亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

現在是學習集成方法的最佳時機。本書介紹的模型主要分為三類//www.manning.com/books/ensemble-methods-for-machine-learning

基礎集成方法——每個人都聽說過的經典方法,包括歷史集成技術,如bagging、隨機森林和AdaBoost * 最先進的集成方法——現代集成時代經過試驗和測試的強大工具,它們構成了許多現實世界中生產中的預測、推薦和搜索系統的核心 * 新興的集成方法-最新的方法的研究代工廠處理新的需求和新興的優先級,如可解釋性

每一章將介紹一種不同的集成技術,使用三管齊下的方法。首先,你將通過逐步可視化學習實際是如何進行的,了解每種集成方法背后的直覺。其次,你將自己實現每個集成方法的基本版本,以完全理解算法的具體細節。第三,你將學習如何實際應用強大的集成庫和工具。 大多數章節都有自己的案例研究,這些案例來自手寫數字預測、推薦系統、情感分析、需求預測等應用。這些案例研究在適當的情況下解決了幾個現實世界的問題,包括預處理和特征工程,超參數選擇,高效的訓練技術和有效的模型評估。 本書分為三部分,共九章。第1部分是集成方法的簡單介紹,第2部分介紹并解釋了幾個基本的集成方法,第3部分涵蓋了高級主題。 第1部分,“集成的基礎”,介紹集成方法以及為什么你應該關注它們。這一部分還包含本書其余部分將介紹的集成方法的路線圖。 ?第1章討論了集成方法和基本的集成術語。它還引入了適應性與復雜性的權衡(或者更正式的叫法是偏差-方差權衡)。你將在本章中構建第一個集成。 第2部分,“基本集成方法”,介紹了幾個重要的集成方法族,其中許多被認為是“基本的”,在現實世界的應用中廣泛使用。在每一章中,你都將學習如何從零開始實現不同的集成方法,它們的工作原理,以及如何將它們應用于實際問題。

?第2章開始我們的旅程,平行集成方法,特別是平行同質集成。集成方法包括bagging、隨機森林、粘貼、隨機子空間、隨機補丁和額外的樹。 ?第3章繼續介紹更多并行集成,但本章的重點是并行異構集成。介紹的集成方法包括通過多數投票組合基礎模型、通過加權組合、使用Dempster-Shafer進行預測融合以及通過堆疊進行元學習。 ?第4章介紹了另一類集成方法——順序自適應集成——特別是將許多弱模型提升為一個強大模型的基本概念。介紹的集成方法包括Ada- Boost和LogitBoost。 ?第5章建立在boosting的基本概念之上,并涵蓋了另一種基本的序列集成方法,梯度boosting,它將梯度下降與boosting相結合。本章將討論如何使用scikit-learn和LightGBM訓練梯度增強集成。 ?第6章繼續探索牛頓boosting的序列集成方法,牛頓boosting是梯度boosting的有效擴展,結合了牛頓下降和boosting。本章將討論如何使用XGBoost訓練Newton boosting集合。 第3部分“實際應用中的集成:使集成方法適用于數據”向您展示了如何將集成方法應用于許多場景,包括具有連續和計數型標簽的數據集以及具有分類特征的數據集。你還將學習如何解釋集合以及它們的預測: ?第7章展示了我們如何為不同類型的回歸問題和廣義線性模型訓練集成,其中訓練標簽是連續的或計數的。本章涵蓋了線性回歸、泊松回歸、伽馬回歸和Tweedie回歸的并行和順序集成。 ?第8章確定了使用非數值特征學習的挑戰,特別是分類特征,以及將幫助我們為此類數據訓練有效集成的編碼方案。本章還討論了兩個重要的實際問題:數據泄漏和預測偏移。最后,我們將看到如何使用ordered boosting和CatBoost克服這些問題。 ?第9章從集成方法的角度涵蓋了新興的非常重要的主題可解釋人工智能。本章將介紹可解釋性的概念以及它的重要性。還討論了幾種常見的黑盒可解釋性方法,包括排列特征重要性、部分依賴圖、代理方法、局部可解釋的模型無關解釋、Shapley值和Shapley加性解釋。介紹了玻璃盒集成方法、可解釋增強機和InterpretML包。 ?結語以其他主題結束我們的旅程,以供進一步探索和閱讀。

