導力下的技能,即建立信任(ET)和展示適應性(SA)的差異最小,發展他人(DO)的技能和整體(O)的混合技能的差異也是如此。所有評分者都提供類似回答的問題幾乎沒有提供建設性的反饋,應該考慮刪除或修改以幫助持續發展。

在EDA之后,數據被準備用于進一步分析。對數據集進行了配對方差分析(ANOVA),以確定被評估者對自己的評價和評估者對自己的評價之間的差異是否具有統計學意義。檢驗的結論是,被評估者和PYL評分者的評分與其他所有評分者的評分在統計學上有顯著差異,而同輩人、老板和OB評分者之間的差異則沒有。因此,我們決定將同儕、老板和OB的數據集合并為一個,對每個問題的三個回答取平均值。接下來,使用Cronbach's alpha可靠性測試,根據Korn Ferry 360度評估中定義的技能對數據進行縮放。這樣做有三個原因。首先,將數據的維度從68個變量減少到15個,有助于防止模型的過度擬合,并提高我們結果的可解釋性。第二,使我們能夠測試技能的內部一致性,并確定降低這一可靠性的問題,標志著該問題與其他問題的關系不強。最后,有了代表技能的單一分數,我們能夠更好地測試該技能在評估中的有效性。

隨著數據的縮放,K-Means聚類法被用來對每個數據集中的個體進行聚類,從而可以確定聚類之間的相似性,并在隨機森林分析中使用這些聚類分配作為分類。聚類產生了三個與個體評估相關的群組。被評估為高的個體被歸為一組,被評估為低的個體被歸為一組,而那些介于兩者之間的個體則是最后一組。通過比較高分和低分群組之間的距離,可以初步了解技能的有效性,距離越大,越有效,反之亦然。培養開放式溝通(FOC)、建立關系(ER)和ET是每個評分者在群組之間距離最小的技能。相反,戰略行動(AS)、顯示動力和主動性(SDI)和合理決策(MSD)的距離最大。

分類隨機森林表明,MSD、FOC和Manage Execution(ME)對識別一個人是否屬于高于平均水平的集群影響最大。顯示動力和主動性(SDI)、AS、ER和ET的影響最小。回歸隨機森林的結果略有不同,評估SDI和Build Realistic Plans(BRP)的影響最大,而Promote Teamwork(PT)、FOC和ER的影響最小。需要注意的是,回歸模型假設O是指對績效的全面衡量。事實可能并非如此,該模型可能受到了數據中的偏差的影響。當兩個隨機森林的結果被平均到一起時,排名最高的技能是MSD、FOC和SDI。PT、MO和AS的排名最低。

本論文的目的是幫助SWOSCOM重新評估當前的360度反饋評估。這項研究并不是要否定任何技能或問題,而是要確定評估中那些對發展有效的部分,或者那些會從修改或截斷中受益的部分。我們的發現是,MSD、SDI和FOC的技能在評估中得到了有效的應用;然而,評估可能受益于對問題的修改,以便在個人和評估者之間產生更多的批評性反饋。MO在我們的模型中沒有影響,但卻是唯一在所有問題中產生高差異的技能,并且可以在海軍中應用。因此,評估可能會從保留這些概念中受益,但將該技能與其他部分相結合。PT、AS和ER的技能被認為是無效的,因為它們在模型中的表現和評分者之間缺乏差異性。此外,應該考慮修改或刪除在縮放過程中被刪除的問題。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

作為戰備的一個關鍵原則,重要的是要知道--目前的跟蹤和對未來各種時間框架的預測--衡量和了解單位水平的熟練程度和個人職業的熟練程度。作為一個例子,最近在試圖評估水面艦艇軍官的熟練程度時特別強調了這一點。這項研究致力于開發一種知識管理(KM)方法來進行這種測量和理解,尋求實現當前的跟蹤和未來的預測。知識管理方法將被開發出來,以提高質量設計的特點,如直觀的操作、自然的數據輸入、敏捷性和全球覆蓋率。

海軍水面作戰部隊(SWO)群體提供了一種重要的、復雜的能力,以應對世界各地日益動態和不可預測的威脅。在水面作戰群體中的有效表現需要一套獨特的技能和能力,這些技能和能力的核心是在海上艦艇上的生活和工作。這種技能和能力一般都會以可預測的方式增長(特別是通過培訓和經驗),海軍執行既定的資格認證程序,以幫助確保其人員在負責船上的關鍵工作之前就已經熟練掌握。

然而,與任何人類的努力一樣,不同的人擁有不同的動機水平,每個人學習新技能的速度也各不相同。此外,鑒于世界各地的水面作戰行動的持續高節奏,加上SWO的培訓時間縮短,SWO的海員技能和類似的關鍵技能有很大一部分是在航行中學習的(特別是通過在職培訓[OJT]、指導[UI]、個人資格標準[PQS])。因此,我們很難事先知道船上每個人的熟練程度,或者推而廣之,船公司和船員在開航前的準備程度。此外,并不是所有的船舶(即使是同級別的)都有相同的配置和操作,所以在一艘船上的OJT和經驗不一定能100%轉移到另一艘船上。正如最近的綜合審查(艦隊司令部,2017年)所指出的,諸如此類的因素可能會導致有問題的航海技術,無效的溝通,甚至是可避免的海上碰撞事故。

作為戰備的一個關鍵原則,重要的是要知道--跟蹤目前的情況和預測未來的各種時間框架--衡量和了解單位水平的熟練程度和個人職業的熟練程度。本研究致力于開發一種知識管理(KM)方法來進行這種測量和理解,力求實現當前的跟蹤和未來的預測。知識管理方法的開發將提高質量設計的特點,如直觀的操作、自然的數據輸入、敏捷性和全球覆蓋。

當按照這些思路來處理一個項目時,重要的是保持對知識的動態和人類本質的關注(Nissen,2014)。知識是不斷運動的(例如,當個人學習和練習個人技能時,當團隊學習和練習共同工作時,當船員遇到并與他人分享經驗時)。這尤其涉及到各種豐富的、基于經驗的、隱性的知識,這些知識是有效的航海、艦橋溝通、戰術行動和船上領導所需要的。因此,除了在每個時間點保持靜態理解外,還必須識別、測量、跟蹤和預測知識的流動(即知識流)。

知識也是無形的,不可見的,而且對量化有抵觸,這使得測量成為一個持續的挑戰。事實上,我們主要是通過人們(以及團體和整個組織)的行動和表現,來深入了解促成這種行動和表現的基本知識。此外,知識并不代表一個單一的概念:不同種類的知識(例如,隱性的、顯性的、個人的、團體的、創造的、應用的)具有質量上不同的屬性和行為,因此對行動和績效的影響也不同(Nissen,2006)。

在這項研究中,我們將知識流理論(KFT;例如,見Nissen,2014)、分析、可視化和測量(例如,見Nissen,2017;Nissen,2019)方面的技術水平--除了最近關于SWO社區的研究(例如,見Nissen & Tick,2018)--用于衡量和跟蹤SWO的能力和準備情況。我們也很謙虛,理解與SWO社區專家合作的重要性,以挖掘詳細和相關的洞察力和經驗。因此,這項工作結合了關于知識動態和測量的一些最佳思維,以及對水面戰能力和準備狀態的一些最佳理解,以創建一個綜合的、實用的、專注于水面戰的努力。

這導致了四個主要的研究問題:

問題1:什么是有助于個人和單位準備狀態的關鍵因素?

問題2:如何測量、跟蹤和預測這些關鍵因素?

問題3: 什么樣的準備狀態知識和信息是需要直觀而可靠的評估的?

問題4:什么樣的架構可以支持測量和理解的知識管理方法,實現當前的跟蹤和未來的預測,并提高質量設計的特點,如直觀的操作、自然的數據輸入、敏捷性和全球覆蓋?

這些研究問題是通過下面概述的四步法進行的。其結果增加了我們對識別、測量、跟蹤和預測水面戰熟練程度和準備情況的理解和能力。然而,顯然在一項研究中能完成的只有這么多,而本研究也不例外。然而,我們需要從某個地方開始,并開始制定哪怕是一個初步的方法和一套概念、構造和結果,作為一個隱喻的基礎,我們和其他研究人員可以在此基礎上進行研究。

付費5元查看完整內容

美國陸軍網絡部隊的技能和能力在其創建后的十年里得到了增長。本文重點介紹了陸軍網絡任務部隊部分所需的結構性變化,這些變化將使其繼續增長和成熟,因為陸軍過去的組織和結構性決定對當前和未來的效率和效果造成了挑戰。對當前形勢的評估強調了軍事領導層必須解決的領域,以使陸軍的網絡部隊繼續發展以滿足多域作戰的需要。

訓練和裝備一支能夠在新領域開展行動的新軍事力量是一個反復的過程。美國上一次開始這樣的努力是在二十世紀初,航空部隊的誕生和空域的出現。戰術、部隊結構和利用新能力的戰略是在軍事航空業建立后發展起來的,但被當時缺乏危機感的情況所界定和限制。第二次世界大戰迫使空軍迅速成熟,并導致了美國陸軍航空隊的建立,這是一支為應對空域挑戰而設計的有凝聚力的戰斗部隊。與陸軍航空隊一樣,陸軍的網絡部隊正在達到成熟的程度,擁有切實的能力和針對對手的作戰經驗,并將受益于評估先前的組織和人事決定的影響,為多域作戰做準備。

