亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

近年來,能源技術和空間領域的重大進展提高了在空間部署定向能武器(DEW)的可行性,使其成為傳統動能武器的一種具有成本效益的替代品。本研究試圖了解操作此類武器的可能能力和概念,以確定潛在的防御措施。為此,本研究通過物理方程和設計限制計算了攻擊距離和時間的可能能力,使用系統工具包找到了空間中可能對目標更具威脅的位置,并模擬了武器的交會機動,以達到攻擊所需的距離。交會機動模擬是通過在虛擬域模塊中使用反動力學增強追逐者-目標模型來完成的,這樣可以優化能量和更好地控制顛簸。通過該模型的模擬,可以獲得攻擊者在發起攻擊前可能停留的軌道的更精確參數,以及能夠對此類軌道進行一定預測的經驗法則。此外,研究還表明,雖然目標衛星可以避開試圖接近它的定向能武器的攻擊,但在許多情況下是不可能的。為了避免這種情況,建議發展姿態機動,提高空間領域感知,提高目標的生存能力,并考慮對敵方 DEW 采取先發制人的措施。

圖 1. 太空域中可能存在的不同攻擊類型示意圖

近年來,空間技術突飛猛進,空間領域的競爭也更加激烈。太空領域的許多參與者要么擁有攻擊能力,要么對發展這種能力表現出極大興趣。此外,能源儲存、生成和作為武器使用方面的進步為在太空部署此類武器提供了可能。一些參與者積極追求這一目標(Weeden 和 Samson,2024 年)。

本研究從能力、概念和操作等方面分析了太空定向能武器(DEWs)的可能特性,并提供了一種可能的規避機動解決方案,以提高目標在這種威脅面前的生存能力。

第二章介紹了空間領域可能存在的各種攻擊能力,并根據其可能造成的破壞、時間、距離和發動攻擊所需的其他能力對其進行了分類。本章強調將定向能武器的能力與其他現有或可能的選擇進行定性比較。最后,它總結了可能受到定向能武器攻擊的目標的殺傷鏈,并建議使用機動、改變姿態、改進設計和先發制人行動(包括軍事和外交)來應對威脅。

第三章介紹了一項權衡研究,該研究旨在推導出空間定向能武器的可能能力。這項研究首先計算了武器的作戰時間和距離,正如先前的研究(Lionis,2016 年)所做的那樣,并將其調整到空間領域。計算結果表明,射程 10 千米的定向能武器在現有技術條件下是可行的,而且重量合理,而射程 50 千米或更遠的定向能武器是可能的,但會更重,因此成本效益較低。分析工作繼續進行,對定向能武器有效載荷施加了設計限制,最后利用 MATLAB 系統工具包模型模擬和分析了定向能武器攻擊目標的時間,這取決于確定其空間軌道的不同開普勒參數。

模型的開發和驗證工作從第四章開始,從坐標框架、Clohessy-Wiltshire 方程和虛擬域中的反力學(IDVD)模型等方面介紹空間嚙合的基本力學。第五章繼續介紹在系統合成器(System Composer,SC)中構建模型的過程,該過程基于之前的模型(Yu 2024;Hanlon 2019)以及 IDVD 的實施和集成(Boyarko 2010),目的是創建一個追逐者模型,該模型優化了能量量,并考慮了運動的高階導數,更準確地代表了直接能量操作方法。第六章是模型開發的收尾部分,介紹了模型的驗證工作,結果表明該模型在結果生成所使用的距離和時間上是有效的。

