人工智能有可能從根本上改變國防,從后臺職能到前線,并在軍事競爭和沖突中提供決定性優勢。人工智能已在俄羅斯烏克蘭沖突中得到有效部署,這表明人工智能不再屬于未來戰爭,而是國防必須參與的現實。鑒于人工智能潛在應用的廣泛性,很少有國防領域不能從人工智能或人工智能增強中獲益,因此國防部門需要開始考慮將人工智能作為其解決問題和實現目標的一個組成部分。英國有潛力成為一流的國防人工智能部門,但目前國防部門發展不足,需要加以培育。這既需要實踐變革,也需要文化變革。
發展國防人工智能部門需要改善數字基礎設施、數據管理和人工智能技能基礎,國防部門需要找出存在的差距,以便著手解決這些問題。建議國防部門可以采取一些具體行動,比如讓人工智能成為軍事教育的更大一部分,讓人工智能專家更容易在民用和國防部門之間流動。國防部門還可能需要與規模較小的非傳統國防供應商合作,這些供應商目前在與國防部門合作方面面臨障礙,國防部門需要采用其工作方式,使自己成為更具吸引力和更有效的合作伙伴。國防部門需要更加適應承擔風險、快速開發周期以及與非傳統國防供應商合作。國防部門需要克服目前阻礙防務公司與國防部門合作的障礙,如復雜的采購流程和工作人員難以獲得安全許可。
除了這些實際變化之外,國防部門還需要進行更廣泛的文化變革,以適應這樣一個世界:軍事優勢越來越多地由數字化能力和可快速開發、部署和迭代的廉價平臺來實現。國防部門的政策文件認識到了這一點,但該部門的言論與現實之間存在差距,而且人工智能往往仍被視為一種新事物,而不是即將成為國防工具包核心部分的事物。正在進行的《戰略防御審查》是一個理想的時機,國防部門可以借此加快所需的文化轉型,并為新的人工智能時代實現能力和思維的現代化。
人工智能系統如果能與盟國的系統互操作,將發揮最大功效。英國和盟國在開發和部署國防人工智能的目標上相互理解,并在適當情況下共享標準和實踐。AUKUS 合作伙伴關系的支柱 2 是英國國防人工智能部門與澳大利亞和美國盟國在人工智能前沿領域開展合作的協議。
認識到,在國防領域使用人工智能會引發重要的倫理問題。上議院武器系統人工智能委員會于 2023 年 12 月發布了一份關于致命自主武器系統的全面報告,決定不再重復這項工作。因此,本報告重點關注英國在國防領域開發和部署人工智能的能力。
關于英國國防人工智能部門的規模和特點的公開研究很少。2023 年,英國政府委托進行的研究發現,英國有 3713 家人工智能公司;其中 2204 家公司的業務模式以人工智能產品或基礎設施為核心。目前尚不清楚英國有多少人工智能公司從事國防工作: 33% 的公司從事計算機視覺和圖像處理工作,另有 29% 的公司從事自主系統工作--智庫蘭德歐洲公司在其書面證據中指出,這些領域 “與國防高度相關”--但這部分行業還將包括許多非國防公司。人工智能是一個快速發展的行業,預計將在未來幾年內大幅擴張:據 KBR 和 Frazer-Nash Consultancy 提供的證據估計,2023 年英國軍事人工智能行業的價值約為 2.85 億英鎊,預計到 2028 年將增長到 12 億英鎊。
有關英國國防人工智能公司特點的數據很有限,但證據表明,這些公司既包括人工智能只占其業務一小部分的老牌國防公司,也包括專門從事國防人工智能的初創公司。大多數參與人工智能開發的公司規模都相對較小: 蘭卡斯特大學創新、技術和戰略教授西蒙娜-索阿雷(Simona Soare)博士將該行業描述為一個 “成熟的生態系統”,其中 75-80% 的公司都是小型企業或初創公司。在國防領域,這類公司包括 Adarga、AdvAI、Skyral、Ripjar 和 Mind Foundry。人工智能的發展跨越國界,微軟和亞馬遜等在人工智能領域處于全球領先地位的跨國公司都在英國設有分支機構。此外,一些專門從事人工智能國防應用的國際公司也在英國設有分支機構,如 Helsing 和 Anduril。
人工智能行業相對剛剛起步,現在判斷英國人工智能和國防人工智能行業將如何發展還為時尚早。但是,證據表明,英國擁有可以促進該行業成功發展的優勢,包括大學和強大的研究部門,以及在計算和數學科學等相關學科的現有優勢。英國還擁有強大的計算能力(計算),這是開發先進人工智能的重要資產,同時英國還擁有龐大的金融部門,可以吸引對先進研究的投資。英國的制度優勢也為人工智能公司提供了良好的發展環境,并能吸引投資者,其中包括強有力的監管制度和有效的法治。所有這些都意味著英國具備蘭德歐洲公司的詹姆斯-布萊克(James Black)所說的 “相當好的通用優勢”,可以支持人工智能行業取得成功。
與此同時,一些證人也指出了英國該行業目前存在的弱點。Simona Soare 博士強調,雖然英國確實存在人工智能 “生態系統”,但 “并沒有特別獨立的國防人工智能生態系統”。此外,初創公司的更替率非常高,只有不到五分之一的公司能持續四年或更長時間。這意味著該生態系統幾乎沒有彈性,這將使英國擴大國防人工智能能力面臨挑戰。小組委員會還聽說,各軍種內部對整個國防領域的人工智能方法缺乏一致性。退役空軍元帥 Edward Stringer認為:"在整個國防人工智能領域,有一些非常優秀的人員,但系統略顯分散。雖然英國總體上是一個充滿活力的風險投資(VC)環境,但薩里大學人工智能研究所的 Mikolaj Firlej 博士寫道,英國國防人工智能部門 “投資不足”,只有幾家較小的風險投資基金在投資。
雖然英國的人工智能部門和國防人工智能部門的絕對規模較小,但與同行相比,英國的表現相對較好,因為該部門在全球仍處于發展的早期階段。蘭德歐洲公司報告稱,英國的人工智能公司數量在全球排名第三。牛津洞察》(Oxford Insights)和Tortoise編制的《全球人工智能指數》(Global AI Indices)根據各種因素對各國進行排名,英國分別位列第三和第四。雖然這些指數并沒有對各國在國防人工智能方面的實力進行具體排名,但有理由相信英國在這一領域的表現相對較好: Simona Soare 博士指出,英國為人工智能提供的資金遠遠高于歐洲同行,據估計,英國在國防人工智能領域的投資是法國和德國的兩倍。與此同時,雖然英國領先于許多同行,但在許多關鍵指標上卻遠遠落后于人工智能領域的全球領導者--美國和中國。這兩個國家政府在人工智能方面的總支出是英國政府的四倍多,美國和中國超級計算機的數量和處理能力也遠遠超過英國。一些意見認為,英國不可能與美國部門的規模和投資能力競爭,但英國可以利用其現有優勢,在人工智能的某些領域發展世界領先的專業技術。
英國具備許多適當的條件,可以在國防人工智能發展方面成為全球領導者,但目前國防是英國人工智能生態系統中發展不足的一個方面,英國與目前人工智能領域的全球領導者美國和中國之間的差距很大。英國不能也不應該以在規模上與這些國家的部門相媲美為目標,而應該尋求在優勢領域實現專業化,并在這些領域達到一流的先進水平。
