亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

題目:Adversarial Label-Flipping Attack and Defense for Graph Neural Networks 會議: ICDM 2020 論文代碼: //github.com/MengmeiZ/LafAK

隨著GNN的廣泛應用,其對于對抗攻擊的魯棒性越來越受到人們的關注。然而,現有的工作忽略了對抗標簽翻轉攻擊,其中攻擊者可以通過操縱少量的訓練標簽毒害模型訓練。探索GNN對標簽翻轉攻擊的魯棒性是非常關鍵的,特別是當標簽從外部來源收集并且容易注入錯誤標簽時(例如推薦系統)。在這項工作中我們介紹了第一個對抗標簽翻轉攻擊GNN的研究,并提出了一種有效的攻擊模型LafAK,LafAK利用GCN的近似閉合解和不可微目標的連續代理,通過基于梯度的優化器高效地產生攻擊。此外,我們還指出了GNNs易受標簽翻轉攻擊的一個關鍵原因是對翻轉節點的過擬合。基于此,我們提出了一個防御框架,該框架引入了一個基于社區分類的自監督任務作為正則化來避免過擬合。我們在四個真實的數據集上展示了我們提出的攻擊模型和防御模型的有效性。

付費5元查看完整內容

相關內容

圖神經網絡 (GNN) 是一種連接模型,它通過圖的節點之間的消息傳遞來捕捉圖的依賴關系。與標準神經網絡不同的是,圖神經網絡保留了一種狀態,可以表示來自其鄰域的具有任意深度的信息。近年來,圖神經網絡(GNN)在社交網絡、知識圖、推薦系統、問答系統甚至生命科學等各個領域得到了越來越廣泛的應用。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

大數據分析的一個關鍵挑戰是如何收集大量(標記)數據。眾包旨在通過聚合和估算來自廣泛的客戶/用戶的高質量數據(如文本的情感標簽)來解決這一挑戰。現有的眾包研究集中于設計新的方法來提高來自不可靠/嘈雜客戶端的聚合數據質量。然而,迄今為止,這種眾包系統的安全方面仍未得到充分的探索。我們的目標是在這項工作中填補這一缺口。具體來說,我們表明眾包很容易受到數據中毒攻擊,即惡意客戶端提供精心制作的數據來破壞聚合數據。我們將我們所提議的數據中毒攻擊規劃為一個優化問題,使聚合數據的錯誤最大化。我們在一個合成的和兩個真實的基準數據集上的評估結果表明,所提出的攻擊可以顯著地增加聚合數據的估計誤差。我們還提出了兩種防御來減少惡意客戶端的影響。我們的實證結果表明,所提出的防御方法可以顯著降低數據中毒攻擊的估計誤差。

//www.zhuanzhi.ai/paper/d25992f7a7df3ee1468f244f05a8ba03

付費5元查看完整內容

隨著數據越來越多地存儲在不同的筒倉中,社會越來越關注數據隱私問題,傳統的人工智能(AI)模型集中訓練正面臨效率和隱私方面的挑戰。最近,聯邦學習(FL)作為一種替代解決方案出現,并在這種新的現實中繼續蓬勃發展。現有的FL協議設計已經被證明對系統內外的對抗是脆弱的,危及數據隱私和系統的魯棒性。除了訓練強大的全局模型外,最重要的是設計具有隱私保障和抵抗不同類型對手的FL系統。在本文中,我們對這一問題進行了第一次全面的綜述。通過對FL概念的簡明介紹,和一個獨特的分類涵蓋:1) 威脅模型; 2) 中毒攻擊與魯棒性防御; 3) 對隱私的推理攻擊和防御,我們提供了這一重要主題的可訪問的回顧。我們強調了各種攻擊和防御所采用的直覺、關鍵技術和基本假設。最后,我們對魯棒性和隱私保護聯合學習的未來研究方向進行了討論。