第七章介紹了通過將第三章獲得的數據插入 SC 并使用 IDVD 模型進行增強后得出的模擬結果。從結果中可以看出,空間中有些相對位置比其他位置對目標的威脅更大。這些軌道與目標軌道的差異要么是真實異常,要么是半徑,而其他開普勒元素與目標軌道保持相同或盡可能接近。研究還發現,機動可以有效地增加追逐者的攻擊時間,縮短攻擊距離。這種戰術還有一個額外的作用,即縮短射擊距離,從而縮短造成傷害所需的時間,使機動更為有利。最后,研究發現,在許多情況下,漢隆所發展的規避機動不足以對付裝有 DEW 的追逐者。降低追逐者成功幾率的因素是從與目標不同的傾角和真實異常位置發起攻擊。此外,模型中用 ΔV 和射程表示的目標探測閾值的增加也減少了追逐者的可用攻擊時間。因此,與動能武器相比,要挫敗定向能武器的攻擊需要更大的預警距離,從而強調了提高空間領域意識、姿態變化機動和預防方法的重要性。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

設計紅外系統可以幫助商業和軍事用戶實現大量應用。隨著寬帶紅外成像儀的尺寸、重量和功率(SWaP)的減小,其在航空飛行器上的實用性得到了開發。機載系統具有更大的機動性,可增強用戶獲取圖像的能力。本文介紹的研究采用輻射測量產生的理論模型,并將地面設計技術應用于空中。領航、瞄準、制圖和態勢感知都是紅外成像任務的例子,具有廣泛的設計歷史。本文的研究重點是設計空中系統。設計了一種基于導航的紅外系統,用于比較中波和長波紅外波段,以探測高壓電線,避免致命的撞車事故。一種新的瞄準系統采用了一種新穎的多攝像頭設計方法,該方法植根于瞄準任務性能(TTP)指標,以提高在無人機平臺上飛行時的大范圍性能。對可見光、近紅外、短波紅外和擴展短波紅外的校準圖像進行比較,以找出哪種圖像對繪圖任務的場景對比度最高。最后,設計了一個態勢感知系統,利用波長保持人員視線,同時實時繪制火災邊界以避免致命事故,從而確保森林消防員在極端野火條件下的安全。對于上述領航、瞄準、測繪和態勢感知系統設計,所產生的理論模型與實驗室和實地測量結果進行了比較。提出的校準分析提供了避免結果偏差和公平比較每個寬帶傳感器系統性能的技術。在每種情況下,理論和測量結果都證明了設計方法對創建航空傳感器系統是有效的。在每種情況下,傳感器的性能都能滿足設計要求,并可通過這些初步研究創建可部署的系統。

付費5元查看完整內容

由于全球定位系統在室內容易受到干擾和失去覆蓋范圍,因此在全球定位系統缺失的環境中進行可靠導航仍然是自主無人系統面臨的一項挑戰。本研究通過將卷積神經網絡(CNN)與視覺傳感器集成,研究如何在不依賴 GPS 的情況下實現實時姿態估計,從而解決無人地面車輛(UGV)面臨的這一挑戰。針對位置和航向估算實施了雙 CNN 架構,并在具有相應姿態的大量圖像數據集上進行了訓練。通過與改進的勢場算法集成,實現了周期性漂移估計和校正。其中一個主要貢獻是用于漂移校正的世界表示調整方法,該方法可根據 CNN 估計值動態調整航點位置。利用這種方法,在受控環境中實現了連續多圈的成功導航,大大提高了沒有漂移校正的基線性能。這項研究的結果表明,通過這種方法可以大大降低自主導航系統對全球定位系統的依賴性,從而有可能提高無人系統對電子戰戰術的應變能力,使其能夠在有爭議的環境中持續運行。

美海軍部(DON)無人作戰框架強調了海軍部 “投資于先進自主和無人系統 ”的承諾。隨著這些技術的進步和實施,無人系統對可靠定位能力的依賴程度也在增加。然而,在干擾和欺騙等電子攻擊成為普遍威脅的有爭議環境中,期望全球定位系統(GPS)成為可靠的定位手段變得不那么可行。此外,在室內環境或衛星能見度有限的區域工作時,GPS 的可靠性也會降低。隨著無人駕駛系統的使用日益增多,在 GPS 無法使用或不可靠的情況下,有必要提供替代解決方案。