人工智能對有效防務的重要性與日俱增,因此英國的目標必須是擁有一流的國防人工智能生態系統。國防部門應制定措施,將英國的部門與國際上的其他部門進行比較,以便跟蹤該部門相對于同行的實力。
無人駕駛飛行器群(UAV,或無人機)有望改變從應急響應到執法和軍事行動等各個領域。無人機群為動態工作環境提供了可擴展、適應性強且分散的解決方案。然而,如何將這些多智能體系統成功地集成到現實世界的環境中,尤其是人類如何安全有效地與這些系統進行交互和控制方面,提出了巨大的挑戰。人機群交互(HSI)旨在通過探索人類操作員如何在高度復雜、不確定的條件下,以協調一致的方式管理多架無人機來應對這些挑戰。
本文研究的問題是為人類操作員指揮無人機群設計有效的交互機制和界面,特別是應對管理大量無人機、支持操作員的態勢感知以及平衡集中控制和分散控制等挑戰。該研究強調了通過引入替代概念模型來重新思考傳統方法的必要性,例如 “合唱團 ”隱喻,它將無人機群重新想象為協調的、半集中化的集合體,而不是純粹新興的、分散的集體。這一隱喻旨在平衡無人機群通常不可預測的集體行為與作戰環境中所需的可預測的定向行動。通過展示如何在人機交互系統架構中實現這一隱喻,本論文為人類與自主系統的交互概念化提供了新的途徑。
采用設計研究方法,結合多案例研究和基于場景的設計活動,在與潛在最終用戶的對話中設想未來的蜂群應用,開發并評估了體現這些細微差別的人機交互概念的原型。界面原型從即時戰略(RTS)游戲中汲取設計靈感。這些元素包括群組命令、高級任務規劃和資源池,以創建一種混合交互模型,使操作員既能保持對多架自主協作無人機的大局觀,又能對其進行精確控制。領域專家在消防和機場管理等環境中對這些原型進行了評估,驗證了這些概念的實用性。
研究結果強調了在設計人機交互系統時采用人類-技術-組織(HTO)視角的價值。這種系統思維方法并不只關注人與技術之間的互動,而是承認無人機群必須融入更大的組織框架,如應急響應指揮結構或機場地面運營團隊。它表明,成功的部署需要考慮更廣泛的組織背景,包括角色、工作流程和協調需求。這種全面的人機交互系統設計方法可確保無人機群不僅符合可靠性、響應性和可擴展性等技術性能標準,而且符合人類和組織的需求,從而促進無人機群在廣泛的現實世界場景中的采用和有效使用。最終,這些貢獻旨在縮小無人機群控制理論模型與實際部署之間的差距,推動人機交互技術領域和無人機群技術的廣泛應用。
這篇博士論文采用系統思維方法,將認知科學、CSE、多智能體系統(MAS)理論和交互設計融為一體,解決了與無人機群相關的復雜設計和交互難題,為 HSI 領域做出了重大貢獻。這些貢獻圍繞四個關鍵領域展開:
1.詳細的工作領域描述和需求分析。本論文對消防(論文 I)、搜救(論文 III、IV)和機場管理(論文 VI)等環境進行了全面的工作領域描述,強調了這些實際應用中的關鍵需求、限制和操作員面臨的挑戰。通過將分析立足于具體的操作環境,這些描述有助于彌合蜂群系統理論模型與實際應用之間的差距,確保設計要求植根于現實世界的需求。
2.生成式設計隱喻和混合交互模型。這項工作的一個主要貢獻是開發了一個新的概念設計隱喻--“合唱團 ”隱喻--重新思考了應該如何將多無人機系統概念化(論文 II)。這一隱喻通過平衡集體行為、單個智能體自主性和操作員控制之間的重點,有助于解決傳統蜂群隱喻的局限性。論文提出了一種融合 “整體 ”和 “還原 ”交互設計觀點的混合設計方法(論文 IV)。
3.受 RTS 啟發的 HSI 界面原型設計與實現。本論文的貢獻還包括根據所提出的設計原則和來自即時戰略(RTS)游戲的設計模式開發和評估 HSI 界面原型。這些原型說明了混合控制機制和 RTS 游戲界面元素(如群組管理、資源池和面向行動的控制)如何在界面中實現,從而提供對蜂群的宏觀控制和對單個無人機的微觀控制(論文 VI)。在現實場景(如消防和搜救)中對這些原型的評估證明了它們的實際適用性,驗證了理論貢獻,并強調了靈活性在人類-蜂群系統中的重要性。論文還提出了一種新方法,從現象學的角度研究人-機群聯合控制活動及其對操作員注意力的影響(論文五),為 HSI 評估和設計迭代提供了更多工具。
4.社會技術系統設計的 HTO 視角。與第一個貢獻相聯系,本論文提倡在設計蜂群系統時應用系統思維方法,特別是人類-技術-組織(HTO)框架(Berglund 等人,2020;Karltun 等人,2017)。通過納入組織方面的考慮因素,如跨團隊協調和與現有工作程序保持一致,本論文超越了傳統的 HSI 設計,因為傳統的 HSI 設計往往只關注人-技術方面。這一視角確保了無人機蜂群系統不僅在技術上強大,而且與組織需求兼容,從而支持更順利的實施和更好的操作整合。
人工智能(AI)有可能在社會、經濟和政策的各個方面帶來變革,包括國防和安全。英國希望成為在民用和商業應用領域推廣人工智能以及負責任地發展國防人工智能的領頭羊。這就要求對與人工智能軍事應用相關的新出現的風險和機遇,以及英國如何與其他國家開展最佳合作以減輕或利用這些風險和機遇,有一個清晰而細致的認識。
2024 年 3 月,英國國防部(MOD)國防人工智能與自主單元(DAU)和外交、聯邦與發展辦公室(FCDO)聯合委托蘭德歐洲公司(RAND Europe)開展一項簡短的范圍界定研究。該研究的目的是初步探討人工智能在軍事上的應用可能在戰略層面產生風險和機遇的方式,因為迄今為止的大部分研究都集中在戰術層面或非軍事主題(如人工智能安全)上。后續工作將更詳細地探討這些問題,為英國在這些問題上的國際參與戰略提供信息。
本技術報告旨在為理解人工智能軍事應用所帶來的戰略風險和機遇設定一個基線。一份獨立的總結報告則側重于為決策者提供高層次的研究結果。
人工智能最好被理解為一套雙重用途的通用技術,以硬件為基礎,但以軟件為核心。與傳統軍事技術不同的是,它們高度民主化,擴散速度極快。創新是由商業用途的私營部門驅動的,而不是由政府或國防部門驅動的。對軍事應用和影響的集體認識正在提高,但起點較低。辯論往往優先考慮某些引人注目的問題,如致命自主武器系統(LAWS)或人工智能(AGI),而忽略了其他議題。它只關注戰術,而忽視戰略;只關注風險,而忽視機遇;或只關注軍事人工智能的直接后果,而忽視從長遠來看可能影響最大的二階和三階效應。
為了解決這個問題,國防部和國防和外交、聯邦與發展辦公室(FCDO)委托進行這項研究,以制定一個概念框架,規劃軍事人工智能帶來的戰略風險和機遇。
圖 0.1 框架:人工智能軍事應用的戰略風險與機遇
本報告詳細探討了許多風險和機遇,其中最緊迫的包括
信息操縱,如人工智能深度偽造,這不僅會引發政治、經濟和社會問題,還會在危機時刻影響軍事決策。