對軍事網絡的重大和復雜的入侵為美國網絡司令部(USCYBERCOM)的成立提供了動力,并使網絡空間與空中、海上、陸地和太空一起成為作戰領域。陸軍和國防部(DoD)已經在建立該領域的能力方面取得了重大進展。從部隊結構的角度來看,主要的亮點包括:

  • 在2010年建立美國陸軍網絡司令部(ARCYBER);
  • 通過在2011年創建第780軍事情報旅(網絡)來組建一支進攻性網絡部隊;
  • 在2014年創建網絡保護旅(CPB),以容納防御性部隊;
  • 在2019年建立第915網絡空間戰營(CWB),以滿足戰術網絡空間電磁活動的要求,以及所有網絡任務部隊(CMF)小組;
  • 在2018年實現全面作戰能力。

在人事方面,陸軍在2014年成立了網絡部,并在2018年整合了電子戰。最近,陸軍正式確定了網絡空間能力發展官員/準尉軍事職業專業(MOSs),以提供設計和創建特定網絡空間能力的有機能力。

從理論到培訓再到組織,該部門和網絡單位不得不確定需求,進行試驗,并制定解決方案,以滿足不斷變化的網絡空間行動的需求。在這篇文章中,我們研究了與兩個最初的部隊結構決定相關的挑戰,并提供了克服這些挑戰的考慮。

首先,當陸軍創建其網絡部隊時,進攻性和防御性網絡行動被隔離在兩個不同的獨立旅內。歷史上的分界繼續存在,并帶來了意想不到的后果。盡管創建了一個新的分支和軍事職業專業,但將進攻性網絡行動(OCO)和防御性網絡行動(DCO)分開的組織決定對人員和資源產生了負面影響。

其次,這些單位有復雜的指揮系統,有獨立的行政控制(ADCON)和作戰控制(OPCON)關系。目前,網絡小組的作戰指揮與小組的行政和領導不一致,包括人員評級、財產問責、統一軍事司法法典的權力和指揮本身(例如,連長跟蹤網絡小組的訓練和醫療準備,而小組負責人負責日常運作)。這些復雜的問題造成了混亂和驚愕,阻礙了統一的努力。

雖然這些組織決定是經過深思熟慮的,也是出于行動的需要,但它們阻礙了陸軍網絡部隊內部的統一行動,造成了組織和行動上的損失。整個聯合網絡社區正在進行反省。隨著所有的CMF小組最近實現了充分的操作能力,美國網絡司令部正在評估其目前的規模,并要求陸軍和空軍派遣更多的小組。為了給網絡空間帶來更統一的方法,空軍通過重新指定和重新分配第67網絡空間聯隊下的幾個單位來重新調整其內部組件的結構和組成。現在是重新審視陸軍內部結構以更好地支持網絡空間行動的理想時機。如果陸軍忽視了過去因需要而做出的決定的影響,而不重新評估其有效性,那將是一種失職。陸軍必須在網絡部門內部推動更大的團結,使該組織作為一支有效的網絡空間戰斗力量繼續前進。

付費5元查看完整內容

摘要

這項工作探討了使用人工智能(AI)來加強海軍戰術殺傷鏈。海軍行動對水兵提出了很高的要求,要求他們在與艦隊指揮結構協同操作各種作戰系統的同時,保持對態勢的認識,執行任務,并為沖突做好準備。海軍行動由于涉及到武器的使用而變得更加復雜。涉及武器使用的一系列戰術過程和決策被稱為殺傷鏈。一個有效的殺傷鏈需要識別和了解威脅,確定行動方案,執行選定的行動,并評估其效果。殺傷鏈是一個特別緊張的戰術行動類別,因為它們必須在有限和不確定的知識下,在關鍵和苛刻的時限內,依靠各種先進的技術系統,在高度動態和變化的環境中實施,并造成嚴重后果。海軍正在研究人工智能作為一種新興技術,通過減少不確定性、提高決策速度、加強決策評估來改善殺傷鏈行動。本文介紹了對人工智能方法在支持海軍戰術殺傷鏈的特定功能方面的功效評估。

引言

海軍作戰是動態的,在沖突期間,它們變得高度復雜。在海洋環境中與作戰人員團隊一起操作各種先進的技術系統(包括艦艇、飛機、傳感器、通信系統和武器),建立了一個具有挑戰性的行動基線。在沖突或危機情況下,行動的節奏加快,并可能變得非常不穩定;對形勢的認識和對戰斗空間的了解充滿了不確定性;有效的決定對任務的成功至關重要,并會帶來沉重的后果。

一場涉及武器交戰的海軍悲劇是1998年美國海軍 "文森 "號巡洋艦發射的地對空導彈擊落了商用飛機空客A300,機上290名乘客全部死亡(Pasley,2020)(如圖1所示)。這場悲劇涉及到壓力下的時間關鍵性決策(Johnston等人,1998)。

圖1.美國海軍文森號從甲板上發射導彈。

這一事件代表了海軍行動中決策的復雜性,并特別強調了觀察-定向-決定-行動(OODA)循環中的挑戰,這是由約翰-博伊德在1950年代開發的行動活動模型(瓊斯,2020)。人為錯誤、人類認知的局限性和海軍行動固有的決策復雜性導致OODA環路的挑戰,更具體地說,是殺傷鏈過程的挑戰(馮-盧比茨等人,2008,Szeligowski,2018)。殺傷鏈功能是涉及使用武器系統的戰術活動和決策。一個有效的殺傷鏈需要正確設置和使用艦載傳感器,識別和分類未知的接觸,根據運動學和情報分析接觸意圖,認識環境,以及決策分析和戰爭資源選擇(O'Donoughue等人,2021,史密斯,2010,趙等人,2016)。這項研究源于尋找方法來支持水手和作戰人員以及他們在海軍行動中必須做出的經常是復雜的決定。

最近在人工智能和先進數據分析方面的進展導致了海軍的研究,以確定如何利用這些方法來支持廣泛的海軍應用。正在研究人工智能方法在海軍后勤、任務規劃、物理安全、自主系統和網絡安全方面的潛在應用(Heller,2019,Mittu和Lawless 2015)。

在海軍研究使用人工智能方法的過程中,殺傷鏈是另一個備受關注的主要應用。概念性研究提出將人工智能用作認知助手和人機協作(Iversen和DiVita,2019年;Ding等人,2022年;Johnson 2019年;Grooms,2019年;Albarado等人,2022年)。使用人工智能從多個來源的數據融合中提取知識和作戰環境的情況意識的研究正在成熟(Zhao等人,2018)。

這項研究著眼于整個海軍戰術OODA環,以評估使用人工智能來改善每個特定的殺傷鏈功能。圖2顯示了海軍海上戰術領域的概念圖,作為利用人工智能方法和技術的重點。該圖用軍事術語描述了殺傷鏈OODA循環功能的循環性質:發現-修復-追蹤-目標-接觸-評估。該研究探討了使用人工智能來加強這些功能,因為它們被用于海軍藍軍在海洋領域防御紅軍的威脅。

圖2. 概念圖:人工智能賦能海軍戰術殺傷鏈行動。

本文首先回顧了海軍戰術殺傷鏈,描述了戰術戰爭過程模型,并確定了一組28個殺傷鏈功能作為本研究的主題。下一節總結了適用于殺傷鏈的人工智能方法。隨后描述了為本研究開發的評估框架。本文最后介紹了這項研究的結果--人工智能方法與殺傷鏈的映射。

海軍戰術殺傷鏈

分析開始于對海軍作戰相關的戰術操作模型的研究,以便以一種能夠與人工智能方法相一致的形式獲取對殺傷鏈的描述。目標是建立一個海軍戰術殺傷鏈的描述,以: (1)代表海軍戰術領域中與戰斗有關的行動,(2)具有足夠的通用性,以模擬廣泛的戰術決策和行動,(3)被分解到適當的水平,以確定個別和獨特的過程。

殺傷鏈這個術語是指涉及使用武器的攻擊結構。該過程被描述為一個鏈條,以說明用武器攻擊目標需要一套完整的端到端決策和行動,任何階段的中斷都會破壞該過程。Clawson等人(2015)將殺傷鏈描述為 "成功使用特定武器對付特定威脅所需的任務或功能"。殺傷鏈過程包括目標檢測、選擇與目標交戰和選擇武器所涉及的決策,以及攻擊的實際執行。

約翰-博伊德的OODA循環模型是理解戰術行動的基礎,它代表著觀察、定向、決定和行動。圖3展示了OODA循環模型--強調了循環發生的四個階段的行動或過程。在觀察階段,數據和信息被收集。在定向階段,這些信息被處理、融合和分析,以提供對形勢的認識。在決定階段,藍軍決定是否需要采取行動以及這些行動應該是什么。在行動階段,行動被執行,并收集更多信息以確定是否產生了預期的效果。OODA循環對軍事思想有半個多世紀的影響,并幫助塑造了戰爭系統的發展和戰爭理論(Angerman 2004)。OODA循環模型已被用于預測和理解軍事行動反應時間(Hightower 2007)、認知戰術決策(Plehn 2000)、指揮和控制系統及網絡的設計目標(Revay 2017),甚至是高級軍事戰略制定(Hasik 2013)。在現實世界的戰術行動中,許多OODA循環的活動都是動態的、循環的和并發的。