隨著無人駕駛系統的分布越來越廣,相互連接越來越緊密,GPS 拒絕或欺騙所造成的脆弱性也隨之加劇。定位中的單點故障會產生連鎖效應,降低整個系統的能力并增加風險。因此,為自主輪式無人飛行器探索可靠、精確的導航技術至關重要,這種技術可在 GPS 信號被屏蔽的環境中有效運行,確保無人駕駛行動在有爭議的復雜場景中繼續取得成功。

這項研究旨在為在室內環境或 GPS 信號不可靠或不可用的地區運行的無人潛航器開發一種穩健的導航解決方案。該方法將利用兩個主要來源的數據:車輪編碼器和視覺傳感器。車輪編碼器數據將使用死算模型進行處理,而 CNN 將用于分析視覺傳感器數據。通過將這些技術相結合,該系統將實現無需 GPS 的同步自主導航。這種方法的一個關鍵方面是實時激活 CNN,CNN 可以解釋環境的獨特特征,并相應地引導 UGV。

這項研究的范圍包括利用深度學習技術為 UGV 開發無 GPS 定位和導航解決方案。將通過 P3-DX Pioneer 機器人系統在室內實驗室環境中使用模擬 UGV 進行廣泛的驗證和測試。不過,某些領域被認為不屬于本研究的范圍。其中包括路徑規劃算法的開發,因為車輛將使用現有的反應式自主方法。此外,除視覺數據外,也不會考慮探索其他傳感器模式。研究重點將不是在有移動障礙物的高動態環境中進行導航。預計面臨的主要技術挑戰是優化計算時間以實現實時性能、減少長時間漂移以及在激烈機動過程中保持定位精度。在項目限制條件下,將盡可能利用和調整現有技術和算法,以最大限度地提高魯棒性。

本論文共分五章,每一章都側重于研究的一個特定方面。第 2 章:“背景 ”通過介紹和解釋與論文工作相關的基本概念,為研究奠定了基礎。本章包括對該領域現有文獻的全面回顧,重點介紹了當前的技術,并指出了本研究要解決的差距。

第 3 章:“方法與實驗設計 ”介紹了論文工作中采用的方法和手段。它詳細描述了實驗中使用的硬件組件和實施的具體算法。本章還討論了實驗設置、數據收集過程以及用于評估所提解決方案性能的評價指標。

第 4 章:“結果與分析 ”主要評估本研究中開發的 CNN 的性能。本章介紹了獲得的實驗結果,并對結果進行了深入分析。本章還包括圖表等可視化內容,以支持對結果的解釋。本章討論了所提方法的優勢和局限性,并將結果與文獻中的現有方法進行了比較。

第 5 章:“結論與未來工作 ”總結了論文研究的主要發現和貢獻。本章強調了這項工作的意義及其對自主導航和定位領域的潛在影響。此外,本章還確定了未來的研究領域,并為進一步改進和擴展所提出的方法提供了建議。

最后,為簡潔起見,“UGV ”和 “機器人 ”這兩個術語在本論文中交替使用。

圖 3.8. 增強型數據存儲過程的可視化表示,這是 CNN 訓練的準備階段。這既減少了圖像所需的存儲空間,又為 CNN 訓練過程保持了適當的預期輸出響應。

付費5元查看完整內容

本文介紹了一種在美國海軍和國防部框架內提高可操作技術(OT)系統安全性和效率的新方法。這項研究由負責作戰能源的海軍副助理部長贊助,旨在解決 OT 系統中異常檢測方面的關鍵差距。本文引入了一個綜合傳感器系統和先進的機器學習(ML)模型,用于分析各種 OT 設備的實時功耗數據。通過從模擬的小規模 OT 環境中開發獨特的非侵入式負載監控(NILM)數據集,本研究率先將成本效益高、易于部署的傳感器陣列與支持向量機、長短期記憶和卷積神經網絡算法等 ML 技術集成在一起。這種集成旨在簡化異常檢測,減輕這些 OT 系統中多種背板協議集成所帶來的復雜性。通過異常表征和定制檢測方法的制定,本文在利用 ML 識別系統故障、設備故障和潛在網絡安全威脅的早期指標方面開創了新的先例。這項工作極大地促進了獨立 OT 系統的安全性和復原力,使其能夠抵御一系列異常現象,為未來對基礎設施至關重要的安全和復原力 OT 系統的發展奠定了基礎。