付費5元查看完整內容

相關內容

“機器學習是近20多年興起的一門多領域交叉學科,涉及概率論、統計學、逼近論、凸分析、算法復雜度理論等多門學科。機器學習理論主要是設計和分析一些讓 可以自動“ ”的算法。機器學習算法是一類從數據中自動分析獲得規律,并利用規律對未知數據進行預測的算法。因為學習算法中涉及了大量的統計學理論,機器學習與統計推斷學聯系尤為密切,也被稱為統計學習理論。算法設計方面,機器學習理論關注可以實現的,行之有效的學習算法。很多 問題屬于 ,所以部分的機器學習研究是開發容易處理的近似算法。” ——中文維基百科

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

本書為表示提供了簡明而全面的指南,這是機器學習(ML)的核心。最先進的實際應用涉及許多高維數據分析的挑戰。不幸的是,許多流行的機器學習算法在面對龐大的基礎數據時,在理論和實踐中都無法執行。本書恰當地介紹了這個問題的解決方案。 此外,這本書涵蓋了廣泛的表示技術,對學者和ML從業者都很重要,如局部敏感哈希(LSH),距離度量和分數范數,主成分(PCs),隨機投影和自動編碼器。書中提供了幾個實驗結果來證明所討論技術的有效性。 本書討論了機器學習(ML)中最重要的表示問題。在使用機器從數據中學習類/聚類抽象時,以適合有效和高效機器學習的形式表示數據是很重要的。在本書中,我們建議涵蓋各種在理論和實踐中都很重要的表示技術。在當前興趣的實際應用中,數據通常是高維的。這些應用包括圖像分類、信息檢索、人工智能中的問題解決、生物和化學結構分析以及社會網絡分析。這種高維數據分析的一個主要問題是,大多數流行的工具,如k近鄰分類器、決策樹分類器,以及一些依賴于模式間距離計算的聚類算法都不能很好地工作。因此,在低維空間中表示數據是不可避免的。 常用的降維技術有以下幾種:

  1. 特征選擇方案:在這里,給定的特征集的一個適當子集被識別并用于學習。
  2. 特征提取方案:在學習中使用給定特征的線性或非線性組合。 一些流行的線性特征提取器基于主成分、隨機投影和非負矩陣分解。我們在本書中涵蓋了所有這些技術。關于用主成分子集表示數據,文獻中存在一些誤解。一般認為,前幾個主成分是對數據進行分類的正確選擇。我們在書中論證并實際地表明,這種做法可能是不正確的。

付費5元查看完整內容

現在是進入數據科學領域的最佳時機。但是你從哪里開始呢?數據科學是一個廣泛的領域,包括統計學、機器學習和數據工程等方面。人們很容易變得不知所措,或最終只學習數據科學的一小部分或單一的方法。

//www.manning.com/books/exploring-data-science

探索數據科學》由五個章節組成,向你介紹了數據科學的各個領域,并解釋了哪種方法最適合每個領域。《實用數據科學與R》的作者John Mount和Nina Zumel選擇了這些章節來給你展示許多數據領域的大圖景。您將學習時間序列、神經網絡、文本分析等。當您探索不同的建模實踐時,您將看到如何在數據科學中使用R、Python和其他語言的實際示例。

數據科學是一個涉及統計學、機器學習和數據工程等方面的廣泛領域。工具、方法和工作的樣子很大程度上取決于您的問題領域和觀點。我們的書《實用數據科學與R》向讀者介紹了R語言中的基本預測建模。但是,我們的意圖絕不是暗示數據科學家可以將自己限制在一個問題領域或一種實現語言。現在是進入數據科學的大好時機。免費工具和材料的數量激增。存儲和管理大型數據集現在明顯更容易了。然而,這種多樣性似乎勢不可擋,并造成分裂。傳統的統計學家可能不認為文本分析是數據科學,類似地,使用神經網絡分析圖像的人可能不會欣賞經典的統計推理。我們相信你的問題有助于你選擇你的技術。為了說明這個概念,我們把我們的書和曼寧的其他書名中的章節樣本放在一起。它們涵蓋了與數據科學相關的各種主題,突出了各種領域和編程語言。我們希望這些選擇能讓您更好地了解許多可用的工具,以解決特定的數據科學問題。

付費5元查看完整內容

本書分為三個部分。第一部分介紹了分布式強化學習的構建模塊。我們首先介紹了我們的基本研究對象,收益分布和分布Bellman方程(第二章)。第三章介紹了分類時間差分學習,一種簡單的學習收益分布的算法。在第三章結束時,讀者應該理解分布式強化學習的基本原則,并且應該能夠在簡單的實際設置中使用它。