賦予非國家行為者挑戰國家軍隊主導地位的不對稱能力,或者在最壞的情況下,賦予他們新的大規模毀滅性工具(如生物武器)。
人工智能對對手之間攻防平衡、戰爭升級動態以及核威懾穩定性的相互影響。這些問題在超級大國競爭加劇的情況下,在世界已經在應對其他不安全因素(如烏克蘭、以色列-伊朗\移民、氣候變化等)的情況下,尤其令人擔憂。
與未來出現的任何人工智能相關的潛在災難性安全和安保風險。
在英國國內,還需要應對對國內政治和經濟產生破壞性影響的重大問題。這些問題決定了國防的目的和手段。在國外,人工智能同樣會對以規則為基礎的國際秩序的健康產生深遠影響,這取決于各國、工業界和民間社會是否以及如何有效地共同管理其影響。人工智能專家非常擔心,人工智能會在多大程度上使世界許多地方的平衡傾向于壓制性和獨裁的治理模式,同時有可能顛覆民主政治、污染信息環境和破壞社會的戰斗意志。
其中許多潛在風險也可能成為戰略優勢的機遇。人工智能的利弊平衡取決于各國如何快速有效地調整武裝部隊等機構,以利用人工智能的優勢。同樣,這也取決于各國政府如何在國際上施加影響,使全球軍事人工智能行為朝著符合本國利益和價值觀的方向發展。這就意味著各國政府要愿意進行重大投資、組織改革和文化變革,以改變國防部門對新技術的態度。
為了應對這些挑戰,各國必須緊急制定一項全面的行動計劃,考慮到人工智能技術進步、圍繞人工智能或通過人工智能進行的地緣政治競爭以及國際體系中圍繞人工智能不斷演變的規范之間復雜的相互作用。這應利用一套影響不同受眾的機制工具包,運用外交、信息、軍事和經濟(DIME)杠桿,匯集一套積極主動的行動方案:
這也應借鑒其他領域的經驗教訓--如本報告所述--以及最近關于人工智能的高級別倡議的勢頭。突出的例子包括布萊切利峰會、軍事領域負責任的人工智能(REAIM)峰會和《軍事人工智能政治宣言》。
表0.2塑造全球國防人工智能發展的機制工具包
工具包類別 | 優先行動手冊 |
---|---|
促進英國國防采用人工智能并從中獲益的機制 | 加快整個國防領域對人工智能的投資和采用,同時提高抵御惡意或意外濫用人工智能的能力 |
限制采用人工智能的機制和對手的利益 | 采取競選方式,限制、減緩或增加對手(國家或非國家)部署軍事人工智能的成本 |
形成新的軍事人工智能管理安排的機制 | 在提高對軍事人工智能風險的認識、發現問題和分享學習成果方面發揮領導作用;與主要盟國(如美國)和競爭對手制定透明度和建立信任措施,以降低升級風險;促進采用包容性和參與性方法,就人工智能軍事領域負責任的行為規范達成新的全球共識,為今后達成更強有力的具有約束力的協議做好準備;促進減少核和生物相關的人工智能緊急風險的小型多邊機制的平行發展;研究如何將人工智能納入核查和合規機制,反之亦然;隨著時間的推移,將當前零散的人工智能治理倡議整合為一個更加具體的架構 |
美國空軍越來越關注人工智能(AI)在增強作戰各方面能力方面的潛力。在這個項目中,空軍要求蘭德公司的研究人員考慮人工智能無法做到的事情,以了解人工智能在作戰應用中的局限性。
研究人員沒有試圖確定人工智能的一般限制,而是選擇并調查了四個具體的作戰應用作為潛在用例:網絡安全、預測性維護、兵棋推演和任務規劃。選擇這些應用是為了代表各種可能的用途,同時突出不同的限制因素。在可以獲得足夠數據的三個案例中進行了人工智能實驗;剩下的兵棋推演案例則廣泛探討了如何應用或不能應用人工智能。
本報告是五卷系列中的第一卷,總結了所有應用案例的研究結果和建議。報告面向政策制定者、采購專業人員以及對將人工智能應用于作戰普遍感興趣的人員。
人們普遍認為,將機器學習融入軍事決策對于美國在 21 世紀保持軍事主導地位至關重要。機器學習的進步有可能通過提高整個國家安全企業級決策的速度、精確度和效率,極大地改變戰爭的特點。美國國防部的領導者們認識到了這一點,并正在做出大量努力,以在戰爭的戰術、作戰、戰略和機構層面有效整合機器學習工具。
本報告將探討機器學習的一種應用,其重點是在競爭和沖突的作戰層面實現軍事決策。展示了機器學習如何與人類合作,作為決策系統的一部分,用于提高軍事行動和活動的有效性。展示了這種方法如何通過分析原本無法獲取的數據源,為指揮官提供有關作戰環境的新見解。將重點放在從大量基于文本的數據(如報紙報道和情況報告)中獲得的洞察力上,這些數據無處不在,但卻很少以任何系統的方式整合到決策中。
在本報告中介紹的方法以人機協作系統的概念為基礎,并證明了現有的機器學習能力需要人在各個階段的參與,才能證明對操作層面的決策有用。因此,機器學習能力的發展與雷達自二戰以來的演變密切相關,而雷達是人機協作用于軍事目的的最早范例之一。如今,與不列顛之戰期間使用的預警系統同樣依賴雷達機器和人類觀察員一樣,機器學習仍然需要人類的參與,以指導這種新傳感器使用正確的數據,正確解釋其輸出結果,并評估其結果對作戰決策的影響。
通過一個基于真實世界數據和真實世界危機的示例研究,將讀者("您")置身于一名軍事指揮官的視角,就 2022 年俄羅斯全面入侵烏克蘭之前,美國如何支持烏克蘭兵力應對俄羅斯支持的烏克蘭東部叛亂,展示了這一系統方法的實際應用。在撰寫本案例研究時,把讀者您當成了這位指揮官,因為目標是強調您在未來與機器學習工具的合作中可能扮演的關鍵角色--無論是作為分析師、決策者,甚至是在現實世界的類似背景下應用這些工具的軍事指揮官。
值得注意的是,本案例研究是基于 2014-2020 年間的數據于 2020 年 12 月完成的,僅分析了這一時期與俄羅斯支持的烏克蘭東部叛亂有關的實地情況。本研究尚未更新,以反映自 2022 年 2 月俄羅斯入侵烏克蘭以來所獲得的任何見解。然而,從入侵前的視角來看,機器學習在后來發生的現實世界事件中用于作戰決策的優勢和局限性也就不言而喻了。
在整個案例研究中,將看到為本報告目的而進行的基于機器學習的實際評估結果,該評估分析了來自烏克蘭的 18,000 篇歷史新聞報道,內容涉及從 2014 年沖突起源到 2020 年末的沖突。利用機器學習工具從這些數據中提取相關見解,并與分析結果進行互動,就向烏克蘭兵力提供何種類型的支持以及在俄羅斯入侵前實現美國在該地區的目標做出名義上的決策。在此過程中,人機協作學習的優勢將逐漸顯現,將親眼目睹機器學習工具如何快速、系統地利用以前無法獲取的數據,為復雜問題提供新的見解。但這種方法的局限性也會顯現出來,將親眼目睹機器學習的好壞取決于支持它的可用數據,以及訓練機器學習工具和解釋其結果的人類分析師。
人機協作方法適用于軍事決策者在陸軍和美國防部作戰和機構層面面臨的各種問題集。因此,本研究以具體證據清晰地展示了在軍事決策中使用機器學習所涉及的權衡問題,為機器學習在軍事領域的廣泛應用做出了貢獻。本研究為美國陸軍提出了幾項重要發現和建議。