圖3. 殺傷鏈OODA環

OODA循環模型為理解殺傷鏈過程提供了基礎,并導致了對圖4所示的查找-修復-跟蹤-目標-評估(F2T2EA)殺傷鏈過程模型(參謀長聯席會議,2013)的研究。F2T2EA是另一個以軍事術語描述殺傷鏈的過程模型。F2T2EA模型將戰術功能分為六類,并強調戰術行動的周期性。F2T2EA抓住了戰術戰爭功能、決策和行動的細微差別,為人工智能的映射提供了一個更詳細的框架,以激發具體、全面和獨立的殺傷鏈功能。

圖4. F2T2EA殺傷鏈周期。

這項研究開發了一套28個殺傷鏈功能,列于表1。該表顯示了這些功能是如何被歸入OODA和F2T2EA殺傷鏈過程模型的。建立一套具有一定獨立性的不同功能的目的是為了支持特定的人工智能方法與特定的殺傷鏈功能的映射,同時保持它們能夠代表戰術行動中發生的各種海軍決策和行動。

表1. 28個殺傷鏈功能

殺傷鏈的功能是通用的,適用于涉及 "殺傷"行動的各種戰術行動。在這項研究中,殺傷鏈可以支持進攻性打擊和防御性任務;殺傷可以是硬的,也可以是軟的。這允許使用非致命性和反措施行動,以消除對手的資產,完成戰術任務。

在沖突或危機期間,戰術行動的實施涉及殺傷鏈功能的復雜、動態和循環組合。這些功能會重疊、同時發生、重復出現,并且往往需要根據威脅情況進行多次實例化。"尋找 "和 "修復 "將是持續的功能;"跟蹤 "將出現在探測到的每個物體上;"瞄準 "將對被認為有威脅的物體進行;"交戰 "和 "評估 "將對需要殺傷(或解除)行動的威脅實施。

隨著海軍探索殺傷鏈功能的自動化并考慮使用人工智能方法,殺傷鏈功能的特點也開始發揮作用。殺傷鏈與它的威脅情況密切相關。這種作戰環境在許多方面決定了殺傷鏈的時間軸、交戰幾何、局勢動態、不確定性水平和整體復雜性。表2確定并描述了影響人工智能如何被利用來提高自動化和支持戰術決策的殺傷鏈功能的條件。

表2. 殺傷鏈功能特征

表2中列出和描述的特征具有相互依賴性,這些特征源于任務目標、威脅情況的復雜性以及藍軍資產的結構和能力。任務的性質--進攻性或防御性--確定了事件的初始時間線。威脅情況會影響這個時間線,并影響動態、決策風險水平和整體不確定性。藍軍資產的結構和能力影響到可用的決策選擇。殺傷鏈的決策有許多考慮因素,包括傳感器的覆蓋范圍、對對手意圖的評估、交戰策略、交戰規則和要使用的武器。這些復雜和相互依存的特性影響到可接受的決策風險和不確定性水平,并最終影響到整個殺傷鏈過程中可接受的自動化水平。

這項研究檢查和評估了特定人工智能方法的潛力,以加強特定的殺傷鏈功能。其目的是通過提高自動化程度來改善整體戰術任務--不一定要取代人類決策者,但要支持戰術決策--特別是當殺傷鏈決策過程變得高度復雜時。

人工智能

美國國防部(DoD)將人工智能描述為 "機器執行通常需要人類智慧的任務的能力--例如,識別模式、從經驗中學習、得出結論、進行預測或采取行動--無論是以數字方式還是作為自主物理系統背后的小軟件"(艾倫2020)。人工智能是一個包括許多不同方法的領域,目標是創造具有智能的機器(Mitchell 2019)。人工智能領域正在迅速發展,國防部正在積極研究如何將人工智能有效地應用于軍事任務(GAO 2022)。

DARPA的Launchbury(2017)將人工智能的發展描述為三波,如圖5所示。第一次浪潮(約1970年代至1990年代)產生了基于規則的專家系統,可以推理,但沒有學習或歸納的能力。第二波(約2000年至今)產生了先進的統計大數據學習和深度神經網絡,它們可以感知和學習,但推理或概括的能力有限。第三次浪潮,剛剛開始(2020年及以后),將以上下文適應為特征,在推理和概括能力方面取得進展。未來學家預測,第四次浪潮(2030年及以后)將導致人工通用智能,使機器能夠執行人類能夠執行的任何智力任務(Jones 2018)。

圖5. 三次人工智能浪潮

這項研究專注于三次人工智能浪潮中的人工智能方法,這些方法已經在不同的應用領域得到了證明,或者目前正在研究和開發中。該團隊研究了廣泛的人工智能相關主題(在表3中列出并描述),以便為評估提供知識基礎。

表3中描述的主題是方法、學科和支持能力的類別,它們可能直接影響到為殺傷鏈有效部署AI的能力。每種方法的實施方式將決定未來人工智能支持的殺傷鏈的不同方面。人工智能內部工作的可解釋性和人機合作的能力將影響作戰人員與人工智能系統的互動和信任。特征工程、數據管理和實用功能將影響到人工智能系統的內部運作,因此也影響到人工智能系統的輸出和決策建議。博弈論、決策論、模糊邏輯、融合、空間-時間推理、進化和遺傳算法、預測性和規定性分析以及聯邦學習等學科被納入的方式將決定未來人工智能系統的設計和架構。表3中的人工智能相關主題被用于本文下一節解釋的定性評價。

表3. 人工智能相關主題在殺傷鏈研究中的考慮

該團隊選擇了八種具體的人工智能方法(在表4中列出并描述)用于殺傷鏈的映射。這八種人工智能方法是感知、學習、抽象和推理以獲得更好的知識、預測性能、開發和評估決策選項(或戰術行動路線)的不同技術。它們被認為有可能為殺傷鏈過程的不同方面提供價值,同時也代表了一組不同的人工智能方法,以促進對人工智能如何改善殺傷鏈的更全面的評估。

表4. 八種具體的人工智能方法用于殺傷鏈的映射

目前,人工智能方面的許多進展正在進行中。這項研究確定了感興趣的主題和具體方法,顯示出加強戰術殺傷鏈的強大潛力。本文對這些主題和方法進行了總結。關于人工智能主題和方法的更詳細描述載于本研究的頂點報告(Burns等人,2021)。

評估框架

這項研究開發了一個框架,以評估人工智能方法對殺傷鏈特定功能的適用性。該評估包括兩個部分: (1)從殺傷鏈功能的角度進行的定量分析,以及(2)從人工智能主題的角度進行的定性分析。

第一個部分是基于一套決策點問題形式的四個評價標準(列于表5)、一種評分方法(列于表6)以及與四個決策點中的每一個相關的評價過程。該框架的這一部分產生了一個量化的評價,以評分的形式表明特定人工智能方法對支持或實現特定殺傷鏈功能的適用程度。該小組在應用評分標準時進行了主觀判斷。

表5. 評估決策點問題

表6. 評分標準

第一個決定點要求對每個殺傷鏈功能進行評估,以確定需要什么樣的輸出,并對每個人工智能方法進行評估,以確定其產生的輸出類型的特點。表5顯示了每個決策點的輸出類型。定量輸出包含實數值。定性輸出包括分類數據。集群形式的輸出指的是由強烈關聯的質量分組的數據,通常用于在數據集中尋找模式。基于規則的輸出是一系列的if/then因果規則。表7顯示了對28個殺傷鏈功能之一的評分評估的例子,第25條 "確認影響"。對于這個功能,團隊確定可以使用數據集群來協助特征描述過程,還注意到可解釋的輸出是強制性的,而且預測器的數量較少,以便能夠有更高的準確性。顏色方案表明,聚類是最適合的人工智能/ML方法,邏輯回歸和關聯也可能為殺傷鏈功能提供一些支持。

表7. 25號功能(確認影響)的評分示例

第二個決策點需要對殺傷鏈過程進行評估,以確定什么類型的數據可用,什么類型的學習方式適合每個功能。如果一個包含預測因子和響應變量的完全標記的數據集可用于人工智能的訓練和開發,監督學習將是一個合適的方法。如果殺傷鏈過程中的一個步驟在其數據集中包含預測因素,但沒有響應變量,那么無監督學習將是合適的方法。最后,如果一個殺傷鏈過程有部分或無標記的數據集可用,并且還與一套定義明確的一般規則有關,可以為訓練人工智能學習系統提供反饋,那么強化學習將是一個合適的方法。

第三個決策點根據對人工智能方法的內部運作需要多少可解釋性(或透明的洞察力)來評估每個殺傷鏈功能(XAI=可解釋的人工智能)。為了本研究的目的,這三個選項是基于對要求強制性XAI、希望的XAI或不要求XAI的定性評估。

第四個決策點是根據充分代表殺傷鏈過程不同方面所需的預測因子(或特征)的數量來評估特定人工智能方法的功效。表征與每個殺傷鏈功能相關的決策空間的特征可能會根據現實世界的情況而改變。ML模型需要代表這些特征,并使用輸入變量或預測器來實現。ML模型代表現實世界的方式和相關的特征數量將影響適當方法的選擇。本研究根據輸入特征的數量確定了三類預測器: 1-9,10-99,和100+。