第二部分是對分布式強化學習理論的發展。第4章介紹了一種用于測量返回分布之間距離的語言,以及與這些分布交互的操作符。第5章介紹了實現分布式強化學習所需的概率表示的概念;在此基礎上,研究了用這種表示來計算和近似收益分布的問題,并引入了分布動態規劃的框架。第6章研究了如何從樣本中以增量的方式學習返回分布,給出了類別時間差分學習的正式結構,以及其他算法,如分位數時間差異學習。第7章將這些思想擴展到最優決策的設置(也稱為控制設置)。最后,第8章介紹了基于統計泛函概念的分布強化學習的不同視角。在第二部分結束時,讀者應該理解在設計分布式強化學習算法時出現的挑戰,以及解決這些挑戰的可用工具。

第三部分和最后一部分為實際場景ios開發了分布式強化學習。第九章回顧了線性值函數逼近的原理,并將這些思想推廣到分布環境中。第10章討論了如何將分布方法與深度神經網絡相結合來獲得深度強化學習的算法,并提出了一個模型來研究這種結合所產生的現象。第11章討論了分布式強化學習在兩個進一步研究領域(多主體學習和神經科學)的新興應用,并得出結論。

//www.distributional-rl.org/

付費5元查看完整內容

掌握使用PyTorch實現深度學習解決方案的實踐方面,使用實踐方法理解理論和實踐。Facebook的人工智能研究小組開發了一個名為PyTorch的平臺,該平臺擁有良好的理論基礎和實用技能,為你在現實世界中應用深度學習做好了準備。

首先,您將了解PyTorch的深度學習是如何以及為什么成為一種具有開創性的框架,它帶有一組工具和技術來解決現實世界中的問題。接下來,這本書將為你打下線性代數、向量微積分、概率和最優化的數學基礎。在建立了這個基礎之后,您將繼續討論PyTorch的關鍵組件和功能,包括層、損失函數和優化算法。

您還將了解基于圖形處理單元(GPU)的計算,這對訓練深度學習模型是必不可少的。介紹了深度學習的前饋網絡、卷積神經網絡、循環神經網絡、長短時記憶網絡、自動編碼器網絡和生成對抗網絡等關鍵網絡結構。在許多訓練和優化深度學習模型的技巧的支持下,這個版本的Python深度學習解釋了使用PyTorch將這些模型帶到生產中的最佳實踐。

你會: 回顧機器學習的基本原理,如過擬合、欠擬合和正則化。 了解深度學習的基本原理,如前饋網絡,卷積神經網絡,遞歸神經網絡,自動微分和隨機梯度下降。 使用PyTorch深入應用線性代數 探索PyTorch的基本原理及其構建塊 使用調優和優化模型

付費5元查看完整內容

深入機器學習模型的超參數調優,關注什么是超參數以及它們是如何工作的。這本書討論了超參數調優的不同技術,從基礎到高級方法。

這是一個循序漸進的超參數優化指南,從什么是超參數以及它們如何影響機器學習模型的不同方面開始。然后通過一些基本的(蠻力的)超參數優化算法。進一步,作者提出了時間和內存約束的問題,使用分布式優化方法。接下來,您將討論超參數搜索的貝葉斯優化,它從以前的歷史中學習。

這本書討論了不同的框架,如Hyperopt和Optuna,它們實現了基于順序模型的全局優化(SMBO)算法。在這些討論中,您將關注不同的方面,比如搜索空間的創建和這些庫的分布式優化。

機器學習中的超參數優化創建了對這些算法如何工作的理解,以及如何在現實生活中的數據科學問題中使用它們。最后一章總結了超參數優化在自動機器學習中的作用,并以創建自己的AutoML腳本的教程結束。

超參數優化是一項繁瑣的任務,所以請坐下來,讓這些算法來完成您的工作。

//link.springer.com/book/10.1007/978-1-4842-6579-6#about

你會:

了解超參數的變化如何影響模型的性能。

將不同的超參數調優算法應用于數據科學問題

使用貝葉斯優化方法創建高效的機器學習和深度學習模型

使用一組機器來分配超參數優化

利用超參數優化方法實現自動機器學習

付費5元查看完整內容

學習使用Python分析數據和預測結果的更簡單和更有效的方法

Python機器學習教程展示了通過關注兩個核心機器學習算法家族來成功分析數據,本書能夠提供工作機制的完整描述,以及使用特定的、可破解的代碼來說明機制的示例。算法用簡單的術語解釋,沒有復雜的數學,并使用Python應用,指導算法選擇,數據準備,并在實踐中使用訓練過的模型。您將學習一套核心的Python編程技術,各種構建預測模型的方法,以及如何測量每個模型的性能,以確保使用正確的模型。關于線性回歸和集成方法的章節深入研究了每種算法,你可以使用書中的示例代碼來開發你自己的數據分析解決方案。