首先,分析展示了機器學習在軍事決策方面的巨大潛力,但只有在與對特定問題背后的背景有詳細了解的人類分析師配對時才能實現。在此提出的機器學習方法不會取代人類分析師。相反,它能使人類分析師更高效、更嚴謹,并能更好地從以前未開發的數據源中提取洞察力。在案例研究中,通過使用機器學習獲得的大多數關鍵見解都需要人類分析師的額外干預。在某些情況下,這需要在模型結果的基礎上有選擇性地疊加額外的數據源。在其他情況下,則需要人工分析師手動審查機器學習工具認為相關和有趣的基礎數據。因此,美國陸軍現有的機器學習能力需要人類在各個階段的參與,才能充分發揮其潛力。
其次,分析表明,通過大幅提高執行重復性任務的效率,人機協作方法可以大規模分析人類分析師無法單獨完成的海量數據集,從而產生以前無法實現的有關作戰環境的新見解。案例研究表明,從分析人員處理大量數據的重復性分析任務所花費的時間來看,機器學習能顯著提高效率,使分析人員更高效、更嚴謹,并能更好地從以前未開發的數據源中提取洞察力。這表明,對于需要大量人工審核相關數據的問題,陸軍領導應優先考慮將機器學習作為一種解決方案。
最后,這項研究揭示了機器學習的系統方法能夠對作戰級總部已有的大量數據進行標準化、客觀和長期的分析,從而增強其支持有效決策的潛力。在許多情況下,這些數據是戰爭中作戰和機構層面決策的最佳信息來源,但如果沒有機器學習,這些數據就只能以臨時和主觀的方式進行分析。
首先,這項研究表明,陸軍應為各級指揮人員提供頻繁接觸機器學習的機會,讓他們熟悉人類如何利用這些能力作為軍事決策系統的一部分。
其次,本研究強調,陸軍應建立多樣化的機器學習團隊,以充分釋放這一能力的潛力。這些團隊應整合熟悉機器學習工具細節的作戰研究系統分析員、對特定作戰環境有第一手知識的操作員、了解可用數據以分析特定問題的分析員,以及能將機器分析轉化為對作戰決策有實際影響的指揮官。
隨著技術的飛速發展和威脅環境變得更加復雜,今天的海軍行動經常面臨著具有挑戰性的決策空間。人工智能(AI)的進步為解決海軍行動中日益復雜的問題提供了潛在的解決方案。未來的人工智能系統提供了潛在的意義深遠的好處--提高對態勢的認識,增加對威脅和對手能力和意圖的了解,識別和評估可能的戰術行動方案,并提供方法來預測行動方案決定的結果和影響。人工智能系統將在支持未來海軍作戰人員和保持作戰和戰術任務優勢方面發揮關鍵作用。
人工智能系統為海戰提供了優勢,但前提是這些系統的設計和實施方式能夠支持有效的作戰人員-機器團隊,改善作戰情況的不確定性,并提出改善作戰和戰術結果的建議。實施人工智能系統,以滿足海軍應用的這些苛刻需求,給工程設計界帶來了挑戰。本文確定了四個挑戰,并描述了它們如何影響戰爭行動、工程界和海軍任務。本文提供了通過研究和工程倡議來解決這些挑戰的解決思路。
人工智能是一個包括許多不同方法的領域,目的是創造具有智能的機器(Mitchell 2019)。自動化系統的運作只需要最小的人類輸入,并經常根據命令和規則執行重復性任務。人工智能系統是自動化機器,執行模仿人類智能的功能。它們將從過去的經驗中學習到的新信息融入其中,以做出決定并得出結論。
如表1所述,人工智能系統有兩種主要類型。第一種類型是明確編程的專家系統。Allen(2020,3)將專家系統描述為手工制作的知識系統,使用傳統的、基于規則的軟件,將人類專家的主題知識編入一長串編程的 "如果給定x輸入,則提供y輸出"的規則。這些系統使用傳統的編程語言。第二種類型是ML系統,從大型數據集中進行訓練。ML系統自動學習并從經驗中改進,而不需要明確地進行編程。一旦ML系統被 "訓練",它們就被用于操作,以產生新的操作數據輸入的結果。
表1. 兩類人工智能系統
人工智能系統--包括專家系統和學習系統--為海軍提供了巨大的潛力,在大多數任務領域有不同的應用。這些智能系統可以擴展海軍的能力,以了解復雜和不確定的情況,制定和權衡選擇,預測行動的成功,并評估后果。它們提供了支持戰略、作戰計劃和戰術領域的潛力。
本文確定了工程設計界必須解決的四個挑戰,以便為未來海戰任務實施人工智能系統。表2強調了這四個挑戰領域。這些挑戰包括:(1)復雜的海戰應用領域;(2)需要收集大量與作戰相關的數據來開發、訓練和驗證人工智能系統;(3)人工智能系統工程的一些新挑戰;(4)存在對手的人工智能進展,不斷變化和發展的威脅,以及不斷變化的人工智能系統的網絡弱點。本文側重于海軍戰爭的四個挑戰領域,但認識到這些挑戰可以很容易地被概括為整個軍隊在未來人工智能系統可能應用的所有戰爭領域中廣泛存在的挑戰。
表2. 為海軍實施人工智能系統的四個挑戰領域
人工智能正被視為一種能力,可應用于廣泛的應用,如批準貸款、廣告、確定醫療、規劃航運路線、實現自動駕駛汽車和支持戰爭決策。每個不同的應用領域都提出了一系列的挑戰,人工智能系統必須與之抗衡,才能成為一種增加價值的可行能力。表3比較了一組領域應用的例子,從潛在的人工智能系統解決方案的角度說明了挑戰的領域。該表在最上面一行列出了一組10個因素,這些因素對一個特定的應用程序產生了復雜性。根據每個因素對作為實施人工智能的領域的整體復雜性的貢獻程度,對六個應用領域的特征進行了定性評估。顏色代表低貢獻(綠色)、中貢獻(黃色)和高貢獻(紅色)。
表3中最上面一行顯示的特征包括: (1)認識上的不確定性水平(情況知識的不確定性程度),(2)情況的動態性,(3)決策時間表(可用于決策的時間量),(4)人類用戶和人工智能系統之間的互動所涉及的錯綜復雜的問題、 (5)資源的復雜性(數量、類型、它們之間的距離以及它們的動態程度),(6)是否涉及多個任務,(7)所需訓練數據集的復雜性(大小、異質性、有效性、脆弱性、可獲得性等 8)對手的存在(競爭者、黑客或徹頭徹尾的敵人),(9)可允許的錯誤幅度(多少決策錯誤是可以接受的),以及(10)決策后果的嚴重程度。該表的定性比較旨在提供一個高層次的相對意義,即基于一組樣本的貢獻因素,不同應用領域的不同復雜程度。
表3. 影響應用復雜性的因素比較
對于所有的應用領域來說,人工智能系統的工程都是具有挑戰性的。人工智能系統在本質上依賴于具有領域代表性的數據。獲得具有領域代表性的數據會帶來基于數據大小、可用性、動態性和不確定性的挑戰。決策時間--由情況的時間動態決定--會給人工智能系統工程帶來重大挑戰--特別是當一個應用領域的事件零星發生和/或意外發生時;以及當決策是時間緊迫的時候。具有更多決策時間、充分訪問大型數據集、直接的用戶互動、完善的目標和非致命后果的應用,如貸款審批、廣告、醫療診斷(在某種程度上)面臨工程挑戰,但其復雜程度較低。確定最佳運輸路線和為自動駕駛汽車設計AI系統是更復雜的工作。這些應用是動態變化的,做決定的時間較短。航運路線將在可能的路線數量上具有復雜性--這可能會導致許多可能的選擇。然而,航運錯誤是有空間的,而且后果通常不會太嚴重。對于自動駕駛汽車來說,決策錯誤的空間非常小。在這種應用中,決策失誤會導致嚴重的事故。