付費5元查看完整內容

美海軍陸戰隊缺乏準確訓練部隊在對抗性電磁頻譜(EMS)內作戰的基礎設施。本文通過開發和原型設計一種工具來解決這一問題,該工具可實時捕獲實時頻譜數據并將其集成到建設性模擬中,從而在訓練期間提供逼真的反饋。研究重點是利用實時、虛擬和建設性環境原則、開源軟件、軟件定義無線電、商用硬件和 Battlespace Simulations公司的現代空戰環境模擬創建一個原型系統。在分布式仿真工程和執行過程框架前三個步驟的指導下,本文詳細介紹了開發原型的系統方法。該原型通過軟件定義無線電捕捉實戰單元特征并將其集成到電子戰(EW)模擬中,從而創建了一個逼真的訓練環境。這種創新方法解決了重大的訓練難題,增強了訓練效果,使海軍陸戰隊能夠在模擬 EW 場景中進行有效訓練。研究的一個關鍵方面是驗證原型是否能夠利用實時 EMS 數據激發建設性的 EW 場景。這項研究為提高 EMS 訓練能力提供了一個基礎性解決方案,使部隊為未來以 EMS 為主導的沖突做好更充分的準備。

第一章概述了整篇論文的結構化信息流,詳細介紹了各章如何應對核心挑戰,以及在有爭議的 EMSE 中加強小單元訓練的解決方案。論文的編排旨在提供一個全面的理解,從背景開始,以基礎概念奠定基礎,通過概念模型的開發,詳細介紹最小可行產品(MVP)、訓練頻譜捕獲工具(TSCT)的創建,最后總結研究結果和未來工作建議。

第二章--背景。本章討論了 EMS 所面臨的挑戰和復雜性。它解釋了 EMS、EMSO、EW 以及小單元目前在有爭議的 EMS 中面臨的威脅。這些基礎性信息為后續章節奠定了基礎,探討了創建真實訓練場的主要障礙,這些訓練場可以復制未來有爭議的 EMS 環境。本章強調了小型單元了解并在有爭議的 EMS 環境中行動的關鍵需求,強調了開發訓練場以提高其在未來沖突中的殺傷力和生存能力的重要性。

第三章--通過 DSEEP 建立概念模型。本章圍繞 “分布式仿真工程與執行過程”(DSEEP)的前三個步驟,記錄了利用電子戰仿真和頻譜捕獲開發訓練場工具的過程。第 1 步-確定仿真環境目標包括論文的初步規劃,概述 EW 訓練中需要通過仿真解決的問題。第 2 步-進行概念分析,包括詳細設計和制定所需的仿真環境和工具要求,以支持目標的實現。步驟 3-設計仿真環境,重點是詳細規劃仿真系統和集成仿真環境。這種系統化的方法可確保訓練場的開發過程徹底有效。

第四章-訓練頻譜捕獲工具。本章詳細介紹了 “訓練頻譜捕獲工具 ”的流程和設計。它概述了利用模擬和實時注入這些模擬的方法,為準確構建逼真的實時 EW 場景奠定了基礎。通過將 TSCT 與 EW 模擬集成,本章展示了如何捕獲實時頻譜數據并用于激發建設性 EW 模擬。

第五章--結論與未來工作。本章對論文進行了總結,包括主要發現和應用經驗教訓的建議。它強調了 TSCT 在訓練場景中的潛在應用,并概述了對未來研究工作的建議。本章強調了繼續開發和測試的重要性,以完善 TSCT 并提高其在小分隊訓練中的實用性,確保海軍陸戰隊能夠更好地應對在有爭議的 EMS 中作戰的挑戰。