評價框架的第二部分是基于對人工智能相關主題和方法的調查,以及對每種方法的好處和局限性或挑戰的定性評估,因為它們可能適用于殺人鏈領域。這部分評價是從人工智能方法及其對殺傷鏈的普遍適用性這一更廣泛的角度進行的。上一節中的表4列出了被評估的人工智能主題和方法。

人工智能到殺傷鏈的映射

這項研究的結果被總結為兩個人工制品:表8中的映射為每個殺傷鏈功能推薦了最合適的人工智能/ML方法,表9中對戰術領域的人工智能相關方法進行了定性評價。

表8. AI/ML方法到殺傷鏈的映射

表9. 對戰術領域的人工智能相關方法進行了定性評價

表8所示的定量圖譜是對28個殺傷鏈功能中的每一個功能進行決策點評估的結果。每個功能的單獨記分卡可以在相關的頂點報告中找到(Burns et al, 2021)。雖然大多數記分卡導致了一個明確的主導AI/ML方法的適用性,但有四個殺傷鏈功能被評估為有一個以上的潛在方法可供選擇。在8種打分的AI/ML方法中,只有4種得分高到可以進入最終映射:聚類、關聯、邏輯回歸和線性回歸。

定性分析的結果是對人工智能相關的方法和主題以及它們與殺雞用牛的相關性的評價。表9包含了定性評價的結果。

結論

總之,這種映射分析從兩個方向進行:(1)從殺傷鏈開始,將人工智能方法映射到各個殺傷鏈的功能;(2)從人工智能方法和相關主題開始,評估它們對殺傷鏈的潛在效用。由該研究小組開發的第一種方法遵循了一種使用四個決策點的量化評分方法。第二種方法是對各種人工智能方法和相關主題進行調查,并對每種方法與未來人工智能殺傷鏈決策輔助工具的潛在關聯性進行定性評估。

定量分析顯示,一小部分人工智能方法將是為殺傷鏈功能提供高級自動化支持的最佳候選方法。這些方法是:聚類、關聯、邏輯回歸和線性回歸。他們被評估的對殺傷鏈的優越效用是基于他們產生的輸出類型,他們使用的機器學習類型,他們對用戶的可解釋能力,以及他們需要的代表性預測器或特征的數量。這種分析性映射方法是 "自下而上 "的,因為它的起點是傳統的殺傷鏈功能集。它假設各個人工智能方法將被分到各個獨立的殺傷鏈功能中。這預設了一個特定的設計方案,并對殺傷鏈決策輔助工具的未來架構做出了限制。

第二個映射分析是定性的和高層次的,它想象了各種人工智能方法和相關主題的未來潛力,以實現和/或支持未來的人工智能輔助殺傷鏈的決策。這種分析方法是 "自上而下 "的,因為它從一種人工智能方法或感興趣的領域開始,并從整體上評估其與殺傷鏈的一般相關性,而不強加一個特定的設計或被分配到一個特定的功能。這項分析確定了13個與人工智能有關的主題,這些主題可能為未來的殺傷鏈提供效用。人工智能正在成為許多軍事應用中的一項技術。海軍將從人工智能在許多行動中的應用中獲益,包括殺傷鏈。對人工智能增強和/或人工智能啟用的殺傷鏈進行有效和適當的設計和工程,對于實現對同行競爭對手的戰術優勢以及確保其用于支持武器系統的安全性和可靠性至關重要。該項目提供了一個分析基礎,作為繼續研究人工智能在殺傷鏈中的應用的起點。該分析將具體的人工智能方法與殺傷鏈的28個功能相聯系,并確定了人工智能方法和相關主題,這些方法和主題顯示了加強和促成未來海軍殺傷鏈的潛力。這項研究建議繼續研究人工智能和ML在戰術殺傷鏈中的應用。

付費5元查看完整內容

美國陸軍旋轉翼飛機的下一個機群除了擁有一套先進的技術和武器裝備外,還將允許在戰斗中使用更長的時間。這些飛機將可能是陸軍武庫中最先進和最復雜的系統。這意味著這些飛機可能需要飛行員在遠高于目前直升機的水平上進行多重任務。由于在駕駛這些飛行器時對飛行員的要求越來越高,實時監測飛行員的認知負荷、健康和福祉的需要已經成為完成任務的組成部分。有了實時的生理監測,就有可能跟蹤和了解任務認知需求的程度,以及在多域作戰(MDO)任務集的各個階段對飛行員的相關認知負荷(CWL)。然后,這些數據可以為領導層和團隊成員提供信息,并為操作人員提供關鍵的反饋。這些數據還將為駕駛艙布局的關鍵決策點提供信息,具體到人機互動。然而,仍有許多工作要做,因為在哪些措施能最有效地捕獲和量化CWL、如何最好地在駕駛艙內部署這些傳感器、以及如何量化數據以便于實時解釋結果以幫助決策方面還存在未知數。

為了支持擴大的未來垂直升降(FVL)任務,美國陸軍航空醫學研究實驗室(USAARL)正在進行研究。最終的目標是實施生理測量,作為在操作員狀態監測(OSM)驅動的適應性自動化環境中,評估CWL的一種手段。本報告對最近的CWL文獻進行了系統回顧,以確定哪些CWL評估技術在航空領域得到了最多的使用和成功,特別是在旋轉翼航空領域。首先,提供了CWL的正式定義,以及對CWL結構越來越感興趣的證據。隨后,對不同的CWL指標進行了簡要總結,并對使用多種指標,即綜合指標來評估CWL進行了考慮。

認知負荷定義

統一使用的CWL正式定義還沒有被整個研究界普遍接受。因此,人們經常發現,不同的研究人員使用不同的定義(Cain,2007)。為了保持一致性,我們采用了Van Acker等人(2018)的概念分析所提出的資源需求框架的定義: "心理負荷是一種主觀體驗的生理處理狀態,揭示了一個人有限的、多維的認知資源與所接觸的認知工作需求之間的相互作用。"

為了消除任何混淆點,請注意Van Acker等人(2018)使用了 "心理負荷"(MWL)一詞,而我們在本評論中使用的是 "認知負荷"。有關評估認知工作需求導致的認知資源支出的文獻,已經交替使用了這兩個術語(即心理和認知)(甚至有時在同一篇論文中交替使用)。圖1詳細說明了幾十年來每個術語的使用情況;"心理負荷 "一詞在文獻中出現的時間較早(Westbrook等人,1966年),比 "認知負荷 "使用的頻率更高。在USAARL進行的工作中,已經采用了 "認知負荷 "這一術語。

Van Acker等人(2018)的定義包括三個關鍵部分(關于這些要點的更廣泛討論,請參考Vogl等人,2020)。首先,CWL的發生是由于特定的人和特定的任務/環境(或任務+環境組合)的互動。這種應用認知資源來滿足任務需求的互動導致了對CWL的感知。這為資源需求框架奠定了基礎,該框架自卡尼曼(1973年)在其《注意力與努力》一書中首次提出以來,一直在不斷發展。第二,當認知資源被用于一項任務時,對于努力工作的人來說,他們的資源是有限的,如果一項任務對資源的需求超過了可用的限度,人的表現就會減弱。對內省的人來說,還可以觀察到,在某些情況下,可以比其他情況下更有效地滿足多種任務需求。Wickens(2008)通過多重資源理論澄清了這一看法,該理論指出,與其說有一個有限的資源庫可用于解決任務需求,不如用多重資源庫的模式來解釋多任務經驗。第三,Van Acker等人(2018)指出,CWL是一種主觀體驗的生理處理狀態;也就是說,人類理解并能夠溝通他們正在經歷CWL,他們的生理變化是CWL的一個功能。因此,評估CWL不僅可以通過任務本身的表現措施,還可以通過自我報告措施(即主觀措施)和監測生理信號的變化(即生理措施)。最后要說明的是,Van Acker等人(2018)的定義很適合于對這個概念的簡要介紹,但我們希望有一個更全面的定義,明確強調人類經驗的其他方面(如個體差異、情景因素、注意力等)以及CWL和績效的動態關系。關于CWL概念的更深入的定義和重新分析,見Longo等人(2022)。

自20世紀60年代首次正式提及CWL以來,它已成為一個越來越受歡迎的研究領域。在過去的十年里,根據谷歌學術搜索引擎的索引,CWL研究的出版物數量激增(圖1)。在過去的十年里,整個文章和標題中的精確短語匹配都遵循同樣的加速增長模式。這種加速增長的興趣說明了對更先進、更有效的生理指標、建模技術的調查,以及對改善航空和駕駛等安全關鍵領域性能的普遍重視。2015年,Young等人(2015)研究了CWL文獻,并確定了幾十年來的主要研究領域。在20世紀80年代,在CWL主要理論進展的持續發展中,軟件工程/計算機輔助設計(CAD)和自適應界面(即響應操作者CWL的自動化)等領域成為主要興趣。20世紀90年代,對CWL的研究在航空和駕駛領域繼續進行得最為頻繁。最終,在2000年代的前十年,駕駛領域將遠遠領先于其他領域,而鐵路領域的研究變得越來越有意義,航空和空中交通管制(ATC)保持穩定(圖5)。考慮到幾十年來的關注領域,很明顯,CWL評估是安全關鍵領域的一個重要組成部分,特別是在交通領域。