影響開發支持海戰決策的人工智能系統的因素在表3所示的所有類別中都具有高度的復雜性。因此,戰術戰爭領域對工程和實施有效的人工智能系統作為解決方案提出了特別棘手的挑戰。表4強調了導致這種復雜性的海戰領域的特點。作為一個例子,海軍打擊力量的行動可以迅速從和平狀態轉變為巨大的危險狀態--需要對威脅保持警惕并采取適當的反應行動--所有這些都是在高度壓縮的決策時間內進行。戰術威脅可能來自水下、水面、空中、陸地、太空,甚至是網絡空間,導致需要處理多種時間緊迫的任務。由于海軍和國防資產在艦艇、潛艇、飛機、陸地和太空中,戰術決策空間必須解決這些分散和多樣化資源的最佳協作使用。制定有效的戰術行動方案也必須在高度動態的作戰環境中進行,并且只有部分和不確定的情況知識。決策空間還必須考慮到指揮權、交戰規則和戰術理論所帶來的限制。人類作為戰術決策者的角色增加了決策空間的復雜性--信息過載、操作錯誤、人機信任和人工智能的模糊性/可解釋性問題等挑戰。最后,對于戰術決策及其可能的后果來說,風險可能非常大。
表4. 導致戰術決策復雜性的因素
解決高度復雜的決策領域是對海軍的挑戰。人工智能為解決海軍作戰的復雜性提供了一個潛在的解決方案,即處理大量的數據,處理不確定性,理解復雜的情況,開發和評估決策選擇,以及理解風險水平和決策后果。Desclaux和Prestot(2020)提出了一個 "認知三角",其中人工智能和大數據被應用于支持作戰人員,以實現信息優勢、控制論信心和決策優勢。約翰遜(2019年)開發了一個工程框架和理論,用于解決高度復雜的問題空間,這些問題需要使用智能和分布式人工智能系統來獲得情況意識,并做出適應動態情況的協作行動方案決定。約翰遜(2020a)建立了一個復雜的戰術場景模型,以證明人工智能輔助決策對戰術指揮和控制(C2)決策的好處。約翰遜(2020b)開發了一個預測分析能力的概念設計,作為一個自動化的實時戰爭游戲系統來實施,探索不同的可能的戰術行動路線及其預測的效果和紅色部隊的反應。首先,人工智能支持的C2系統需要描述戰術行動期間的復雜程度,然后提供一個自適應的人機組合安排來做出戰術決策。這個概念包括根據對目前戰術情況的復雜程度最有效的方法來調整C2決策的自動化水平(人與機器的決策角色)。約翰遜(2021年)正在研究這些概念性工程方法在各種防御用例中的應用,包括空中和導彈防御、超視距打擊、船舶自衛、無人機操作和激光武器系統。
在海軍作戰中實施人工智能系統的一個額外挑戰是在戰術邊緣施加的限制。分散的海軍艦艇和飛機的作戰行動構成了戰術邊緣--在有限的數據和通信下作戰。"在未來,戰術邊緣遠離指揮中心,通信和計算資源有限,戰場形勢瞬息萬變,這就導致在嚴酷復雜的戰地環境中,網絡拓撲結構連接薄弱,變化迅速"(Yang et. al. 2021)。戰術邊緣網絡也容易斷開連接(Sridharan et. al. 2020)。相比之下,許多商業人工智能系統依賴于基于云的或企業內部的處理和存儲,而這些在海戰中是不存在的。在戰術邊緣實施未來的人工智能系統時,必須進行仔細的設計考慮,以了解哪些數據和處理能力可用。這可能會限制人工智能系統在邊緣所能提供的決策支持能力。
在軍事領域使用人工智能必須克服復雜性的挑戰障礙,在某些情況下,人工智能的加入可能會增加復雜性。辛普森等人(2021)認為,將人工智能用于軍事C2可能會導致脆弱性陷阱,在這種情況下,自動化功能增加了戰斗行動的速度,超出了人類的理解能力,最終導致 "災難性的戰略失敗"。Horowitz等人(2020)討論了通過事故、誤判、增加戰爭速度和升級以及更大的殺傷力來增加國際不穩定和沖突。Jensen等人(2020)指出,人工智能增強的軍事系統增加的復雜性將增加決策建議和產生的信息的范圍、重要性和意義的不確定性;如果人類決策者對產出缺乏信心和理解,他們可能會失去對人工智能系統的信任。
實施人工智能系統的第二個挑戰是它們依賴并需要大量的相關和高質量的數據用于開發、訓練、評估和操作。在海戰領域滿足這些數據需求是一個挑戰。明確編程的專家系統在開發過程中需要數據進行評估和驗證。ML系統在開發過程中對數據的依賴性甚至更大。圖1說明了ML系統如何從代表作戰條件和事件的數據集中 "學習"。
ML系統的學習過程被稱為被訓練,開發階段使用的數據被稱為訓練數據集。有幾種類型的ML學習或訓練--它們是監督的、無監督的和強化的方法。監督學習依賴于地面真相或關于輸出值應該是什么的先驗知識。監督學習算法的訓練是為了學習一個最接近給定輸入和期望輸出之間關系的函數。無監督學習并不從地面真相或已知的輸出開始。無監督學習算法必須在輸入數據中推斷出一個自然結構或模式。強化學習是一種試錯法,允許代理或算法在獎勵所需行為和/或懲罰不需要的行為的基礎上學習。所有三種類型的ML學習都需要訓練數據集。在部署后或運行階段,ML系統繼續需要數據。
圖1顯示,在運行期間,ML系統或 "模型 "接收運行的實時數據,并通過用其 "訓練 "的算法處理運行數據來確定預測或決策結果。因此,在整個系統工程和采購生命周期中,ML系統與數據緊密相連。ML系統是從訓練數據集的學習過程中 "出現 "的。ML系統是數據的質量、充分性和代表性的產物。它們完全依賴于其訓練數據集。
圖1. 使用數據來訓練機器學習系統
美國海軍開始認識到對這些數據集的需求,因為許多領域(戰爭、供應鏈、安全、后勤等)的更多人工智能開發人員正在了解人工智能解決方案的潛在好處,并開始著手開發人工智能系統。在某些情況下,數據已經存在并準備好支持人工智能系統的開發。在其他情況下,數據存在但沒有被保存和儲存。最后,在其他情況下,數據并不存在,海軍需要制定一個計劃來獲得或模擬數據。
收集數據以滿足海軍領域(以及更廣泛的軍事領域)的未來人工智能/ML系統需求是一個挑戰。數據通常是保密的,在不同的項目和系統中被分隔開來,不容易從遺留系統中獲得,并且不能普遍代表現實世界行動的復雜性和多樣性。要從并非為數據收集而設計的遺留系統中獲得足夠的數據,可能非常昂貴和費時。數據收集可能需要從戰爭游戲、艦隊演習、系統測試、以及建模和模擬中收集。此外,和平時期收集的數據并不代表沖突和戰時的操作。海軍(和軍方)還必須教導人工智能系統在預計的戰時行動中發揮作用。這將涉及想象可能的(和可能的)戰時行動,并構建足夠的ML訓練數據。
數據收集的另一個挑戰是潛在的對抗性黑客攻擊。對于人工智能/ML系統來說,數據是一種珍貴的商品,并提出了一種新的網絡脆弱性形式。對手可以故意在開發過程中引入有偏見或腐敗的數據,目的是錯誤地訓練AI/ML算法。這種邪惡的網絡攻擊形式可能很難被發現。
