人工智能(AI)和機器學習(ML)為整個技術生態系統提供了新的能力。作為新技術的基礎,最終軟件產品的安全性在很大程度上取決于底層供應鏈的安全性,包括其軟件依賴性。本研究通過對精選的人工智能庫樣本的依賴關系進行漏洞映射,對人工智能/機器學習供應鏈的一部分進行了研究。我們在樣本庫的依賴樹中尋找依賴深度與相應庫供應鏈中發現的漏洞數量之間的關系。我們考慮了多種開發工具和庫及其軟件依賴關系,所有這些都是開源軟件。了解開發供應鏈中存在的潛在風險、漏洞和依賴關系將為進一步安全開發 AI/ML 產品和確保其供應鏈的安全提供參考。
目前,美國政府內部并不存在同步收集情報和調查的能力,而從整體上減輕無人駕駛航空器系統帶來的新威脅需要這種能力。此外,擁有應對權力、知識和經驗的實體基本上都在獨立的環境中工作。本論文試圖找出最佳方法,匯集各個機構的力量,將情報和調查能力統一到應對無人機系統威脅的巨型行動中。為了解決這個問題,我們選擇了工作組、特遣部隊和單一機構指定作為可能的選擇,特別是考慮到它們的歷史先例和成功的可能性。每種方案都根據其接受兩個決定性特征的能力進行了比較:協作和承諾。分析結果表明,工作隊模式最終是全面應對無人機系統威脅的最有效手段。它通過利用情報和調查行動能力來妥善解決無人機系統殺傷鏈中六個步驟中的每一個步驟,在高度協作和承諾的環境中減輕了與當前技術和法律限制相關的挑戰。本論文概述的結論和相應建議提供了明確的方向和合理的實施計劃。
目前,美國政府內部并不存在同步收集情報和調查的能力,而這種能力是全面緩解無人駕駛航空器系統帶來的新威脅所必需的。此外,擁有應對權力、知識和經驗的實體基本上都在獨立的環境中工作。這其中有一些是現行法律限制所規定的,但也有一股潛在的自私自利的政治潮流在其中彌漫。
本論文試圖找出最佳方法,將各個機構的優勢集合起來,將情報和調查能力統一到一個巨無霸級別的響應中,以應對無人機系統的威脅。本研究揭示的三個主要問題包括:當前技術的局限性、法律障礙,以及對無人機系統 "殺傷鏈 "中一個方面的短視。工作組、特別工作組和單一機構指定是根據其歷史先例和成功可能性而特別選擇的方案。每種方案都根據其是否具備兩個決定性特征進行了比較:協作和承諾。
首先對工作組進行了審查,并最終將其排除在外。雖然工作組具有較高的協作水平,但在無人機系統威脅環境下,有效的承諾水平要求極低。此外,工作組在聯邦、州和地方政府中已經非常普遍,這使它們看起來更像是現狀而非創新選擇。
特遣部隊是第二個被審查的對象,不容忽視。與工作組不同,特遣部隊具有高度的協作性和承諾性。特遣部隊模式在整合情報和調查行動以應對恐怖主義、有組織犯罪和毒品等其他重大威脅方面也有成功的歷史。
最后分析的方案是指定單一機構。就承諾而言,這一選擇的評分極高,因為它要對其行動的成敗負全部責任。遺憾的是,單一機構指定在協作方面的排名相應很低。
分析結果表明,特遣部隊模式最終是全面應對無人機系統威脅的最有效手段。它通過利用情報和調查行動能力來妥善解決無人機系統 "殺傷鏈 "中六個步驟中的每一個步驟,在高度協作和承諾的環境中減輕了與當前技術和法律限制相關的挑戰。
本論文中概述的建議提供了實施的方向和合理計劃。該計劃首先由國家行政工作組制定政策,并在州一級進行復制,以確保連續性。在考慮了行政和政策要求后,將建立一個與行政部門平等合作的國家行動工作組,通過制定包含任務導向目標和可實現的里程碑的戰略來履行這些政策義務。這也將在州一級得到體現。