付費5元查看完整內容

無人水面艦艇(USV)通常依靠全球定位系統(GPS)和射頻(RF)通信進行導航和多車協調。在戰時環境中,全球定位系統和無線電信號屏蔽對 USV 的有效導航和控制提出了挑戰。本論文研究了使用低成本人工智能(AI)立體相機作為傳感器,實現 USV 的無 GPS 和 RF 導航與協調。這些相機還可用于對水面船只進行分類和定位。我們使用安裝在多艘 Mokai USV 上的 OAK-D AI 攝像機進行了實驗。對神經網絡 (NN) 模型進行了訓練,以識別兩個對象類別:Mokai USV 和其他船只。利用開源 Python 庫,該模型被直接加載到攝像頭上,并集成到機器人操作系統 (ROS) 軟件中,以提取檢測到的物體的相對姿態信息。為了分析該模型的有效性,我們在未見過的視頻上以及使用 Mokai USV 和其他水面艦艇進行的現場實驗中對 NN 進行了測試。將攝像機估計的物體定位與在實驗室環境中通過物理驗證收集的物體地面實況位置進行了比較。最后,還探討了特定相機硬件和立體視覺在此應用中的局限性,以評估其進一步開發的可行性。

付費5元查看完整內容

本文旨在分析人工智能(AI)在遠征先進基地作戰(EABO)中的應用,重點是作戰和后勤行動。使用 Atlatl 作為模擬引擎,在模擬待命部隊在兩棲環境中分布式作戰所面臨挑戰的場景中測試了多個智能體。測試了每種人工智能在軍事行動臨界值以下開展維持行動的能力,以及在越過臨界值時抵御兩棲攻擊的能力。就腳本智能體而言,事實證明,根據聯合作戰方法對行為進行調整可創造出生存能力更強的人工智能,同時保持其殺傷力水平。就建立在神經網絡基礎上的智能體而言,由于問題的規模和范圍,其性能受到了限制,可能需要進行更多的研究才能顯示出顯著的效果。這項研究是繼續開發 EABO 概念的探索工具,可為繼續完善操作概念提供反饋。

本文屬于建模、虛擬環境和模擬領域。具體來說,它分析了在作戰模型和模擬中使用人工智能(AI)來評估未來潛在沖突場景中的作戰概念。戰爭游戲和模擬為行動的發展提供了寶貴的反饋,檢驗了我們對特定場景下所面臨的環境和挑戰的理解。2019 年,美國(U.S. )海軍陸戰隊(USMC)發布了新的指南--指揮官規劃指南,將重點轉向圍繞中國在南太平洋帶來的挑戰而開展的防御工作,從而提出了遠征先進基地行動(EABO)的概念(Berger,2019 年)。隨著重點的轉移,有了一個新的機會,可以對我們的概念和想法進行兵棋推演,評估那些能提供最廣闊成功之路的概念和想法。

在軍事領域,兵棋推演的目的是對想法進行分析,找出行動方案的優缺點,進一步完善最終方案。通過在 EABO 兵棋中引入人工智能,可以對概念進行更深入的分析,從而在行動發展過程中獲得更精細的反饋。一旦捕捉到這些數據,對其進行研究就能進一步促進對 EABO 的探索,檢驗我們對過去和未來軍事模擬在同一領域的判斷,并提供信息,幫助圍繞 EABO 和其他目標行動繼續開發人工智能能力。具體來說,通過了解現有人工智能體在場景驅動模擬中的行為,我們可以評估和推斷人工智能可能如何應對更廣泛的模擬(圍繞一個主題場景提出類似的挑戰),以及如何改進人工智能以更好地在其中使用。

付費5元查看完整內容

近年來,由于機器學習技術具有提高估計精度和系統魯棒性的潛力,因此將機器學習技術整合到導航系統中引起了極大的興趣。這篇博士論文研究了深度學習與饒黑化粒子濾波器的結合使用,以增強機載模擬任務中的地磁導航。