海軍正在解決這一數據挑戰,開發一個數據基礎設施和組織來管理已經收集和正在收集的數據。海軍的Jupiter計劃是一個企業數據和分析平臺,正在管理數據以支持AI/ML的發展和其他類型的海軍應用,這些應用需要與任務相關的數據(Abeyta,2021)。Jupiter努力的核心是確定是否存在正確的數據類型來支持人工智能應用。為了生產出在行動中有用的人工智能/ML系統,海軍需要在游戲中保持領先,擁有能夠代表各種可能情況的數據集,這些情況跨越了競爭、沖突和危機期間的行動范圍。因此,數據集的開發和管理必須是一項持續的、不斷發展的努力。
第三個挑戰是,人工智能系統的工程需要改變傳統的系統工程(SE)。在傳統系統中,行為是設定的(確定性的),因此是可預測的:給定一個輸入和條件,系統將產生一個可預測的輸出。一些人工智能解決方案可能涉及到系統本身的復雜性--適應和學習--因此產生不可預見的輸出和行為。事實上,一些人工智能系統的意圖就是要做到這一點--通過承擔一些認知負荷和產生智能建議,與人類決策者合作。表5強調了傳統系統和人工智能系統之間的區別。需要有新的SE方法來設計智能學習系統,并確保它們對人類操作者來說是可解釋的、可信任的和安全的。
SE作為一個多學科領域,在海軍中被廣泛使用,以將技術整合到連貫而有用的系統中,從而完成任務需求(INCOSE 2015)。SE方法已經被開發出來用于傳統系統的工程設計,這些系統可能是高度復雜的,但也是確定性的(Calvano和John 2004)。如表5所述,傳統系統具有可預測的行為:對于一個給定的輸入和條件,它們會產生可預測的輸出。然而,許多海軍應用的人工智能系統在本質上將是復雜的、適應性的和非決定性的。Raz等人(2021年)解釋說,"SE及其方法的雛形基礎并不是為配備人工智能(即機器學習和深度學習)的最新進展、聯合的多樣化自主系統或多領域操作的工程系統而設想的。" 對于具有高風險后果的軍事系統來說,出錯的余地很小;因此,SE過程對于確保海軍中人工智能系統的安全和理想操作至關重要。
表5. 傳統系統和人工智能系統的比較
在整個系統生命周期中,將需要改變SE方法,以確保人工智能系統安全有效地運行、學習和適應,以滿足任務需求并避免不受歡迎的行為。傳統的SE過程的大部分都需要轉變,以解決人工智能系統的復雜和非確定性的特點。在人工智能系統的需求分析和架構開發階段需要新的方法,這些系統將隨著時間的推移而學習和變化。系統驗證和確認階段將必須解決人工智能系統演化出的突發行為的可能性,這些系統的行為不是完全可預測的,其內部參數和特征正在學習和變化。運營和維護將承擔重要的任務,即隨著人工智能系統的發展,在部署期間不斷確保安全和理想的行為。
SE界意識到,需要新的流程和實踐來設計人工智能系統。國際系統工程師理事會(INCOSE)最近的一項倡議正在探索開發人工智能系統所需的SE方法的變化。表6強調了作為該倡議一部分的五個SE重點領域。除了非決定性的和不斷變化的行為,人工智能系統可能會出現新類型的故障模式,這些故障模式是無法預料的,可能會突然發生,而且其根本原因可能難以辨別。穩健設計--或確保人工智能系統能夠處理和適應未來的情景--是另一個需要新方法的SE領域。最后,對于有更多的人機互動的人工智能系統,必須仔細注意設計系統,使它們值得信賴,可以解釋,并最終對人類決策者有用。
表6.人工智能系統工程中的挑戰(改編自:Robinson,2021)。
SE研究人員正在研究人工智能系統工程所涉及的挑戰,并開發新的SE方法和對現有SE方法的必要修改。Johnson(2019)開發了一個SE框架和方法,用于工程復雜的適應性系統(CASoS)解決方案,涉及分布式人工智能系統的智能協作。這種方法支持開發智能系統的系統,通過使用人工智能,可以協作產生所需的突發行為。Johnson(2021)研究了人工智能系統產生的潛在新故障模式,并提出了一套跨越SE生命周期的緩解和故障預防策略。她提出了元認知,作為人工智能系統自我識別內部錯誤和失敗的設計方案。Cruz等人(2021年)研究了人工智能在空中和導彈防御應用中使用人工智能輔助決策的安全性。他們為計劃使用人工智能系統的軍事項目編制了一份在SE開發和運行階段需要實施的策略和任務清單。Hui(2021年)研究了人類作戰人員與人工智能系統合作進行海軍戰術決策時的信任動態。他制定了工程人工智能系統的SE策略,促進人類和機器之間的 "校準 "信任,這是作為適當利用的最佳信任水平,避免過度信任和不信任,并在信任失敗后涉及信任修復行動。Johnson等人(2014)開發了一種SE方法,即協同設計,用于正式分析人機功能和行為的相互依賴性。研究人員正在使用協同設計方法來設計涉及復雜人機交互的穩健人工智能系統(Blickey等人,2021年,Sanchez 2021年,Tai 2021年)。
數據的作用對于人工智能系統的開發和運行來說是不可或缺的,因此需要在人工智能系統的SE生命周期中加入一個持續不斷的收集和準備數據的過程。Raz等人(2021)提出,SE需要成為人工智能系統的 "數據策劃者"。他們強調需要將數據策劃或轉化為可用的結構,用于開發、訓練和評估AI算法。French等人(2021)描述了需要適當的數據策劃來支持人工智能系統的發展,他們強調需要確保數據能夠代表人工智能系統將在其中運行的預期操作。他們強調需要安全訪問和保護數據,以及需要識別和消除數據中的固有偏見。
SE界正處于發展突破和進步的早期階段,這些突破和進步是在更復雜的應用中設計人工智能系統所需要的。這些進展需要與人工智能的進展同步進行。在復雜的海軍應用以及其他非海軍和非軍事應用中實施人工智能系統取決于是否有必要的工程實踐。SE實踐必須趕上AI的進步,以確保海軍持續的技術優勢。
海軍在有效實施人工智能系統方面面臨的第四個挑戰是應對對手。海軍的工作必須始終考慮對手的作用及其影響。表7確定了在海軍實施人工智能系統時必須考慮的與對手有關的三個挑戰:(1)人工智能技術在許多領域迅速發展,海軍必須注意同行競爭國的軍事應用進展,以防止被超越,(2)在海軍應用中實施人工智能系統和自動化會增加網絡脆弱性,以及(3)海軍應用的人工智能系統需要發展和適應,以應對不斷變化的威脅環境。
表7. AI系統的對抗性挑戰
同行競爭國家之間發展人工智能能力的競賽,最終是為了進入對手的決策周期,以便比對手更快地做出決定和采取行動(Schmidt等人,2021年)。人工智能系統提供了提高決策質量和速度的潛力,因此對獲得決策優勢至關重要。隨著海軍對人工智能解決方案的探索,同行的競爭國家也在做同樣的事情。最終實現將人工智能應用于海軍的目標,不僅僅取決于人工智能研究。它需要適當的數據收集和管理,有效的SE方法,以及仔細考慮人類與AI系統的互動。海軍必須承認,并采取行動解決實施人工智能系統所涉及的挑戰,以贏得比賽。