圖 1. 60 年來腦力負荷和認知負荷出版物的頻率。從谷歌學術搜索引擎獲得的頻率數據。

綜合認知負荷評估

正如所提出的CWL定義中所概述的那樣,CWL的概念在操作上是可以使用性能、生理學和主觀評價的措施進行量化的。這些測量類別在整個CWL文獻中被持續使用,每個類別都提供了一些不同評價標準的權衡(O'Donnell & Eggemeier, 1986)。快速的文獻搜索顯示,對這些測量技術已經進行了超過20,000次檢查(評論見Cain, 2007; Heard等人, 2018; Tao等人, 2019; Charles & Nixon, 2019; Vogl等人, 2020)。

表現和CWL是以一種反向的方式聯系在一起的,特別是在最佳的任務需求水平下,但這種關系并不簡單地歸結為一個上升,另一個下降。相反,通過自愿招募認知資源(即導致CWL增加的努力),性能可以保持在高水平而負荷增加。也就是說,人類可以付出更多的努力,調動更多的資源,或者隨著需求的增加而 "更努力地 "完成一項任務,以保持他們的表現。只有到了一定程度,也就是傳統上所說的 "紅線",績效才會開始動搖,從而與高水平的CWL形成反向關系。圖2詳細說明了作為任務需求增加的函數的績效-負荷關系(改編自De Waard, 1996和Young等人, 2015)。這個修改后的區域模型說明了績效和負荷在D、A2和C區域有一致的反向關系,而在A1、A2和B區域則有更多的動態變化。以這個模型為框架,我們很容易看到,除非在D或B區域內觀察,否則主要的任務績效測量可能缺乏敏感性。由于績效指標通常是對任務效率的全面調查,它們很少對不同資源的認知負荷進行診斷性描述。雖然這些類型的性能指標可能在一個相對粗略的尺度上發揮作用,但它們對整個任務性能的干擾是最小的,因為數據往往是現成的。在航空領域,標準偏差、輸入活動和教員飛行員評級的措施已被廣泛用于區分高和低水平的CWL。

圖 2. 績效-認知負荷關系的描述(改編自 De Waard,1997 年和 Young 等人,2015 年)。

已經觀察到可識別的生理信號在不同程度的有經驗的CWL下發生變化,一些生理指標已經發現成功地作為CWL的操作措施。心率、心率變異性、瞳孔直徑、腦電圖(EEG)信號帶、通過功能性近紅外光譜(fNIRS)測量的腦氧飽和度以及許多其他指標,都有大量文獻支持它們作為CWL的代理測量。與性能指標不同,生理學指標允許研究人員挖掘發生在性能保持穩定(即A1和A2區域)而CWL正在積極變化的區域的CWL變化。在某種程度上,生理指標允許研究人員看到隨著任務需求的增加,"引擎蓋 "下發生了什么。這種在接近紅線時觀察CWL變化的能力說明了測量類別的普遍高靈敏度。此外,它為應用領域的研究人員提供了一種手段,以預測性能故障的發生,并在性能開始受到影響之前補救任務要求。然而,其他生理現象,如疲勞、焦慮或身體運動,可以高度干擾這些指標的整體敏感性。生理指標在其診斷性方面可以有很大的不同。一些生理指標提供了一個更全面的有經驗的CWL尺度,如瞳孔直徑或心率變異性。其他指標通過確定大腦內的激活區域,如EEG或fNIRS指標,或由特定的任務要求(即眨眼動態)驅動,顯示出更高的CWL資源診斷能力。目前正在進行的工作是限制生理傳感器的整體侵入性,以便向現實世界的應用邁進。一些傳感器的侵入性很小(如心電圖[ECG]、遠程眼球追蹤器等),而另一些則會造成較高的侵入性(如頭戴式眼球追蹤器、fNIRS、皮膚電活動等)。在航空領域,心率和心率變異性指標是使用最廣泛的生理學指標之一,因為它在敏感性、診斷性和對操作環境的干擾性之間有一個公平的平衡(Backs,1995)。然而,最近的研究已經接近于優化瞳孔直徑、fNIRS和EEG等指標,作為額外的生理測量指標在航空領域使用。

CWL是一種獨特的體驗,人類可以通過自省來識別和描述。因此,可以通過使用結構化的、經過驗證的、采取主觀測量形式的問題來捕捉這種自我報告的體驗。多年來,許多不同的CWL主觀量表已經在各研究領域進行了測試,并表明人類可以可靠地指出他們在特定任務中體驗到的CWL水平。總的來說,主觀衡量標準對CWL的變化顯示出很大的敏感性。主觀評分允許研究人員對圖2中描述的所有區域的CWL進行采樣。主觀指標也可以通過使用單維和多維措施,分別從低到高的診斷性范圍。單維主觀指標要求操作者評估他們所經歷的CWL的單一方面,例如通過評價努力支出、資源能力或一般CWL本身。多維度的主觀衡量標準更具有診斷性,因為多個問題或子量表涉及到CWL體驗的許多相似但不同的元素。不幸的是,如果在任務執行過程中完成主觀測量,其干擾性通常很高。因此,大多數主觀測量是在任務執行后完成的,要求操作者在回答問題時反思他們之前的CWL體驗。當然,一些單維的主觀衡量標準試圖規避這一限制,提示受試者在任務執行期間表明他們的主觀CWL,從而與診斷性進行權衡。總的來說,主觀指標被用作驗證系統和其他CWL指標的手段。這個研究領域中最普遍的衡量標準是美國國家航空航天局的任務負荷指數(NASATLX),它至今仍被廣泛使用。 NASA-TLX經常被用作航空領域的多維CWL主觀衡量標準,但有些衡量標準,如貝德福德負荷表和修正的Cooper Harper處理質量評分表,是專門為航空領域設計的,如今也被普遍用作單維衡量標準。

由于每種類型的認知負荷評估技術都有其自身的優勢和缺點,因此,將表現、生理和主觀測量結合起來,形成認知負荷的綜合測量似乎是很自然的。其邏輯是,由于這些認知負荷的每個反應都是從同一個人身上測量出來的,因此這些反應會相互關聯,如果一個反應失敗,其他的反應可以作為一個冗余的備份。當綜合測量顯示每個單項測量中的認知負荷都在增加時,我們可以確信所研究的操作者正經歷著更高水平的認知負荷,反之亦然,認知負荷的反應也在不斷減少。如果每個認知負荷評估指標出現不同的反應,考慮到這些反應是從一個人身上收集的,被研究的操作者的經驗就變得不那么清晰了,而且更令人費解。例如,操作員可以在主觀測量中報告低水平的認知負荷,但他們的生理測量表明負荷水平在增加,而他們的性能指標卻保持穩定。同樣,同樣的不一致性可以在不同的認知負荷測量中建模,每個人的反應都表示高、低或穩定的認知負荷。Hancock和Matthews(2019)探討了認知負荷評估的關聯、不敏感和不一致(AID)的概念,以創建一個框架,用它來理解綜合負荷評估指標的可能狀態。定義這些可能的復合認知工作負荷評估狀態的三維矩陣可以在圖3中看到。

圖3. Hancock和Matthews(2019)的認知負荷評估技術的關聯、不敏感和分離(AID)框架矩陣。每項措施都可以表明認知負荷反應的增加(+)、減少(-)或穩定(O)。由于每個狀態都由矩陣中的一個立方體表示,跨越性能(主要任務)、生理學和主觀測量的27種結果組合是可能的。當測量結果相互一致時(即所有測量結果都顯示認知負荷減少或增加),就會出現雙重關聯(用A-表示減少,用A+表示增加)。

Hancock和Matthews(2019)的AIDs分類法為復合認知負荷評估狀態,沿立方體矩陣的軸線呈現了認知負荷評估的三種主要方法。每種方法允許三種反應中的一種: 增加的認知負荷反應(+),減少的認知負荷反應(-),以及穩定的(即不敏感的)認知負荷反應(o)。結合每個單獨的測量的反應結果,產生一個三維矩陣,定義復合認知負荷測量的27個獨特狀態。當不同類型的負荷測量的反應相互匹配時(例如,生理和主觀測量所顯示的負荷增加),兩個測量之間就會發生關聯。如果兩種測量方法的反應彼此不一致,就會發生分離。雙重關聯(如圖1中A+和A-狀態所表示的)發生在所有三種測量方法都報告了相同的反應的情況下(即所有測量方法都顯示了認知負荷增加、穩定或減少的匹配反應)。同樣,當這時所有的測量方法都彼此不一致時,就會發生雙重離析。雖然雙重關聯簡化了認知負荷數據的解釋問題,但認識到影響測量結果趨同的因素可以幫助理解為什么會發生離散。Hancock和Mathews(2019)詳細闡述了這些措施之間的銜接問題,并確定了可能影響措施之間反應不匹配的常見問題。諸如測量方法之間的顆粒度、不同測量方法之間的認知負荷反應的時間、自我調節策略和負荷歷史等因素都會導致不同測量技術之間的不一致。歸根結底,這些問題仍未解決,但認識到它們的存在可以幫助解釋即使是最不相關的數據集。