美國海關與邊境保護局(CBP)努力整合情報,以更具戰略性的方式使用收集到的信息。海關及邊境保護局的現場行動辦公室(OFO)可以預測入境口岸新出現的威脅,但在利用現有數據挫敗犯罪網絡方面能力有限。本論文探討了現場行動辦公室如何有效整合情報,以更具戰略性的方式收集、分析和傳播信息,從而改善邊境安全。本研究采用案例研究的方法采納最佳做法,并承認不同的角色和責任,對英國、澳大利亞和德國的國內情報部門進行評估,以了解各自如何協調情報活動。因此,本論文提出了供聯邦外事辦公室考慮的最佳做法;具體而言,本論文為聯邦外事辦公室在入境口岸組建口岸情報單元推薦了兩個可能的框架。在海關及邊境保護局尋求整合情報的過程中,OFO 可以通過在主管官員或任務分擔系統內將口岸情報單元標準化來促進其戰略目標的實現;每個系統都整合了情報,培養了決策優勢,并促進了分析驅動的收集工作。本論文的結論是,港口情報標準化有效地整合了情報,使海關及邊境保護局能夠為情報事業做出有意義的貢獻,完成任務目標。
近年來,反無人機系統(CUAS)在應對無人機系統(UAS)帶來的各種威脅方面的技術能力急劇增長。有必要通過開發系統的 CUAS 方法來利用 CUAS 技術。在本研究中,文獻綜述探討了 (1) 當前的無人機系統技術和應用;以及 (2) CUAS 的能力及其有效性分析。利用這些信息,通過基于模型的系統工程(MBSE)工具(ExtendSim)對假設的作戰環境進行測試,以評估幾種假設的 SoS CUAS 配置的有效性。開發了一種方法來分析 SoS CUAS 任務成功的不同因素及其影響,并將其用于權衡分析。從在 MBSE 工具中進行的每個 SoS CUAS 仿真中,可以得出進一步迭代和改進 SoS CUAS 配置的見解,從而在對 SoS CUAS 成本進行定性分析的基礎上優化參數。這項研究的成果是一個完善的模型和方法,今后可用于代表實際運行環境,以進行進一步分析。這項研究表明,將各種不同的 CUAS 平臺集成到一個 SoS CUAS 中,以應對無人機系統所構成的復雜威脅,是大有可為的。
本研究探討了對反無人駕駛航空系統(CUAS)系統(SoS)的需求,以應對無人駕駛航空系統(UAS)對國家經濟、安保和安全造成的日益嚴重的威脅。近年來,無人機系統的使用激增,導致 CUAS 行業迅速發展,并開發出了應對特定威脅的解決方案。然而,隨著 CUAS 技術的成熟,現在需要將這些單獨的 CUAS 工作整合到一個同步統一的 SoS 中,以更好地防御無人機系統的威脅。
文獻綜述包括對無人機系統和 CUAS 能力的研究,為本研究提供了清晰的信息。通過了解 (1) 群組分類;(2) 有效載荷能力;(3) 通信能力;以及 (4) 所采用的戰術,對無人機系統的類型和威脅情景進行了研究。通過了解 (1) 處理鏈;(2) 市場上可用的傳感器;(3) 指揮與控制 (C2) 能力;以及 (4) 緩解技術,可以使用 CUAS。以文獻綜述中形成的認識為基礎,提出了進一步分析 SoS CUAS 的方法和模型。
建議的方法使用基于模型的系統工程(MBSE)工具 ExtendSim 來模擬無人機系統飛入 SoS CUAS 作戰區時的作戰環境。該模型基于攻擊型無人機系統的特點,通過一套傳感器和射手來觀察場景的最終結果。作為名義基線模型的首次迭代,根據公開文獻假定了許多未知條件,同時控制了初始參數,以觀察這些參數值如何影響情景結果。在軍事背景下,攔截敵方無人機系統成功的置信度為 95%,失敗的可能性為 5%,這是一個保守的閾值。根據基線模型模擬了三種情景,得出測試結果,然后對結果進行進一步分析。