網絡戰是海軍必須成功參與的另一場競賽,以保持在不斷沖擊的黑客企圖中的領先地位。網絡戰的特點是利用計算機和網絡來攻擊敵人的信息系統(Libicki, 2009)。海軍對人工智能系統的實施導致了更多的網絡攻擊漏洞。人工智能系統的使用在本質上依賴于訓練和操作數據,導致黑客有機會在開發階段和操作階段用腐敗的數據欺騙或毒害系統。如果一個對手獲得了對一個運行中的人工智能系統的控制,他們可能造成的傷害將取決于應用領域。對于支持武器控制決策的自動化,其后果可能是致命的。海軍必須注意人工智能系統開發過程中出現的特殊網絡漏洞。必須為每個新的人工智能系統實施仔細的網絡風險分析和網絡防御戰略。海軍必須小心翼翼地確保用于開發、訓練和操作人工智能系統的數據集在整個人工智能系統的生命周期中受到保護,免受網絡攻擊(French等人,2021)。
威脅環境的演變是海軍在開發AI系統時面臨的第三個對抗性挑戰。對手的威脅空間隨著時間的推移不斷變化,武器速度更快、殺傷力更大、監視資產更多、反制措施更先進、隱身性更強,這對海軍能夠預測和識別新威脅、應對戰斗空間的未知因素構成了挑戰。尤其是人工智能系統,必須能夠加強海軍感知、探測和識別新威脅的能力,以幫助它們從未知領域轉向已知領域的過程。他們必須適應新的威脅環境,并在行動中學習,以了解戰斗空間中的未知因素,并通過創新的行動方案快速應對新的威脅(Grooms 2019, Wood 2019, Jones et al 2020)。海軍可以利用人工智能系統,通過研究特定區域或領域的長期數據,識別生活模式的異常(Zhao等人,2016)。最后,海軍可以探索使用人工智能來確定新的和有效的行動方案,使用最佳的戰爭資源來解決棘手的威脅情況。
人工智能系統為海軍戰術決策的優勢提供了相當大的進步潛力。然而,人工智能系統在海戰應用中的實施帶來了重大挑戰。人工智能系統與傳統系統不同--它們是非決定性的,可以學習和適應--特別是在用于更復雜的行動時,如高度動態的、時間關鍵的、不確定的戰術行動環境中,允許的誤差范圍極小。本文確定了為海戰行動實施人工智能系統的四個挑戰領域:(1)開發能夠解決戰爭復雜性的人工智能系統,(2)滿足人工智能系統開發和運行的數據需求,(3)設計這些新穎的非確定性系統,以及(4)面對對手帶來的挑戰。
海軍必須努力解決如何設計和部署這些新穎而復雜的人工智能系統,以滿足戰爭行動的需求。作者在這一工作中向海軍提出了三項建議。
1.第一個建議是了解人工智能系統與傳統系統之間的差異,以及伴隨著人工智能系統的開發和實施的新挑戰。
人工智能系統,尤其是那些旨在用于像海戰這樣的復雜行動的系統,其本身就很復雜。它們在應對動態戰爭環境時將會學習、適應和進化。它們將變得不那么容易理解,更加不可預測,并將出現新型的故障模式。海軍將需要了解傳統的SE方法何時以及如何在這些復雜系統及其復雜的人機交互工程中失效。海軍將需要了解數據對于開發人工智能系統的關鍵作用。
2.第二個建議是投資于人工智能系統的研究和開發,包括其數據需求、人機互動、SE方法、網絡保護和復雜行為。
研究和開發是為海戰行動開發AI系統解決方案的關鍵。除了開發復雜的戰術人工智能系統及其相關的人機協作方面,海軍必須投資研究新的SE方法來設計和評估這些適應性非決定性系統。海軍必須仔細研究哪些新類型的對抗性網絡攻擊是可能的,并且必須開發出解決這些問題的解決方案。海軍必須投資于收集、獲取和維護代表現實世界戰術行動的數據,用于人工智能系統開發,并確保數據的相關性、有效性和安全性。
3.第三個建議是承認挑戰,并在預測人工智能系統何時準備好用于戰爭行動方面采取現實態度。
盡管人工智能系統正在許多領域實施,但海軍要為復雜的戰術戰爭行動實施人工智能系統還需要克服一些挑戰。人工智能系統在較簡單應用中的成功并不能保證人工智能系統為更復雜的應用做好準備。海軍應該保持一種現實的認識,即在人工智能系統準備用于戰爭決策輔助工具之前,需要取得重大進展以克服本文所討論的挑戰。實現人工智能系統的途徑可以依靠建模和模擬、原型實驗、艦隊演習以及測試和評估。可以制定一個路線圖,彌合較簡單應用的人工智能和復雜應用的人工智能之間的差距--基于一個積木式的方法,在為逐漸復雜的任務開發和實施人工智能系統時吸取經驗教訓。
海軍將從未來用于戰術戰爭的人工智能系統中獲益。通過安全和有效地實施人工智能系統,戰術決策優勢的重大進步是可能的。此外,海軍必須跟上(或試圖超越)對手在人工智能方面的進展。本文描述了為在海戰中實施人工智能系統而必須解決的四個挑戰。通過對這些新穎而復雜的人工智能系統的深入了解,對研究和開發計劃的投資,以及對人工智能技術進步時限的現實預期,海軍可以在應對這些挑戰方面取得進展。
美國仍然是世界上最突出的軍事和技術力量。在過去十年中,美國認識到人工智能作為力量倍增器的潛力,越來越多地將人工智能(AI)的熟練程度視為美國重要利益和保證美國軍事和經濟實力的機制。特別是,在過去十年中,人工智能已成為美國國防的一項關鍵能力,特別是考慮到2022年美國國防戰略對印度-太平洋地區的關注。
因此,美國國防部(DoD)(以及美國政府和國防機構總體上)對人工智能和相關新興技術表現出越來越大的熱情。然而,雖然美國目前在學術界和私營部門的人工智能研究和開發方面取得了巨大進展,但國防部尚未在廣泛范圍內成功地將商業人工智能的發展轉化為真正的軍事能力。
美國政府在利用國防人工智能和人工智能支持的系統方面通常處于有利地位。然而,在過去的幾年里,各種官僚主義、組織和程序上的障礙減緩了國防部在國防人工智能采用和基于技術的創新方面的進展。最關鍵的是,國防部遭受了復雜的收購過程和廣泛的數據、STEM和AI人才和培訓的短缺。從事人工智能和人工智能相關技術和項目的組織往往是孤立的,而且還存在必要的數據和其他資源相互分離。在美國防部內部存在一種傾向于可靠方法和系統的文化,有時趨向于勒德主義。所有這些因素都導致了人工智能采用的速度出奇的緩慢。美國家安全委員會2021年提交給國會的最終報告總結說,"盡管有令人興奮的實驗和一些小型的人工智能項目,但美國政府離人工智能就緒還有很長的路要走"。
因此,盡管人工智能有可能增強美國的國家安全并成為一個優勢領域,而且鑒于美國在軍事、創新和技術領導方面的長期傳統,人工智能有可能成為一個薄弱點,擴大 "美國已經進入的脆弱窗口"。 如果美國不加快創新步伐,達到負責任的速度,并奠定必要的制度基礎,以支持一支精通人工智能的軍隊,人工智能將繼續成為一個不安全點。