為便于評估所提議的導航系統,開發了一個仿真框架。該框架包括詳細的飛機模型、地球磁場的數學表示法以及從在線數據庫獲取的真實世界磁場數據。通過這種設置,可以準確評估擬議的 Geomagentic 架構在各種現實地磁場景中的性能和有效性。

這項研究成果證明了機器學習算法在提高地磁導航傳感器融合濾波器性能方面的潛力,并引入了一種新方法來提高現有地磁模型的分辨率,從而更好地描述這些模型中的磁場特征。這種融合使機載任務的慣性制導更加精確和穩健,從而為各種航空飛行器的先進、可靠導航系統鋪平了道路。

總之,本論文提供了一種將機器學習技術與傳統估算方法相結合的新方法,并采用一種新技術來獲取這些導航架構所需的更精確的地磁模型,從而為地磁導航研究的最新發展做出了貢獻。這項研究成果有望為民用和軍用航空應用開發先進的自適應導航系統。

付費5元查看完整內容

本文是研究指揮與控制(C2)未來表現形式的四篇系列論文中的第一篇。第一篇論文通過探討未來指揮與控制(C2)系統需要在其中運行的未來作戰環境,為后續研究設定了基線。具體來說,本文探討了復雜性的驅動因素、表現形式和影響,而此前的研究表明,復雜性很可能是這一環境的特征。為此,它討論了 C2 和復雜性等關鍵術語的定義;介紹了未來運行環境中復雜性的一些驅動因素,并討論了這些因素如何對 C2 系統和組織造成新的壓力;研究了分析和理解復雜性的可能方法;并概述了 2030 年代及以后可能產生的一些實際考慮因素。由于本文旨在為本系列的后續三篇論文提供資料,因此沒有全面涵蓋未來 C2 思考的所有方面,包括提出具體建議。

研究問題

  • 根據當前的全球社會和技術趨勢進行預測,國防和合作伙伴可能面臨的持續競爭和多領域作戰的作戰環境的性質是什么?
  • 基于這種對未來的預測,未來的 C2 系統和組織將面臨怎樣的復雜性;即復雜性的可能來源是什么?
  • 考慮到未來作戰環境的這一特點,未來的 C2 系統和組織需要具備哪些條件?
  • 未來的 C2 系統和組織需要什么樣的新能力和特性才能有效應對這些需求?

有爭議的定義

C2 沒有直截了當的定義,對于該術語在當代作戰環境中的范圍和相關性也存在爭議。對 C2 傳統定義的批判來自于對 21 世紀有效領導力構成要素的更廣泛質疑。在英國、美國和北約,最近出現了大量與 C2 相關的新術語,并將重點從聯合思維轉向多領域思維。我們的研究將 C2 定義為一個動態的、適應性強的社會技術系統,因此有必要考慮組織、技術和人力要素。

同樣,復雜性也沒有一個公認的定義。學術界對復雜性的研究日益增多,涉及多個科學學科,但缺乏統一的方法或理論框架。一個有用的出發點是區分簡單系統、復雜系統、復雜系統和復雜適應系統。文獻還描述了在這些條件下可能出現的所謂 "棘手"或 "超級棘手問題"。還可以對有限博弈和無限博弈進行重要區分--這是考慮作為復雜適應系統的國家間競爭時的一個有用視角。鑒于這些爭論,我們的研究避開了對復雜性的僵化定義,而是從其關鍵屬性的角度對這一現象進行了 DCDC 式的描述。

復雜性的預計驅動因素

未來作戰環境的特征--以及國防 C2 系統和組織預計將執行的任務類型--具有很大的不確定性,因此任何預測都必須謹慎。盡管如此,文獻指出了各種政治、經濟、社會、技術、法律、環境和軍事(PESTLE-M)趨勢,預計這些趨勢將影響國際體系的演變,進而影響 2030 年及以后的國防行動。這些趨勢包括以下宏觀趨勢