通過對結果的分析,得出進一步改進模型的見解。基于初始條件和假設,得出的經驗教訓有 (1) 指定 SoS CUAS 的置信度有助于確定后續模擬的范圍和錨點;(2) 在指定目標下,過多的資源投入(如更多的傳感器-射手組)不會產生最具成本效益的組合;(3) 在指定目標下,改變傳感器和射手參數有助于優化整個系統,為完善模型提供整體方法。通過在 Excel 中復制模型,對 MBSE 模型進行了驗證,并在第二次迭代中對模型進行了優化,從而進一步改進了模型。
這項研究表明,使用 ExtendSim 模型(如作為本研究一部分開發的模型)將單個 CUAS 集成和優化為一個統一的 SoS 具有很大的潛力。隨著無人機系統威脅的不斷發展,發展當前的 CUAS 能力并跟上新出現的無人機系統威脅是至關重要的。未來可擴展本研究的工作包括 (1) 改變無人機系統及其使用的參數,以模擬動態威脅場景;(2) 改變 CUAS 規格,以模擬當今和未來多種系統的不同能力;(3) 建立一個 C2 系統模型,同步 SoS CUAS 中各種傳感器和射手系統的所有鏈接,以便在統一戰線中有效、高效地消除無人機系統的威脅。
本報告研究了如何利用人工智能(AI)解決方案,結合傳感器數據和更高級的企業級機器學習(ML)算法,改進戰術決策,提供先進的目標定位解決方案,并為艱苦環境中的步行作戰人員推薦行動方案(COA)。該團隊采用系統工程分析方法,為戰術邊緣的人工智能輔助決策系統提出要求并進行概念設計。團隊將這一未來能力命名為 "地面感知作戰決策(GAWD)系統"。設想中的 GAWD 能力將提供一個功能強大的人工智能/ML 骨干架構,用于在邊緣傳輸戰術相關數據,供士兵實時處理和分析,以確定目標和選擇路線。此外,該能力還能監測士兵的健康狀況,并將信息提供給指揮部。未來的 GAWD 系統概念將利用人工智能、ML、增強現實 (AR)、虛擬現實 (VR) 和機身處理來分析數據,從而在終端用戶設備 (EUD) 或平視顯示器 (HUD) 上觸發實時通知和建議行動方案 (COA),以幫助下裝作戰人員及時做出作戰決策。研究小組進行了場景分析,探討了在三種不同的地面部署士兵場景中使用 GAWD 系統的問題。研究小組研究了在軍事行動中引入 GAWD 系統的道德影響。
圖 14. 用于瞄準的地面感知作戰決策邊緣計算系統架構圖。
雖然具有未來性,但將人工智能(AI)和機器學習(ML)作為下馬兵棋推演的輔助工具,是美國在戰場內外保持優勢的下一步。美國國防部(DOD)和聯合軍種正在探索將人工智能/機器學習用于各種應用,以支持作戰人員執行任務。本畢業設計項目研究了如何使用人工智能/ML 來實現未來的兵棋推演決策輔助功能,以支持下裝士兵執行任務。頂點團隊(Linchpin 小組)采用系統分析方法,研究人工智能和機器學習的當前和預期能力,了解下裝士兵的需求和任務,并利用人工智能和機器學習開發決策輔助系統的概念設計。
頂點團隊設想實施一種前沿、全面的人工智能/ML 機器兵棋推演決策輔助系統,稱為地面感知作戰決策(GAWD)系統。該系統是一個數據套件,搭配最先進的軟件(SW),可確保步兵單元在艱苦環境中的戰術決策能力,有助于挽救生命。利用人工智能、機器學習和先進的數據分析技術,這一創新工具可以提供一個適應性強、可擴展的系統,可以滿足各種單元規模的需求,并能與現有的軍事技術和網絡無縫集成。