//www.zhuanzhi.ai/paper/678e6e386bbefa8076e699ebd9fd8c2a

引言

隨著計算設備變得越來越普遍,人們在日常使用中產生了大量的數據。將這樣的數據收集到集中的存儲設施中既昂貴又耗時。傳統的集中式機器學習(ML)方法不能支持這種普遍存在的部署和應用,這是由于基礎設施的缺點,如有限的通信帶寬、間歇性的網絡連接和嚴格的延遲約束[1]。另一個關鍵問題是數據隱私和用戶機密性,因為使用數據通常包含敏感信息[2]。面部圖像、基于位置的服務或健康信息等敏感數據可用于有針對性的社交廣告和推薦,造成即時或潛在的隱私風險。因此,私人數據不應該在沒有任何隱私考慮的情況下直接共享。隨著社會對隱私保護意識的增強,《通用數據保護條例》(GDPR)等法律限制正在出現,這使得數據聚合實踐變得不那么可行。

在這種情況下,聯邦學習(FL)(也被稱為協作學習)將模型訓練分發到數據來源的設備上,作為一種有前景的ML范式[4]出現了。FL使多個參與者能夠構建一個聯合ML模型,而不暴露他們的私人訓練數據[4],[5]。它還可以處理不平衡、非獨立和同分布(非i.i.d)數據,這些數據自然出現在真實的[6]世界中。近年來,FL獲得了廣泛的應用,如下一個單詞預測[6]、[7]、安全視覺目標檢測[8]、實體解析[9]等。

根據參與者之間數據特征和數據樣本的分布,聯邦學習一般可以分為水平聯邦學習(HFL)、垂直聯邦學習(VFL)和聯邦遷移學習(FTL)[10]。

具有同構體系結構的FL: 共享模型更新通常僅限于同構的FL體系結構,也就是說,相同的模型被所有參與者共享。參與者的目標是共同學習一個更準確的模型。具有異構架構的FL: 最近的努力擴展了FL,以協同訓練具有異構架構的模型[15],[16]。

FL提供了一個關注隱私的模型訓練的范式,它不需要數據共享,并且允許參與者自由地加入和離開聯盟。然而,最近的研究表明,FL可能并不總是提供足夠的隱私和健壯性保證。現有的FL協議設計容易受到以下攻擊: (1)惡意服務器試圖從個人更新中推斷敏感信息,篡改訓練過程或控制參與者對全局參數的看法;或者(2)一個敵對的參與者推斷其他參與者的敏感信息,篡改全局參數聚合或破壞全局模型。

在隱私泄露方面,在整個訓練過程中,通信模型的更新會泄露敏感信息[18]、[19],并導致深度泄露[20],無論是對第三方服務器還是中央服務器[7]、[21]。例如,如[22]所示,即使是很小一部分的梯度也可以揭示相當數量的有關本地數據的敏感信息。最近的研究表明,通過簡單地觀察梯度,惡意攻擊者可以在[20],[23]幾次迭代內竊取訓練數據。

在魯棒性方面,FL系統容易受到[24]、[25]和[26]、[27]、[28]、[29]的模型中毒攻擊。惡意參與者可以攻擊全局模型的收斂性,或者通過故意改變其本地數據(數據中毒)或梯度上傳(模型中毒)將后門觸發器植入全局模型。模型投毒攻擊可以進一步分為:(1)Byzantine 攻擊,攻擊者的目標是破壞全局模型[13]、[30]的收斂性和性能;(2)后門攻擊,對手的目標是在全局模型中植入一個后門觸發器,以欺騙模型不斷預測子任務上的敵對類,同時在主要任務[26],[27]上保持良好的性能。需要注意的是,后門模型投毒攻擊通常利用數據投毒來獲取有毒的參數更新[24]、[26]、[27]。

這些隱私和魯棒性攻擊對FL構成了重大威脅。在集中學習中,服務器控制參與者的隱私和模型魯棒性。然而,在FL中,任何參與者都可以攻擊服務器并監視其他參與者,有時甚至不涉及服務器。因此,理解這些隱私性和健壯性攻擊背后的原理是很重要的。