  • 日益增強的互聯性、多極化和全球競爭
  • 不斷變化的氣候的影響
  • 技術變革和數字化的影響
  • 傳統和新穎領域的模糊化
  • 國際準則和價值觀的轉變。

最重要的是,沒有一個單一或主要的趨勢推動著變化或復雜性;相反,最令人擔憂的是多種因素的融合及其不可預測的相互作用。這種認識為進一步研究這些趨勢影響國際體系復雜性水平和特征的具體機制提供了基礎,從而為在這一領域開展工作的 C2 帶來了新的挑戰。

復雜性的表現

上述 PESTLE-M 趨勢為未來組織應對 C2 帶來了一系列困境和壓力,包括但不限于

  • 不確定性
  • 模糊性
  • 多義性
  • 信息超載
  • 認知偏差
  • 面對瞬息萬變的事件,決策癱瘓或節奏不足
  • 難以確保決策(包括人工智能)或信任決策所依據的數據、邏輯和假設
  • 難以調動所有必要的權力杠桿,或協調參與制定和執行特定戰略或行動計劃的大量不同參與者(如跨政府合作伙伴、行業、國際盟友、公民)。

此外,無論是理論家還是實踐者,在處理包含非線性動態的問題時,都缺乏有力的措施來衡量所做決定或采取的行動的有效性。因此,很難確切地說未來作戰環境中的復雜性是否在客觀上不斷增加(而不是以不同的形式出現),但對軍隊應處理的復雜任務的政治期望與當前 C2 方法的執行能力之間顯然存在巨大差距。當前的學術理論為決定如何在復雜環境中配置 C2 提供了一個方法工具包的初步輪廓和一些指導原則,但并沒有提供靈丹妙藥。該理論強調審議分析方法,即讓不同利益相關者參與共同設計、借鑒多學科和知識體系的見解,并在分析和決策過程中建立靈活性,以便根據反饋意見不斷迭代和改進的方法。

未來 C2 的實際考慮因素

要應對復雜的自適應系統,就必須摒棄當前的線性 C2 流程和等級結構,盡管在處理非復雜任務和問題時,更傳統的方法可能仍然有用。在競爭激烈的世界中,英國既需要培養能夠對他人施加建設性影響的特性和能力(例如,將復雜性強加給對手的 C2),也需要培養能夠增強自身駕馭復雜性能力的特性和能力。

要影響敵對行動者的觀念、決策和行為,首先要深入了解其 C2 結構、流程和文化。根據這種了解,英國國防需要一套動能和非動能杠桿,對敵方的 C2 施加建設性影響,包括施加復雜性。除了敵對行動者,英國國防部還需要進一步了解如何對 PAG、盟友、合作伙伴、工業界、學術界、公民和對 C2 采取截然不同方法的其他人施加建設性影響。

在增強英國自身應對復雜性的能力方面,未來的 C2 系統和組織必須促進靈活性、復原力以及學習和適應能力等特性。整個決策周期都需要變革。例如,傳感器和通信技術的進步為獲取更多深度和廣度的數據提供了機會,包括有關復雜問題的數據。因此,提高認知能力對于理解所有這些數據至關重要,既要利用人類和機器的優勢,又要減少各自的缺點。要改變決策方法,還需要改變領導風格,以培養更善于駕馭復雜適應系統的決策者。在做出決策或計劃后,提高跨部門或跨層級的能力,在實施階段更好地整合活動或匯聚效應,對于抵消英國的局限性(如在質量方面)至關重要。