這種實時和不斷發展的系統有可能使下馬士兵能夠清晰、全面地了解作戰環境,包括對手陣地的位置、地形特征以及使用各種傳感器和數據集提供戰場最新信息的友軍。此外,這種兵棋推演輔助工具將通過利用機器學習和歷史數據,為士兵及其指揮部提供態勢感知(SA)。這些信息將能夠快速分析各種場景,預測敵人的潛在動向,并根據當前形勢和單元目標提出最佳行動方案(COA),從而做出關鍵的戰術決策。
Linchpin 集團為下馬士兵設計的概念性人工智能/機器學習 GAWD 系統代表了步兵戰的突破性進展。通過利用人工智能/機器學習的力量,這一尖端工具將為下馬士兵提供無與倫比的戰略部署、決策支持和協調能力。根據設想,這一工具還將作為一個訓練平臺,使士兵能夠參與虛擬兵棋推演和模擬場景。該系統可記錄個人和單元在訓練演習和真實場景中的表現,從而為行動后評估(AAR)和持續改進單兵和整個陸軍提供有價值的見解。
該小組進行了一項情景分析,以探討士兵在地面任務中如何使用 GAWD 系統。團隊確定了三種相關場景,這些場景將通過添加人工智能支持的 GAWD 系統得到增強。這三種情況是 (1) 目標交戰,(2) 路線選擇,以及 (3) 士兵健康和狀態監控。研究小組探討了每種場景,然后比較了三種場景下未來 GAWD 能力所需的功能。
人工智能/機器學習作為一種力量倍增器,有可能顯著提高下裝單元的戰斗力和生存能力,確保現代戰場上的軍事優勢。它的部署將徹底改變下裝作戰,并為軍隊的卓越戰術設定新的標準。
本博士論文詳細分析了提高網絡防御態勢感知所需的決策要素,特別強調了網絡安全運營中心(SOC)分析人員的感知和理解。提出了基于數據流網絡流取證(NF3)的兩種不同架構。第一種架構使用集合機器學習技術,第二種則是算法復雜度更高的機器學習變體(λ-NF3),可提供更強大的防御框架來抵御對抗性攻擊。這兩項建議都旨在有效地自動檢測惡意軟件并進行后續的事件管理,在接近所謂的下一代認知計算 SOC(NGC2SOC)方面取得了令人滿意的結果。為保護組織的計算機網絡而進行的事件監督和監測必須輔以可視化技術。在這種情況下,本論文基于任務導向的指標和程序,使用基于模糊邏輯的專家系統,對三維圖片進行了表述。確切地說,在實施網絡防御解決方案時,考慮到一個組織的使命、資源和任務的相關性,以做出更明智的決策,最新技術證明存在嚴重缺陷。這項研究工作最終為改進網絡防御決策提供了兩個關鍵領域:一個是用于評估解決方案參數的可靠、完整的驗證和確認框架,另一個是根據網絡殺傷鏈和 MITRE ATT & CK 標準開發的合成數據集,該數據集可統一參考網絡攻擊的各個階段。
圖1所示。研究活動的周界及其演變順時針方向。
本博士論文的研究目標如下: 1.了解和分析網絡防御態勢感知及其研究挑戰; 2.開展研究活動,將計算和數據處理與網絡決策系統的操作方面(業務需求)聯系起來; 3.找出不足之處,闡明未來的研究方向;
上述目標促成了以下研究任務:
該研究探討了如何利用博弈論來模擬俄羅斯、中國和美國之間的多極升級動態。此外,該研究還重點分析了影響潛在沖突結果的各種參數,以便在三極環境中進一步提出新的威懾思想。
本文建立了一個初步的博弈論模型來模擬和分析升級動態。該模型以扎加雷和基爾古爾在其著作《完美威懾》中提出的框架為基礎。該模型基于博弈前設定的假設和規則。然后,根據這些假設,采用一種適用于博弈理論家的數學逆向歸納法對模型進行分析。然后,對潛在結果進行評估,以提出威懾建議。