機器學習算法是數據分析和可視化的核心。在過去,這些方法需要深厚的數學和統計學背景,通常需要結合專門的R編程語言。這本書演示了機器學習可以如何實現使用更廣泛的使用和可訪問的Python編程語言。

使用線性和集成算法族預測結果

建立可以解決一系列簡單和復雜問題的預測模型

使用Python應用核心機器學習算法

直接使用示例代碼構建自定義解決方案

機器學習不需要復雜和高度專業化。Python使用了更簡單、有效和經過良好測試的方法,使這項技術更容易為更廣泛的受眾所接受。Python中的機器學習將向您展示如何做到這一點,而不需要廣泛的數學或統計背景。

付費5元查看完整內容

深入機器學習模型的超參數調整,關注什么是超參數以及它們是如何工作的。這本書討論了不同的超參數調優技術,從基礎到高級方法。

這是一個關于超參數優化的分步指南,從什么是超參數以及它們如何影響機器學習模型的不同方面開始。然后介紹一些基本的超參數優化算法。此外,作者利用分布式優化方法解決了時間和內存約束的問題。接下來您將討論超參數搜索的貝葉斯優化,它從以前的歷史中吸取了教訓。

這本書討論了不同的框架,如Hyperopt和Optuna,它實現了基于順序模型的全局優化(SMBO)算法。在這些討論中,您將關注不同的方面,比如搜索空間的創建和這些庫的分布式優化。

機器學習中的超參數優化有助于理解這些算法是如何工作的,以及如何在現實數據科學問題中使用它們。最后一章總結了超參數優化在自動機器學習中的作用,并以一個創建自己的自動腳本的教程結束。

超參數優化是一項冗長乏味的任務,所以請坐下來,讓這些算法來完成您的工作。你將學到什么

  • 了解超參數中的更改如何影響模型的性能。
  • 對數據科學問題應用不同的超參數調優算法
  • 使用貝葉斯優化方法來創建高效的機器學習和深度學習模型
  • 使用計算機集群分發超參數優化
  • 利用超參數優化方法實現機器自動學習

這本書是給誰的

  • 從事機器學習的專業人員和學生。

在構建機器學習模型時選擇正確的超參數是數據科學從業者面臨的最大問題之一。這本書是超參數優化(HPO)的指南。它從超參數的最基本定義開始,并帶您使用高級HPO技術構建您自己的AutoML腳本。這本書是打算為學生和數據科學專業人員。這本書由五章組成。

  • 第1章幫助您理解超參數是如何影響模型構建的整個過程的。它告訴我們HPO的重要性。
  • 第2章介紹了基本且易于實現的HPO方法。
  • 第3章介紹了解決時間和內存限制的各種技術。
  • 第4章和第5章討論了貝葉斯優化、相關庫和AutoML。

這本書的目的是讓讀者以一種直觀和實用的方式來理解HPO的概念,每個部分都提供了代碼實現。我希望你能喜歡。

付費5元查看完整內容

這本書是關于運用機器和深度學習來解決石油和天然氣行業的一些挑戰。這本書開篇簡要討論石油和天然氣勘探和生產生命周期中不同階段的數據流工業操作。這導致了對一些有趣問題的調查,這些問題很適合應用機器和深度學習方法。最初的章節提供了Python編程語言的基礎知識,該語言用于實現算法;接下來是監督和非監督機器學習概念的概述。作者提供了使用開源數據集的行業示例以及對算法的實際解釋,但沒有深入研究所使用算法的理論方面。石油和天然氣行業中的機器學習涵蓋了包括地球物理(地震解釋)、地質建模、油藏工程和生產工程在內的各種行業主題。

在本書中,重點在于提供一種實用的方法,提供用于實現機器的逐步解釋和代碼示例,以及用于解決油氣行業現實問題的深度學習算法。

你將學到什么

  • 了解石油和天然氣行業的端到端的行業生命周期和數據流
  • 了解計算機編程和機器的基本概念,以及實現所使用的算法所需的深度學習
  • 研究一些有趣的行業問題,這些問題很有可能被機器和深度學習解決
  • 發現在石油和天然氣行業中執行機器和深度學習項目的實際考慮和挑戰

這本書是給誰的

  • 石油和天然氣行業的專業人員,他們可以受益于對機器的實際理解和解決現實問題的深度學習方法。
付費5元查看完整內容
北京阿比特科技有限公司