本報告的目標

本報告研究了過去十年(2010年代)的CWL文獻,以擴展Young等人(2015)報告的趨勢。為了指導USAARL正在進行的CWL研究的發展,對航空領域的復合CWL評估文獻進行了重點搜索。旋轉翼和固定翼航空平臺都包括在搜索范圍內。從這些航空文章中,報告了不同CWL指標的使用頻率和成功率。同時還研究了作為個體差異(即飛行經驗)和研究平臺(即模擬器或飛機)功能的CWL評估的差異數據。最后,通過CWL評估的AIDs模型對綜合CWL指標的結果進行了研究。

付費5元查看完整內容

美陸軍網絡部隊的技能和能力在其成立后的十年里得到了增長。本文重點介紹了美陸軍網絡任務部隊部分所需的結構性變化,這些變化將使其繼續增長和成熟,因為陸軍過去的組織和結構性決定對當前和未來的效率和效力帶來了挑戰。對當前形勢的評估強調了軍事領導層必須解決的領域,以使陸軍的網絡部隊繼續發展以滿足多領域行動的需要。

訓練和裝備一支能夠在新領域開展行動的新軍事力量是一個反復的過程。美國上一次開始這樣的工作是在二十世紀初,航空部隊的誕生和空域的出現。戰術、部隊結構和利用新能力的戰略是在建立軍事航空后發展起來的,但由于當時缺乏危機感而被界定和限制。第二次世界大戰迫使空軍迅速成熟,并導致了美國陸軍航空隊的建立,這是一支為應對空域挑戰而設計的有凝聚力的戰斗部隊。像陸軍航空隊一樣,陸軍的網絡部隊正在達到成熟,擁有切實的能力和對對手的作戰經驗,并將受益于評估先前的組織和人事決定的影響,為多領域行動做準備。

對軍事網絡的重大和復雜的入侵為美國網絡司令部(USCYBERCOM)的成立提供了動力,并使網絡空間與空中、海上、陸地和太空一起成為作戰領域。美陸軍和國防部(DoD)已經在建立該領域的能力方面取得了重大進展。 從部隊結構的角度來看,主要的亮點包括:

  • 在2010年建立美國陸軍網絡司令部(ARCYBER)。

  • 通過在2011年創建第780軍事情報旅(網絡)來組建一支進攻性網絡部隊。

  • 在2014年創建網絡保護旅(CPB),以容納防御性部隊。

  • 在2019年建立第915網絡空間戰營(CWB),以滿足戰術網絡空間電磁活動的要求,以及所有網絡任務部隊(CMF)小組;以及

  • 在2018年實現全面作戰能力。

在人事方面,陸軍在2014年成立了網絡部,并在2018年整合了電子戰。最近,陸軍正式確定了網絡空間能力發展官員/準尉軍事職業專業(MOSs),以提供設計和創建特定網絡空間能力的有機能力。

從理論到培訓再到組織,該部門和網絡單位不得不確定需求,進行試驗,并制定解決方案,以滿足不斷變化的網絡空間行動的需求。在這篇文章中,我們研究了與兩個最初的部隊結構決定相關的挑戰,并提供了克服這些挑戰的考慮。

首先,當陸軍創建其網絡部隊時,進攻性和防御性網絡行動被隔離在兩個不同的獨立旅內。歷史上的分界繼續存在,并帶來了意想不到的后果。盡管創建了一個新的分支和軍事職業專業,但將進攻性網絡行動(OCO)和防御性網絡行動(DCO)分開的組織決定對人員和資源產生了負面影響。

其次,這些單位有復雜的指揮系統,有獨立的行政控制(ADCON)和作戰控制(OPCON)關系。目前,網絡小組的作戰指揮與小組的行政和領導不一致,包括人員評級、財產問責、統一軍事司法法典的權力和指揮本身(例如,連長跟蹤網絡小組的訓練和醫療準備,而小組負責人負責日常運作)。這些復雜的問題造成了混亂和驚愕,并阻礙了統一的努力。

雖然這些組織決定是經過深思熟慮的,也是出于行動的需要,但它們阻礙了陸軍網絡部隊內部的統一行動,造成了組織和行動上的損失。整個聯合網絡社區正在進行反省。隨著所有的CMF團隊最近實現了充分的操作能力,美國網絡司令部正在評估其目前的規模,并要求陸軍和空軍派遣更多的團隊。 為了給網絡空間帶來更統一的方法,空軍通過重新指定和重新分配第67網絡空間聯隊下的幾個單位來重新調整其內部組件的結構和組成。 現在是重新審視陸軍內部結構以更好地支持網絡空間行動的理想時機。如果陸軍忽視了過去因需要而做出的決定的影響,而不重新評估其有效性,那將是一種失職。本文認為,美陸軍必須在網絡部門內部推動更大的團結,使該組織作為一支有效的網絡空間戰斗力量繼續前進。

付費5元查看完整內容

融合項目(PC)是一項美國陸軍學習活動,旨在整合和推進他們對聯合部隊(陸軍、海軍、空軍和海軍陸戰隊)的貢獻。根據研究和分析中心(TRAC)-蒙特雷的說法,"PC確保陸軍作為聯合戰斗的一部分,能夠快速和持續地整合或'融合'所有領域的效果--空中、陸地、海上、太空和網絡空間,以便在競爭和沖突中戰勝對手"(研究和分析中心[TRAC]2020)。目標是評估在PC21上展示的新的創新系統(SoS)技術是否滿足為聯合部隊提供必要的速度、范圍和融合所需的作戰能力,以產生未來的決策主導權和大國競爭的超能力。然而,鑒于PC期間各種現代技術的注入,TRAC-蒙特雷目前缺乏一種方法來衡量作戰效果以及作為軍隊和聯合部隊的融合是否正在實現。因此,本項目的重點是制定一個概念性的評估框架,以確定在PC21演習中測試的多域作戰(MDO)任務中SoS的作戰有效性。這個框架將集中在那些被證明可以減少傳感器到射手(S2S)時間的技術的行動有效性,以便在聯合MDO任務中消滅一個固定的目標。

該小組確定,對某一特定能力的功能分解,結合用于開發MOE的Langford綜合框架的修改版,將產生描述該特定能力的行動有效性的良好措施。為了將衡量標準轉化為價值分數,團隊使用了構建價值尺度的理想范圍方法,該方法為每個衡量標準建立了一個從最好到最壞的情況,使其具有適應任何能力的靈活性。帕內爾的搖擺加權法被用來量化利益相關者對每個蘭福衍生的MOE的重要性,以確定能力的每個MOE的加權價值分數(WVS)。WVS相加得出總分,這就提供了對運營有效性的最終評估。然后,該團隊產生了一個行動有效性量表,向利益相關者說明他們的能力在這個量表中的得分情況。

該項目最后針對概念評估框架應用了PC21用例,以衡量其在生成與用例中的能力最相關的MOE以及單一行動有效性分數方面的穩健性。該模型的最終驗證將在目前計劃于2021年10月開始的PC21期間進行。

總之,該團隊使用系統工程流程建立了一個概念性評估框架系統,該系統將使TRAC-Monterey有能力評估PC21期間展示的新的創新SoS技術的作戰能力。該團隊開發了一個利益相關者分析,一個由利益相關者衍生的目標層次,一個功能分解,以及一個創建良好措施的過程,將這些措施轉化為價值分數,量化措施的重要性,并將產生的價值匯總為一個單一的、行動有效性分數。該框架將為利益相關者提供信息,使他們能夠就進一步的技術開發做出明智的決定。TRAC-Monterey還可以將本研究中制定的衡量標準作為指南,在整個PC21和未來的PC活動中收集相關信息。

建議 TRAC 在 PC21 期間對照 S2S 用例 1-1 驗證概念性評估框架。還應采用其他用例來測試框架的靈活性和可用性。還建議進一步研究行動效率的認知方面,以及如何利用這些信息來擴大本評估框架的范圍。TRAC和JMC向團隊表示,PC的努力將有助于改寫聯合行動的理論。

付費5元查看完整內容

該項目支持美國陸軍戰爭學院保持一個公認的領導者,并在與美國陸軍和全球陸軍應用有關的戰略問題上創造寶貴的思想。該項目于2018年由美國陸軍訓練與理論司令部總部要求,描述一個新的或修改過的作戰框架,以使陸軍部隊和聯合部隊在多域作戰(MDO)中對同行競爭者成功實現可視化和任務指揮。

由此主要形成一個在2019學年進行的學生綜合研究項目,該項目涉及4名美國陸軍戰爭學院學生和4名教員,由John A. Bonin博士領導。該項目研究了MDO的概念,即它如何影響任務指揮的理念和指揮與控制職能的執行。向MDO的過渡改變了陸軍指揮官和參謀人員在競爭連續體中進行物理環境作戰和信息環境作戰的傳統觀點。

該項目以第一次世界大戰期間美國陸軍引進飛機為案例,研究將新領域納入軍隊的挑戰。該項目還提供了對MDO的概述和分析,以及它正在改變我們的戰斗方式以及軍隊的角色和責任。這些變化將使聯合部隊能夠更有效地進行連續作戰,特別是在武裝沖突之下的競爭中。

向MDO的過渡將需要新的流程,該項目調查了多領域同步周期如何能帶來好處。物質系統、聯合專業軍事教育、聯合和陸軍理論以及總部人員結構將需要改變,因為領導人及其工作人員將需要不同的技能來在這個新環境中運作。