為了實現這一目標,設定了一個假設,然后與最終研究結果進行比較。在比較的基礎上,提出最終結論和建議。通過博弈論和研究獲得的結果符合設定的假設,本論文描述了滿足假設背后的原因和理論。
俄羅斯已經與美國達到了粗略的戰略均勢。中國將很快加入美國和俄羅斯的核同行或近鄰行列,從而創造一個新的多極地緣政治環境。美國傳統的核威懾政策植根于兩極背景,需要重新考慮威懾戰略。博弈論模型為探索提供了一個途徑,因為這些模型模擬了參與特定局勢或博弈的多個參與者之間的戰略局勢。戰略局勢涉及的結果取決于所有參與者的行動及其不同的動機。要制定新的威懾政策和戰略以領先于競爭對手,就必須了解和分析結果與形勢。通過對博弈進行正式建模,建模者不得不闡明模型中的任何假設和結論,從而為知情和新的威懾思維創造機會。在建立兩極沖突的博弈論模型方面已經做了大量工作,但在三極領域的研究卻嚴重不足。例如,2000 年,Zagare 和 Kilgour 提出了一種非對稱升級博弈來研究兩極威懾的動態。他們的工作可以擴展到多玩家框架。本論文旨在利用之前的兩極博弈論模型來建立三極模型,分析俄羅斯、中國和美國之間的升級和威懾動態,更具體地說,評估影響沖突結果的關鍵因素,從而解讀不斷變化的地緣政治環境。雖然本項目的大部分內容更廣泛、更具體地研究了這些方面,但首先必須分析以往的兩極博弈論威懾戰略,以理解并擴展以往的理論和研究。目標是找到兩極博弈論模型與當前地緣政治環境之間的相關性,從而建立新的三極博弈論分析模型。本研究的目標是利用博弈論分析俄羅斯、中國和美國之間的多極升級動態。分析將在三種可能的情況下進行。第一種情景假定所有參與者都各自為政、互不協調,模擬等邊三角形環境。第二種假設是中國和俄羅斯之間的協調,第三種假設是中國和美國之間的協調。雖然還有一種可能的情況是俄羅斯和美國之間的協調,但認為這種情況并不可靠。目前雙方在烏克蘭緊張局勢中的敵對行動使得結盟對抗第三方的可能性很小。因此,所有方案都假定兩國繼續對立。
假設在多極化環境中,全面戰略沖突的風險將增加,而緩和沖突的時間將縮短。在從理論和實證兩方面全面分析和建立新模型之前,有必要對威懾和博弈論方面的現有文獻進行調查。下文將簡要概述迄今為止的多項學術研究。
受赭石藻啟發的微電子機械系統(MEMS)傳感器可按一定配置排列,以探測入射聲波的到達方向(DoA)。先前的研究結果表明,可以確定方位角 360 度范圍內的明確到達方向。迄今為止,一直使用實驗室儀器進行模擬讀數。本研究的目標是開發、構建和測試一種電路配置,包括 MEMS 傳感器的外殼和電源,以及設計一種圖形用戶界面(GUI),以便從傳感器陣列中讀取 DoA,并利用 GPS 定位數據對多旋翼小型無人機的位置進行三角測量。測試場使用兩個節點的配置來探測小型旋翼無人機。操作場景顯示在地圖上。這種新配置可以探測到來自任何可探測來源的聲音,并提供聲音來源的坐標。
本論文提出開發一種彈性機器學習算法,可對海軍圖像進行分類,以便在廣闊的沿海地區開展監視、搜索和探測行動。然而,現實世界的數據集可能會受到標簽噪聲的影響,標簽噪聲可能是通過隨機的不準確性或蓄意的對抗性攻擊引入的,這兩種情況都會對機器學習模型的準確性產生負面影響。我們的創新方法采用 洛克菲勒風險最小化(RRM)來對抗標簽噪聲污染。與依賴廣泛清理數據集的現有方法不同,我們的兩步流程包括調整神經網絡權重和操縱數據點標稱概率,以有效隔離潛在的數據損壞。這項技術減少了對細致數據清理的依賴,從而提高了數據處理的效率和時間效益。為了驗證所提模型的有效性和可靠性,我們在海軍環境數據集上應用了多種參數配置的 RRM,并評估了其與傳統方法相比的分類準確性。通過利用所提出的模型,我們旨在增強艦船探測模型的魯棒性,為改進自動海上監視系統的新型可靠工具鋪平道路。