同樣,整合也不是萬全的;如果國防缺乏足夠深度的力量和能力,無法在充滿敵意的威脅環境中采取可信行動或維持高節奏行動,那么即使是最高效的指揮控制系統也無法在未來取得成功。此外,還需要采取防御措施以及恢復和失效模式,以阻止或減輕敵方破壞 C2 系統和組織的努力所造成的影響。鑒于所面臨的威脅,以及英國國防可能需要解決的不同形式的復雜問題,很可能會同時出現多種并行的 C2 模式,而不是單一的方法。應對復雜性意味著不斷學習、適應、創新和開放求變。因此,必須從一開始就將效果衡量標準、信號和變革機制納入計劃以及 C2 系統和組織,使其能夠隨著時間的推移不斷學習和調整,以應對各種情況。至關重要的是,未來 C2 系統和組織的設計只是挑戰的一部分--它們還必須得到更廣泛的國防企業緊急改革的支持,以確保獲得所需的使能因素(人員、技術等)。從 C2 的角度來看,這本身就是一個挑戰,因為改變這個企業--一個復雜的適應性系統--本身就是一個棘手的問題。

結論和下一步行動

學術理論家和政府、軍事或工業從業人員對復雜性或復雜適應系統的理解并不全面,而這正是未來 C2 運行環境的特點。雖然文獻提供了處理復雜性的有用方法和工具,以及未來 C2 的一些初步設計考慮,但英國 C2(本身就是一個社會技術系統)的現代化和轉型將是一項高度復雜的工作。這意味著要與不斷發展的作戰環境、不斷變化的威脅和技術環境共同適應,從而進行迭代和不斷學習。因此,最緊迫的挑戰或許是,考慮到 C2 系統在未來面對復雜性時取得成功所需的轉型(技術、結構、流程、文化、教育等)的程度和性質,了解如何在一段時間內最好地引導這一過程。

自相矛盾的是,要克服實現以應對復雜性為目標的 C2 系統所面臨的障礙,可能需要英國國防部已經表現出其所尋求建立的系統的許多特征。面對這樣的循環邏輯,英國國防部可能需要某種外部沖擊來迫使其進行創造性的破壞,或者利用(或不顧)更傳統、線性的 C2 方法來啟動自身的激進改革努力,并隨著時間的推移,隨著變化的到來而進行調整。

付費5元查看完整內容

本文通過機器學習方法提出了一種雷達任務選擇的主動方法,并將其設計在雷達調度流程之前,以提高雷達資源管理過程中的性能和效率。該方法由兩個過程組成:任務選擇過程和任務調度過程,其中任務選擇過程利用強化學習能力來探索和確定每個雷達任務的隱藏重要性。在雷達任務不堪重負的情況下(即雷達調度器超負荷工作),將主動選擇重要性較高的任務,直到任務執行的時間窗口被占滿,剩余的任務將被放棄。這樣就能保證保留潛在的最重要任務,從而有效減少后續調度過程中的總時間消耗,同時使任務調度的全局成本最小化。本文對所提出的方法進行了數值評估,并將任務丟棄率和調度成本分別與單獨使用最早開始時間(EST)、最早截止時間(ED)和隨機偏移開始時間EST(RSST-EST)調度算法進行了比較。結果表明,與EST、ED和RSST-EST相比,本科學報告中提出的方法分別將任務丟棄率降低了7.9%、6.9%和4.2%,還將調度成本降低了7.8倍(EST為7.8倍)、7.5倍(ED為7.5倍)和2.6倍(RSST-EST為2.6倍)。使用我們的計算環境,即使在超負荷的情況下,擬議方法所消耗的時間也小于 25 毫秒。因此,它被認為是提高雷達資源管理性能的一種高效實用的解決方案。

雷達資源管理(RRM)對于優化作為飛機、艦船和陸地平臺主要傳感器的現代相控陣雷達的性能至關重要。報告》討論了雷達資源管理,包括任務選擇和任務調度。該課題對國防科技(S&T)非常重要,因為它與現代相控陣雷達的大多數應用相關。它對當前的海軍雷達項目尤為重要,該項目探索了雷達波束控制的人工智能(AI)/機器學習(ML)方法。所提出的算法有可能升級未來的艦船雷達,從而做出更好的決策并提高性能。

付費5元查看完整內容
北京阿比特科技有限公司