報告總結

陸軍新興的多域作戰(MDO)概念對最近修訂的陸軍任務指揮理論提出了新的挑戰。美國已經有75年沒有與同行競爭者作戰了;因此,個別軍種在概念上側重于打自己的對稱領域戰爭,而較少注意在其他領域支持其他軍種。隨著技術的變化和國防預算的縮減,各軍種正在迅速失去通過純粹的存在和數量來控制其領域的能力和實力。因此,各軍種需要從不同領域獲得不對稱的優勢,以便在其領域作戰中取得成功。

陸軍的指揮和控制方法是任務指揮。這種方法要求指揮官有能力理解、可視化、溝通和評估關鍵決策、風險以及關鍵情報和信息要求。多域作戰的任務指揮將要求指揮官在多個領域以及指揮梯隊之間和內部保持單領域的卓越和知識。同樣重要的是,指揮官必須創造、確保并維持對其自身決策過程的共同認識。風險分析和關鍵的情報和信息需求過程是必要的,以確保指揮官能夠設定條件,賦予下屬領導權力,并在多個領域的范圍內影響分布式行動。因此,為了滿足這些新的要求,需要有新的框架來理解和調整多領域的指揮關系和人員結構。

這些新的框架將需要一個多領域的同步化進程,為指揮官提供一個確定新需求并為其提供資源的方法。與使用軍事決策程序或聯合規劃程序的傳統作戰程序不同,這兩種程序都側重于單一領域的規劃,而多領域同步程序則是在整個規劃和執行周期中,從指揮官和參謀部之間的持續合作中演變而來,跨越所有領域和環境。這種演變創造了對關鍵決策、相關風險以及指揮官認為至關重要的關鍵情報和信息要求的共同理解。

這項研究支持美國陸軍戰爭學院繼續保持在創造與陸軍和全球陸軍應用相關戰略問題寶貴思想方面的公認領導地位。該研究考察了MDO概念的應用,即它如何影響任務指揮的理念以及指揮和控制功能的執行。第一次世界大戰期間飛機的引入提供了一個與當前情況相似的背景,因為1918年的陸軍在如何為大規模的地面行動提供最佳的指揮和控制,以對抗同行的對手,以及如何整合空中對陸地的支持。當陸軍試圖了解如何在多個領域進行整合時,從約翰-J-潘興將軍對飛機的整合中得到的啟示可以說明問題。威廉-米切爾在戰時和戰后的角色說明了我們在試圖執行MDO時可能面臨的一些挑戰,例如在未來大規模地面作戰行動中保衛網絡和空間領域

對MDO的概述和分析將提供陸軍對該概念的定義,并描述陸軍在競爭連續體中的作用。MDO概念將需要新的組織和人員框架來在沖突連續體的所有方面實施MDO。陸軍不能保持一個靜態的組織;陸軍必須既能在陸地領域贏得武裝戰斗,又能幫助塑造競爭以防止未來的沖突。

武裝沖突以下的行動歷來都是聯合部隊和陸軍的斗爭。陸軍在戰斗中指揮和控制的任務指揮方法將不足以組織在武裝沖突以下對對手的日常競爭。陸軍在競爭期間為聯合部隊執行重要的任務,特別是在信息環境中,這些任務在MDO下將會擴大。

目前的作戰流程專注于單一領域,對于支持特定領域以外的功能適用性有限。我們必須有新的流程,允許所有領域的資產同步,以優化我們的效率,同時將這些資產的風險降到最低。盡管適用于所有級別的指揮部,但擬議的流程主要集中在高級行動和戰略層面所需的規劃和數據收集。

從單一領域到多領域的重點變化,使得聯合部隊和陸軍的理論必須進行修訂和更新。聯合專業軍事教育課程和聯合學說將需要進行調整,以教導下一代領導人如何跨域整合。僅僅了解其他部門是不夠的;指揮官和參謀人員需要了解其他領域的能力如何支持他們的工作,以及他們在支持其他領域方面的要求是什么。長期以來,聯合部隊只是名義上的聯合,每個領域都在為贏得自己的戰斗而戰斗。MDO概念使聯合部隊能夠優化其有限的資源,既能應對危機,又能在最好的情況下防止競爭中的危機發生。

表3-1. 陸戰、空戰、海戰和信息戰的特點

圖3-3. 陸軍的指揮與控制方法。ADP 6-0

圖3-4. 多域作戰框架

圖3-5. 信息環境框架下的多域作戰

付費5元查看完整內容

當前的海軍作戰要求水手們根據動態作戰環境中的不確定態勢信息做出時間緊迫和高風險的決策。最近的悲慘事件導致了不必要的傷亡,海軍行動中涉及決策復雜性,并特別突出了 OODA 循環(觀察、定向、決策和評估)中的挑戰。涉及使用武器系統的殺傷鏈決策是 OODA 循環中一個特別緊張的類別——具有難以確定的意外威脅、縮短的決策反應時間和致命的后果。有效的殺傷鏈需要正確設置和使用船上傳感器;未知接觸者的識別和分類;基于運動學和智能的接觸意圖分析;環境意識;以及決策分析和資源選擇。

該項目探索了使用自動化和人工智能 (AI) 來改進海軍殺傷鏈決策。該團隊研究了海軍殺傷鏈功能,并為每個功能制定了特定的評估標準,以確定特定 AI 方法的功效。該團隊確定并研究了 AI 方法,并應用評估標準將特定的 AI 方法映射到特定的殺傷鏈功能

圖:利用人工智能改進海軍殺傷鏈的作戰概念

總結

當前的海軍行動通常是快節奏的、關鍵的,并且需要做出高風險的決策,這些決策有時基于非常動態的戰區中的不確定信息。許多例子強調了提高決策效率的必要性以及減輕觀察團隊負擔的必要性。缺乏上述情況的例子包括 2017 年的菲茨杰拉德號航空母艦 (DDG 62) 和 MV ACX Crystal相撞,以及 2009 年皇家港口號航空母艦 (CG 73) 的擱淺。一些根本原因是相關人員缺乏經驗、疲勞和壓力.

上述事故展示了軍事行動的難度,并展示了 OODA(觀察、定向、決策和評估)循環中的挑戰(Jones 等人,2020 年)。人為錯誤、人的認知限制和海軍作戰固有的決策復雜性導致了 OODA 循環中的挑戰,更具體地說,是殺傷鏈過程中的挑戰。

現代戰斗空間由來自常規陸地、空中和海洋等多個領域以及來自太空和網絡空間的大量數據組成。決策者需要考慮許多因素,包括交戰規則 (ROE)、要使用的武器、傳感器和意圖評估。發現、修復、跟蹤、瞄準、參與、評估 (F2T2EA) 殺傷鏈模型緩解了該過程的一些困難(參謀長聯席會議,2013 年)。人工智能 (AI) 和機器學習 (ML) 可以通過分析備選方案和使用評估標準將 AI 方法映射到殺傷鏈功能,從而幫助海軍在戰術領域做出殺傷鏈決策。這是在本報告的五個章節中分三個階段完成的。

本報告利用了數百個資源,主要利用了美海軍研究生院 AI-OODA 團隊在其 Capstone 報告(2020 年)中進行的先前研究,“利用人工智能 (AI) 進行空中和導彈防御 (AMD):以結果為導向的決策援助。”他們將他們的工作與 John Boyd 的觀察、定向、決定和行動決策框架相結合。作為他們分析的初步步驟,AI-OODA 團隊將特定的 OODA 功能明確且緊密地耦合到特定的 F2T2EA 功能。然而,本報告斷言 OODA 循環是一個決策循環,它嵌套在殺傷鏈的每個功能中,而不是在高壓力或低壓力情況下專門映射到一個或多個殺傷鏈功能。團隊基于 F2T2EA 模型開發了一組 28 個殺傷鏈功能。

在制定將 AI 方法映射到殺傷鏈的評估標準時,很難確定一個好的決策,這對于決策評估至關重要。在評估決策時,必須考慮選擇行動時的知識意識狀態以及解釋能力。使用了幾種對決策進行評分的方法,從定義和優先考慮感興趣的“武器-目標”到制定評分標準和報告評估結果,以供其他人審查。

目前,人工智能的狀態非常廣泛,必須對其進行解釋,以了解人工智能對殺傷鏈中功能的適用性。本報告討論了所選 AI 方法的高級概述,并突出顯示了部分最流行的方法。首先,沒有普遍接受的定義,這很難定義人工智能。其次,人工智能與機器學習 (ML) 存在差異。 ML 允許在準確性和可預測性方面取得增量收益; AI 接收數據并通過算法提供輸出。人工智能的歷史從 1940 年代艾倫·圖靈 (Alan Turing) 的加密機器到 1980 年代美國政府在戰略計算計劃中的使用,再到今天在聯合人工智能中心 (JAIC) 中的人工智能戰略五個支柱,從領先的人工智能人力到安全和倫理。美國國防高級研究計劃局 (DARPA) 在 3-wave 框架中描述了 AI 的發展方向,分為手工知識 (Wave 1)、統計學習 (Wave 2) 和上下文推理 (Wave 3) 在 1-4 個維度內情報參數的屬性(Launchbury 2017)。這些屬性包括感知、推理、抽象和學習。