藍色亞馬遜管理系統
機器學習(ML)發展迅速,使機器能夠根據數據分析做出決策。計算機視覺(CV)是這一領域的一個專業部門,它使用先進的算法來解釋視覺信息,通過創造創新機會來改變汽車、醫療、安全和軍事等行業。在軍事領域,這些工具已被證明在改進決策、態勢感知、監視能力、支持行動以及促進在復雜環境中有效使用自主系統等方面大有裨益。
我們的研究主要集中在將 CV 原理應用于海軍領域,特別是解決二元分類問題,以顯示船只的存在與否。這構成了更廣泛的監視工具的重要組成部分,并采用了一種名為 "Rockafellian 風險最小化"(RRM)[1] 的新策略。RRM 方法旨在應對海上監控等復雜多變環境中固有的數據集標簽損壞所帶來的挑戰。我們方法的核心是交替方向啟發式(ADH),這是一種雙管齊下的策略,可依次優化不同的變量集。這種兩步迭代的過程可調整神經網絡權重并操縱數據點概率,從而有效隔離潛在的數據損壞。其結果是建立了一個更強大、更準確的海上監視和探測系統,從而增強了海軍行動中的決策和態勢感知能力。
我們的評估使用了兩個不同的數據集,即空中客車船舶探測(AIRBUS)[2] 和海事衛星圖像(MASATI)[3]。為了測試我們方法的魯棒性,我們逐步提高了這些數據集的標簽損壞水平,并觀察了這對模型性能的影響。
我們的研究在 ADH 流程中采用了兩種策略:w-優化和 u-優化。在 w 優化階段,我們試用了兩種不同的神經網絡(NN)優化器 Adam [4] 和 Stochastic Gradient Descent (SGD) [5, Section 3G],以調整神經網絡權重。u優化階段包括實施 ADH-LP(線性規劃)或 ADH-SUB(子梯度)算法,以修改每個數據點的概率,并有效隔離潛在的數據損壞。
ADH-LP 利用線性規劃進行計算優化,可提供全局最優解,但需要更多處理時間。另一方面,ADH-SUB 采用更快的子梯度方法,更適合較大的數據集或有限的計算資源。主要目的不是通過架構調整來提高性能,而是展示 RRM 方法如何提供優于傳統 ERM 方法的優勢,特別是在處理數據損壞和提高模型性能方面。
無論使用何種數據集(MASATI 或 AIRBUS),我們的研究采用 RRM 方法訓練 NN 始終優于或匹配 ERM 方法。RRM下的ADHLP和ADH-SUB算法在保持高性能水平的同時,對數據損壞表現出了顯著的適應能力,其中ADH-LP一直表現優異。總之,我們的研究結果表明,RRM 是一種穩健而有彈性的方法,可用于處理一定程度的數據損壞。
總之,我們利用 RRM 的創新方法為減少對標簽正確數據的依賴提供了一種有前途的解決方案,從而能夠開發出更強大的船舶檢測模型。這項研究在改進船舶自動檢測和整體海事安全方面邁出了一大步。通過有效處理數據損壞和測試創新方法,我們提高了海事監控系統有效監控沿海和劃界海域的能力。