目前對FL的研究主要集中在系統/協議設計[10]、[31]、[32]。聯邦學習的隱私和穩健性威脅還沒有得到很好的探討。在本文中,我們調研了FL的隱私和魯棒性威脅及其防御方面的最新進展。特別地,我們關注由FL系統內部者發起的兩種特定威脅:1) 試圖阻止學習全局模型的中毒攻擊,或控制全局模型行為的植入觸發器;2) 試圖泄露其他參與者隱私信息的推理攻擊。表2總結了這些攻擊的特性。

付費5元查看完整內容

圖神經網絡(GNN)已經成為圖表示學習的事實標準,它通過遞歸地聚集圖鄰域的信息來獲得有效的節點表示。盡管 GNN 可以從頭開始訓練,但近來一些研究表明:對 GNN 進行預訓練以學習可用于下游任務的可遷移知識能夠提升 SOTA 性能。但是,傳統的 GNN 預訓練方法遵循以下兩個步驟:

在大量未標注數據上進行預訓練; 在下游標注數據上進行模型微調。 由于這兩個步驟的優化目標不同,因此二者存在很大的差距。

在本文中,我們分析了預訓練和微調之間的差異,并為了緩解這種分歧,我們提出了一種用于GNNs的自監督預訓練策略L2P-GNN。方法的關鍵是L2P-GNN試圖以可轉移的先驗知識的形式學習如何在預訓練過程中進行微調。為了將局部信息和全局信息都編碼到先驗信息中,我們在節點級和圖級設計了一種雙重自適應機制。最后,我們對不同GNN模型的預訓練進行了系統的實證研究,使用了一個蛋白質數據集和一個文獻引用數據集進行了預訓練。實驗結果表明,L2P-GNN能夠學習有效且可轉移的先驗知識,為后續任務提供好的表示信息。我們在//github.com/rootlu/L2P-GNN公開了模型代碼,同時開源了一個大規模圖數據集,可用于GNN預訓練或圖分類等。

總體來說,本文的貢獻如下:

  • 首次探索學習預訓練 GNNs,緩解了預訓練與微調目標之間的差異,并為預訓練 GNN 提供了新的研究思路。
  • 針對節點與圖級表示,該研究提出完全自監督的 GNN 預訓練策略。
  • 針對預訓練 GNN,該研究建立了一個新型大規模書目圖數據,并且在兩個不同領域的數據集上進行了大量實驗。實驗表明,該研究提出的方法顯著優于 SOTA 方法。

付費5元查看完整內容

盡管健壯的深度學習中的現有工作都集中在基于像素級別的小型規范擾動,但這可能無法解決在多個實際設置中遇到的擾動。在許多此類情況下,盡管可能無法獲得測試數據,但可能知道有關擾動類型(例如未知的旋轉度)的廣泛規范。我們考慮一種在看不見的測試域中預期具有魯棒性的設置。但偏離了訓練領域。雖然可能無法確切知道此偏差,但根據屬性先驗地指定了其廣泛的特征。我們提出了一種對抗訓練方法,該方法學習如何生成新樣本,從而最大程度地將分類器暴露于屬性空間,而無需訪問來自測試域的數據。我們的對抗訓練解決了最小-最大優化問題,通過優化內部最大化產生的對抗性擾動的損失,使內部最大化產生對抗性擾動,而外部最小化找到模型參數。我們證明了我們的方法在三種類型的自然擾動上的適用性-與對象相關的移動,幾何變換和常見的圖像破壞。我們的方法使深度神經網絡能夠抵抗各種自然擾動。我們通過展示在MNIST,CIFAR-10和CLEVR數據集的新變體上進行對抗訓練而獲得的深度神經網絡的魯棒性收益,從而證明了所提出方法的有效性。

//www.zhuanzhi.ai/paper/636acb141a5e0aea86f5cb8e864aca56

付費5元查看完整內容

Code://github.com/Shen-Lab/GraphCL Paper:

對于當前的圖神經網絡(GNNs)來說,圖結構數據的可泛化、可遷移和魯棒表示學習仍然是一個挑戰。與為圖像數據而開發的卷積神經網絡(CNNs)不同,自監督學習和預訓練很少用于GNNs。在這篇文章中,我們提出了一個圖對比學習(GraphCL)框架來學習圖數據的無監督表示。我們首先設計了四種類型的圖擴充來包含不同的先驗。然后,我們在四種不同的環境下系統地研究了圖擴充的各種組合對多個數據集的影響:半監督、無監督、遷移學習和對抗性攻擊。結果表明,與最先進的方法相比,即使不調優擴展范圍,也不使用復雜的GNN架構,我們的GraphCL框架也可以生成類似或更好的可泛化性、可遷移性和健壯性的圖表示。我們還研究了參數化圖增強的范圍和模式的影響,并在初步實驗中觀察了性能的進一步提高。

付費5元查看完整內容

我們研究在一種新穎實際的設定下對圖神經網絡的黑盒攻擊,我們限制攻擊者只能獲得部分節點的信息并且只能修改其中小部分的節點。在這樣的設定下,如何選擇節點變得愈發重要。我們證明圖神經網絡的結構歸納偏差能成為有效的黑盒攻擊源頭。具體來說,通過利用圖神經網路的向后傳播與隨機游走之間的聯系,我們表明基于梯度的常見白盒攻擊可以通過梯度和與PageRank類似的重要性分數之間的聯系而推廣到黑盒攻擊。在實踐中,我們發現基于這個重要性分數上確實很大的程度地增加了損失值,但是不能顯著提高分類錯誤的比率。我們的理論和經驗分析表明,損失值和誤分類率之間存在差異,即當受攻擊的節點數增加時,后者會呈現遞減的回報模式。因此,考慮到收益遞減效應,我們提出了一種貪心算法來校正這一重要性得分。實驗結果表明,所提出的選點程序在無需訪問模型參數或預測的前提下可以顯著提高常用數據集上常見GNN的誤分類率。

//arxiv.org/abs/2006.05057

付費5元查看完整內容

自監督學習由于能夠避免標注大規模數據集的成本而受到歡迎。它能夠采用自定義的偽標簽作為監督,并將學習到的表示用于幾個下游任務。具體來說,對比學習最近已成為計算機視覺、自然語言處理(NLP)等領域的自主監督學習方法的主要組成部分。它的目的是將同一個樣本的增廣版本嵌入到一起,同時試圖將不同樣本中的嵌入推開。這篇論文提供了一個廣泛的自我監督的方法綜述,遵循對比的方法。本研究解釋了在對比學習設置中常用的借口任務,以及到目前為止提出的不同架構。接下來,我們將對圖像分類、目標檢測和動作識別等多個下游任務的不同方法進行性能比較。最后,我們總結了目前方法的局限性和需要進一步的技術和未來方向取得實質性進展。

//arxiv.org/abs/2011.00362

概述:

隨著深度學習技術的發展,它已成為目前大多數智能系統的核心組件之一。深度神經網絡(DNNs)能夠從現有的大量數據中學習豐富的模式,這使得它在大多數計算機視覺(CV)任務(如圖像分類、目標檢測、圖像分割、動作識別)以及自然語言處理(NLP)任務(如句子分類、語言模型、機器翻譯等)中成為一種引人注目的方法。然而,由于手工標注數百萬個數據樣本的工作量很大,從標記數據中學習特征的監督方法已經幾乎達到了飽和。這是因為大多數現代計算機視覺系統(受監督的)都試圖通過查找大型數據集中數據點及其各自注釋之間的模式來學習某種形式的圖像表示。像GRAD-CAM[1]這樣的工作提出了一種技術,可以為模型所做的決策提供可視化的解釋,從而使決策更加透明和可解釋。

傳統的監督學習方法很大程度上依賴于可用的帶注釋的訓練數據的數量。盡管有大量的可用數據,但缺乏注解促使研究人員尋找替代方法來利用它們。這就是自監督方法在推動深度學習的進程中發揮重要作用的地方,它不需要昂貴的標注,也不需要學習數據本身提供監督的特征表示。