人工智能涉及可以根據輸入值預測結果的監督學習。有幾種使用監督學習進行學習的技術。包括線性回歸和分類。此外,許多數值方法可以分析發生的學習有效性,例如 F-score 和 Accuracy score。人工智能還可以使用無監督學習,它使用算法來發現未標記數據集中的數據模式或分組。在分析未知(y)響應以揭示標記(x)數據中的模式時,無監督學習是有益的。數據分析界的一個著名例子是鳶尾花(Iris flower)數據集。僅使用標記的數據,可以看到響應聚集在一起,并且可以確定響應中存在模式(花的種類)。無監督學習的方法包括聚類和 K-means,但還有其他方法。強化學習有一個代理能夠接收來自環境的反饋并理解基本目標。此外,正如 Sutton 和 Barto 在(2018 年)中解釋的那樣,探索和開發之間存在權衡。最后,生成對抗網絡 (GAN) 利用無監督學習和強化學習,通常用于神經網絡 (NN)。神經網絡是機器學習算法的極好來源,它有大量的輸入,而這些輸入又會產生大量的計算。 NN 非常適合用于模擬、自然語言處理、博弈論和計算機視覺。 NN 只是一種將輸入映射到輸出的簡單方法,可以在此過程中進行學習。然而,NN 可以被描述為一種“黑盒”學習技術,因為很難解釋正在發生的事情,并且通常需要一種可解釋的 AI (XAI) 技術。 XAI 的三個主要組成部分是可解釋模型、解釋界面和解釋心理學(Gunning 2019)。數據安全必須與“大數據”一起考慮,“大數據”是指非結構化、復雜和大型數據集,具有五個 v 特征:數量、速度(數據量隨時間變化的增加)、多樣性、真實性和價值。其他理論包括決策理論、模糊邏輯和效用函數

使用上述文獻綜述,該團隊開發了一個框架,用于將 AI/ML 映射到 AMD(空中導彈防御)殺傷鏈。采取了四個步驟:1) 建立模型框架,2) 確定決策點,3) 應用 AI/ML 方法,以及 4) 分析結果。該團隊確定了以下用于殺傷鏈映射分析的 AI/ML 方法:線性回歸、邏輯回歸、聚類、關聯、隨機森林、神經網絡、GAN 和樸素貝葉斯。評估標準被稱為“決策點”并提出四個問題:(1)所需輸出的類型是什么,(2)所需的學習類型是什么,(3)可解釋性(XAI)是什么水平需要,以及 (4) 需要多少個預測變量?該團隊通過基于一組決策點和評分過程評估每個殺傷鏈功能的每種方法來執行映射。對于被認為非常適合某項任務的方法,得分為+1,如果該方法適合但次優,則為0,如果該方法不適合該任務,則為–1。

該團隊進行了映射分析,根據與殺傷鏈的 28 個功能中的每一個功能相關的評估標準(決策點)分析 AI 方法。該團隊使用評分方法來確定每個殺傷鏈功能的最佳整體 AI/ML 分數。團隊的映射顯示為 0。

該團隊的 AI/ML 映射到殺傷鏈功能為國防部和海軍提供了兩個關鍵好處。首先,映射本身是設計和開發支持殺傷鏈決策的人工智能戰術決策輔助工具的重要起點和基礎。其次,該團隊將 AI 方法映射到殺傷鏈的分析過程可用于了解 AI 在許多其他軍事和非軍事領域的應用。識別適當的人工智能方法、制定評估標準和評分過程以及制定過程功能以進行分析映射的過程對于支持許多不同人工智能系統的工程具有深遠的潛力。

表1:AI/ML方法到殺傷鏈的映射

付費5元查看完整內容

【標 題】

Wargaming in Professional Military Education: Challenges and Solutions

職業軍事教育中的兵棋推演:挑戰與解決方案

【作 者】

美國海軍陸戰隊埃里克·沃爾特斯(Eric M. Walters)上校(退役)

【摘 要】

鑒于強調在專業軍事教育中使用兵棋推演,學校、作戰部隊和支持機構的教官——尤其是那些本身沒有經驗的兵棋推演者——如何去做呢?本文解釋了在經驗豐富專家的幫助下,為選定、修改或內部設計的嚴格兵棋式推演制定理想的學習成果的必要性。總結了最近的相關學術成果,它提供了促進協作對話的基本術語和概念,并就這種動態和沉浸式教學方法的常見但可避免的陷阱提供了建議。

【正 文】

對于那些認為兵棋推演不僅僅是一種娛樂消遣的人來說,商業兵棋推演曾經是——而且可以說仍然是——一種小眾愛好。在 20 世紀和 21 世紀初的歷史中,只有相對較小比例的軍人和學者經常進行所謂的嚴格式兵棋推演。過去,這一想法受到制度性的抵制,在職業軍事教育(PME)中使用一些人認為是兒童游戲的東西;雖然最近這種恥辱感有所減輕,但對于外行來說,兵棋推演的學習障礙仍然很高。兵棋推演可能很難學習,甚至更難戰勝有能力的對手。然而,我們已經到了 2021 年,軍事兵棋推演似乎正在 PME 學校、作戰部隊甚至支持機構中復活。海軍陸戰隊司令大衛 H. 伯杰將軍在他的指揮官規劃指南中,強調了在 PME 中練習軍事決策的必要性,這是教育兵棋推演的主要目的。但一個事實仍然存在。對于那些有興趣使用和設計兵棋推演來教授軍事判斷力的人來說,這種教學方法似乎很難有效實施。學術界的成功案例涉及作戰部隊中已經是兵棋推演者的教授、教官和海軍陸戰隊領導人。不是兵棋推演者但教軍事決策的人如何弄清楚要使用什么兵棋推演?如何使用它?各種可用游戲的優點和局限性是什么?整合兵棋推演和課程有哪些挑戰,如何克服這些挑戰?本文旨在幫助那些不熟悉兵棋推演的人定位,并就在教授決策中的軍事判斷時使用它們的經過驗證的最佳實踐提供建議。

提 綱

1 教育者如何使用游戲來教學生?
1.1 了解戰術、作戰和戰略中力量、空間和時間之間的關系
?1.2 在兵棋推演中模擬現實“決策環境”以解決決策困境
?1.3 在兵棋推演環境中體驗摩擦、不確定性、流動性、無序和復雜性的交互動力學
1.4 鍛煉創造性和批判性思維:準備、參與和分析兵棋推演活動

2 哪種類型的兵棋推演最適合學習目標?
?2.1 角色扮演游戲 (RPG)
? ?2.2 研討會矩陣游戲
2.3 系統游戲
?2.4 紙牌游戲

3 哪種情況最適合使用——歷史情景還是假設情景?

4 兵棋推演教學——挑戰與解決方案
?4.1 克服設計偏見
?4.2 時間和復雜性的挑戰
?4.3 對教師要求的考慮
?4.4 兵棋推演支持單位教育和凝聚力

付費5元查看完整內容

【報告概要】

認識到地面自主系統需要在未知的任務中運行,北約正在對地面車輛自主移動建模和仿真進行投資,以改進和準備未來運作。來自世界各地的北約工程師和科學家正在努力而有目的地塑造未來的作戰能力,并作為地面部隊保持準備和彈性。隨著北約展望未來,地面車輛界有機會幫助塑造陸軍在實現國家和國際安全目標方面的獨特作用。隨著情報、監視、目標獲取和偵察能力的快速發展,確保自主機動性和操作變得更加重要。北約的未來部隊必須能夠并準備好在極端條件下執行各種任務,因此它必須準備好運用地面力量/地面部隊,以在整個軍事行動中實現戰略成果。

地面自主系統是許多北約國家未來軍事戰略的關鍵部分,商業公司正在競相開發自主系統以率先進入市場。在這場部署這些系統的競賽中,仍然缺乏對這些系統的能力和可靠性的了解。自主地面系統的一項關鍵性能衡量指標是其在道路上和越野時的機動性。自主武器系統的開發和部署通常指向幾個軍事優勢,例如作為力量倍增器,更重要的是,可能需要更少的作戰人員來完成特定任務。與商業自治系統不同,軍隊必須在可能不存在道路的未知和非結構化環境中運作,但物資必須到達前線。在戰場上,機動性是生存能力的關鍵,指揮官知道在什么地形上部署哪種車輛至關重要。指揮官需要有能力評估自己和敵方部隊在作戰區域的車輛機動性,這將增加對任務規劃的信心,并降低因車輛受損而導致任務失敗的風險。

北約國家聯合探索評估地面自主系統性能和可靠性的方法,制定一項戰略,以制定一個總體框架,以開發、整合和維持先進的載人和地面自主系統能力當前和未來的力量。該活動利用了 AVT-ET-148、AVT-248 和 AVT-CDT-308 在下一代北約參考移動模型 (NG-NRMM) 上的結果,并共同證明了自動駕駛汽車具有專門的建模和仿真要求關于流動性。隨后,開發了任務領域,并組建了團隊以開展以下工作

  • 自主軍事系統 M&S 的挑戰和特殊要求

  • 與自主軍事系統相關的定義

  • 當前可用于評估自主系統移動性的軟件

  • 評估移動性與數據通信的相互依賴性的方法

  • 以NG-NRMM AVT-248 結果為基礎,確定評估自主系統越野機動性的方法

這項工作提供了一份文件,簡要概述了現有能力、計劃的未來活動以及后續研究任務組 (RTG) 的戰略方向。這份總結報告將詳細介紹這些成就,并為自主導航框架的開發和實施提供建議。

付費5元查看完整內容
北京阿比特科技有限公司