本論文旨在利用深度學習技術提高從二維目標圖像中估計目標姿態的能力。為此,我們采用了一種名為高分辨率網絡(High-Resolution Net)的尖端卷積神經網絡來訓練關鍵點檢測模型并評估其性能。實驗使用了兩個不同的數據集,包括 600,000 張合成圖像和 77,077 張高能激光束控制研究試驗臺(HBCRT)圖像。這些圖像來自六種不同的無人駕駛飛行器,用于訓練和評估目的,高分辨率網在 80% 的圖像上進行訓練,在其余 20% 的圖像上進行測試。運行高分辨率網絡時使用了 MMPose 框架,這是一個 Python 庫,其中包含多種卷積神經網絡選項。研究結果表明,High-Resolution Net 在姿勢估計方面表現良好,但由于目標形狀的對稱性,在左右反轉方面仍存在明顯差距。這項研究為今后利用高分辨率網絡進行目標姿態估計研究奠定了基礎。進一步的研究將集中式提高圖書館中左右分辨的準確性,以增強這些成果。
本論文分為五章。第一章是引言,介紹了本課題的概況及其相關性,以及如何進行實驗。第二章是文獻綜述,通過相關的學術和行業資料更詳細地介紹了這一研究領域。第三章是問題的提出和方法,介紹了將要解決的問題和解決問題的方法。第四章是模擬結果和深度學習性能評估,對結果進行評估,看是否取得了有意義的進展。第五章是結論,從更廣闊的視角看待結果,并討論未來工作的可能性。
我們研究了不確定環境中的穩健和適應性的最大網絡流量問題,其中網絡參數(如容量)是已知和確定的,但網絡結構(如邊)容易受到對手的攻擊或失敗。我們提出了一個穩健和可持續的網絡流模型,以有效和主動地對抗在預算約束下運作的對手的合理攻擊行為。具體來說,我們引入了一種新的場景生成方法,該方法基于防御者和對手之間的迭代式雙人博弈。我們假設對手總是采取最佳的近視反應(在一些可行的攻擊中)來對付防御者準備的當前流量場景。另一方面,我們假設防御者考慮到對手在之前的博弈迭代中所揭示的所有攻擊行為,以產生一個新的保守的流量策略,該策略對所有這些攻擊是穩健的(最大化)。這種迭代博弈一直持續到對手和管理員的目標都趨于一致。我們表明,防御者要解決的穩健網絡流量問題是NP-hard,而對手的決策問題的復雜性隨著網絡規模和對手的預算值呈指數級增長。我們提出了兩種原則性的啟發式方法來解決大型城市網絡規模下的對抗者問題。在多個合成和真實世界數據集上的廣泛計算結果表明,與四種最先進的基準方法相比,防御者問題提供的解決方案大大增加了通過網絡推送的流量,并減少了預期的流量損失量。
本文的主要貢獻有以下幾點。
1.我們正式定義了計算關鍵基礎設施網絡的穩健和自適應的最大流量策略的問題,即利用一個被破壞的邊緣的流量可能通過有剩余容量的相鄰的邊緣改道的事實。為了解決這個問題,我們提出了一個網絡管理員和對手之間的迭代式雙人博弈,這被稱為網絡流量博弈(NFG)。
2.我們開發了新的優化模型來解決雙方在博弈的每個迭代中的決策問題。管理者的優化模型考慮到對手在以前的迭代中產生的所有攻擊策略,并計算出一個穩健的流量策略,在所有以前的攻擊中,在最壞的情況下使通過網絡推動的流量最大化。對手的決策問題檢查管理員在當前迭代中產生的流量策略,并產生一個攻擊(在給定預算約束下的可行攻擊中),以最佳方式破壞當前流量策略。
3.我們提出了兩種新的啟發式方法,用于解決大型城市網絡規模下的對手的復雜決策問題。第一種啟發式方法是一種加速的貪婪方法,它可以逐步確定要攻擊的最佳邊緣。第二種啟發式方法是一種基于網絡分區的方法,它迭代地確定網絡中要攻擊的一組最佳候選邊,然后在這些候選邊上解決對手的決策問題。
4.我們在多個合成和真實世界的基準數據集上提供了大量的計算結果,以證明我們提出的解決方法可以優雅地擴展到大規模的問題,并且比四個最先進的基準方法顯著增加了通過網絡推送的流量。