監督學習不僅依賴昂貴的注釋,而且還會遇到泛化錯誤、虛假的相關性和對抗攻擊[2]等問題。最近,自監督學習方法集成了生成和對比方法,這些方法能夠利用未標記的數據來學習潛在的表示。一種流行的方法是提出各種各樣的代理任務,利用偽標簽來幫助學習特征。諸如圖像inpainting、灰度圖像著色、拼圖游戲、超分辨率、視頻幀預測、視聽對應等任務已被證明是學習良好表示的有效方法。

生成式模型在2014年引入生成對抗網絡(GANs)[3]后得到普及。這項工作后來成為許多成功架構的基礎,如CycleGAN[4]、StyleGAN[5]、PixelRNN[6]、Text2Image[7]、DiscoGAN [8]等。這些方法激發了更多的研究人員轉向使用無標簽數據在自監督的設置下訓練深度學習模型。盡管取得了成功,研究人員開始意識到基于GAN的方法的一些并發癥。它們很難訓練,主要有兩個原因: (a)不收斂——模型參數發散很多,很少收斂; (b)鑒別器太過成功,導致生成網絡無法產生類似真實的假信號,導致學習無法繼續。此外,生成器和判別器之間需要適當的同步,以防止判別器收斂和生成器發散。

付費5元查看完整內容

原文地址://arxiv.org/abs/2006.05057

我們研究在一種新穎實際的設定下對圖神經網絡的黑盒攻擊,我們限制攻擊者只能獲得部分節點的信息并且只能修改其中小部分的節點。在這樣的設定下,如何選擇節點變得愈發重要。我們證明圖神經網絡的結構歸納偏差能成為有效的黑盒攻擊源頭。具體來說,通過利用圖神經網路的向后傳播與隨機游走之間的聯系,我們表明基于梯度的常見白盒攻擊可以通過梯度和與PageRank類似的重要性分數之間的聯系而推廣到黑盒攻擊。在實踐中,我們發現基于這個重要性分數上確實很大的程度地增加了損失值,但是不能顯著提高分類錯誤的比率。我們的理論和經驗分析表明,損失值和誤分類率之間存在差異,即當受攻擊的節點數增加時,后者會呈現遞減的回報模式。因此,考慮到收益遞減效應,我們提出了一種貪心算法來校正這一重要性得分。實驗結果表明,所提出的選點程序在無需訪問模型參數或預測的前提下可以顯著提高常用數據集上常見GNN的誤分類率。

付費5元查看完整內容

圖神經網絡(GNN)已經在許多具有挑戰性的應用中展示了優越的性能,包括小樣本學習任務。盡管GNN具有強大的從少量樣本中學習和歸納的能力,但隨著模型的深入,GNN通常會出現嚴重的過擬合和過平滑問題,這限制了模型的可擴展性。在這項工作中,我們提出了一個新的注意力GNN來解決這些挑戰,通過合并三重注意機制,即節點自我注意,鄰居注意和層記憶注意力。我們通過理論分析和實例說明了所提出的注意模塊可以改善小樣本學習的GNN的原因。廣泛的實驗表明,在mini-ImageNet 和Tiered-ImageNet數據集上,通過誘導和直推設置,提出的注意力GNN在小樣本學習方面優于基于最先進的GNN方法。

付費5元查看完整內容

論文題目: Adversarial Attacks and Defenses in Images, Graphs and Text: A Review

簡介: 深度神經網絡(DNN)在不同領域的大量機器學習任務中取得了前所未有的成功。然而,對抗性例子的存在引起了人們對將深度學習應用于對安全性有嚴苛要求的應用程序的關注。因此,人們對研究不同數據類型(如圖像數據、圖數據和文本數據)上的DNN模型的攻擊和防御機制越來越感興趣。近期,來自密歇根州立大學的老師和同學們,對網絡攻擊的主要威脅及其成功應對措施進行系統全面的綜述。特別的,他們在這篇綜述中,針對性的回顧了三種流行數據類型(即、圖像數據、圖數據和文本數據)。

付費5元查看完整內容
北京阿比特科技有限公司