去年,美國防部在這些挑戰中的一些方面取得了進展,調整了國防人工智能的方法。2022年6月,美國防部發布了《負責任人工智能戰略和實施途徑》,將更有數據依據的、負責任的、可操作的人工智能工作列為優先事項,此后開始執行。最重要的是,美國防部已經啟動了對其人工智能組織結構的重大改革,創建了一個新的首席數字和人工智能辦公室(CDAO),以整合其不同的人工智能項目和利益相關者,并使其與該部門的數據流更好地協調。值得注意的是,美國國防部目前正在對其國防人工智能的整體方法進行重大變革和振興。然而,這些新的人工智能努力是否足以讓美國彌補失去的時間,還有待觀察。
自主系統將塑造戰爭的未來。因此,土耳其的國防人工智能(AI)發展主要側重于提高自主系統、傳感器和決策支持系統的能力。提高自主系統的情報收集和作戰能力,以及實現蜂群作戰,是發展國防人工智能的優先事項。雖然土耳其加強了自主系統的能力,但在可預見的未來,人類仍將是決策的關鍵。
人類參與決策過程提出了一個重要問題:如何有效確保人機互動?目前,自主系統的快速發展和部署使人機互動的問題更加惡化。正如土耳其國防工業代表所爭論的那樣,讓機器相互交談比較容易,但將人類加入其中卻非常困難,因為現有的結構并不適合有效的人機互動。此外,人們認為,人工智能對決策系統的增強將有助于人類做出更快的決定,并緩解人機互動。
土耳其發展人工智能的意圖和計劃可以從官方戰略文件以及研發焦點小組報告中找到。突出的文件包括以下內容:
第11個發展計劃,其中規定了土耳其的經濟發展目標和關鍵技術投資。
《2021-2025年國家人工智能戰略》,它為土耳其的人工智能發展制定了框架。
焦點技術網絡(Odak Teknoloji A??,OTA?)報告,為特定的國防技術制定了技術路線圖。這些文件提供了關于土耳其如何對待人工智能、國防人工智能和相關技術的見解。
土耳其特別關注人工智能相關技術,如機器學習、計算機視覺和自然語言處理,其應用重點是自主車輛和機器人技術。自2011年以來,自主系統,主要是無人駕駛飛行器(UAV),仍然是土耳其人工智能發展的重點。此后,這已擴大到包括所有類型的無機組人員的車輛。同時,用人工智能來增強這些車輛的能力也越來越受到重視。人工智能和相關技術的交織發展構成了土耳其人工智能生態系統的核心。
土耳其的人工智能生態系統剛剛起步,但正在成長。截至2022年10月,有254家人工智能初創企業被列入土耳其人工智能倡議(TRAI)數據庫。土耳其旨在通過各種生態系統倡議在其國防和民用產業、學術機構和政府之間創造協同效應。由于許多組織都參與其中,這些倡議導致了重復和冗余。冗余也來自于人工智能技術本身的性質。由于人工智能是一種通用技術,可以應用于不同的環境,各種公司都有用于民用和國防部門的產品;因此相同的公司參與了不同的生態系統倡議。此外,民用公司與國防公司合作,在國防人工智能研究中合作,并提供產品,這是司空見慣的。
土耳其鼓勵國際人工智能在民用領域的合作,但不鼓勵在國防領域的合作。然而,由于技能是可轉移的,國防人工智能間接地從這種合作中受益。
土耳其非常關注自主系統發展中的互操作性問題,特別是那些具有群集能力的系統。除了蜂群,北約盟國的互操作性也是一個重要問題。因此,土耳其認為北約標準在發展自主系統和基礎技術方面至關重要。
土耳其目前對人工智能采取了分布式的組織方式。每個政府機構都設立了自己的人工智能組織,職責重疊。目前,盡管國防工業局(Savunma Sanayi Ba?kanl???,SSB)還沒有建立專門的人工智能組織,但SSB的研發部管理一些人工智能項目,而SSB的無人駕駛和智能系統部管理平臺級項目。目前,根據現有信息,還不清楚這些組織結構如何實現國防創新或組織改革。
土耳其尋求增加其在人工智能方面的研發支出,旨在增加就業和發展生態系統。SSB將在未來授予更多基于人工智能的項目,并愿意購買更多的自主系統,鼓勵研發支出的上升趨勢。然而,盡管土耳其希望增加支出,但金融危機可能會阻礙目前的努力。
培訓和管理一支熟練的勞動力對于建立土耳其正在尋找的本土人工智能開發能力至關重要。這包括兩個部分。首先是培養能夠開發和生產國防人工智能的人力資源。因此,土耳其正在投資于新的大學課程、研究人員培訓、開源平臺和就業,同時支持技術競賽。第二是培訓將使用國防人工智能的軍事人員。國防人工智能也正在慢慢成為土耳其武裝部隊(Türk Silahl? Kuvvetleri,TSK)培訓活動的一部分。目前,關于土耳其打算如何培訓軍事人員使用國防人工智能的公開信息非常少。
人工智能(AI)領域的不斷進步以及在關鍵部門整合AI系統的工作正在逐步改變社會的各個方面,包括國防部門。盡管人工智能的進步為增強人類能力和改善各種決策提供了前所未有的機會,但它們也帶來了重大的法律、安全、安保和倫理問題。因此,為了確保人工智能系統的開發和使用是合法的、道德的、安全的、有保障的和負責任的,政府和政府間組織正在制定一系列規范性文書。這種方法被廣泛稱為 "負責任的人工智能",或道德的或值得信賴的人工智能。目前,負責任的人工智能最引人注目的方法是開發和運作負責任或道德的人工智能原則。
聯合國裁研所的 "在國防中實現負責任的人工智能 "項目首先尋求對負責任的人工智能系統的研究、設計、開發、部署和使用的關鍵方面建立共同的理解。然后,它將審查負責任的人工智能在國防部門的運作情況,包括確定和促進良好做法的交流。該項目有三個主要目標。首先,它旨在鼓勵各國采用和實施能夠在開發和使用人工智能系統中實現負責任行為的工具。它還試圖幫助提高透明度,促進國家和其他關鍵人工智能行為者之間的信任。最后,該項目旨在建立對負責任的人工智能關鍵要素的共同理解,以及如何將其付諸實施,這可以為制定國際公認的治理框架提供參考。
本研究簡報概述了該項目的目標。它還概述了項目第一階段的研究方法和初步結果:制定共同的原則分類法和對各國采用的人工智能原則進行比較分析。
人工智能在軍事領域的前景之一是其廣泛的適用性,這似乎可以保證其被采用。在軍事方面,人工智能的潛力存在于所有作戰領域(即陸地、海洋、空中、太空和網絡空間)和所有戰爭級別(即政治、戰略、戰役和戰術)。然而,盡管有潛力,需求和人工智能技術進步之間的銜接仍然不是最佳狀態,特別是在軍事應用的監督機器學習方面。訓練監督機器學習模型需要大量的最新數據,而這些數據往往是一個組織無法提供或難以產生的。應對這一挑戰的絕佳方式是通過協作設計數據管道的聯邦學習。這種機制的基礎是為所有用戶實施一個單一的通用模型,使用分布式數據進行訓練。此外,這種聯邦模式確保了每個實體所管理的敏感信息的隱私和保護。然而,這個過程對通用聯邦模型的有效性和通用性提出了嚴重的反對意見。通常情況下,每個機器學習算法在管理現有數據和揭示復雜關系的特點方面表現出敏感性,所以預測有一些嚴重的偏差。本文提出了一種整體的聯邦學習方法來解決上述問題。它是一個聯邦自動集成學習(FAMEL)框架。FAMEL,對于聯邦的每個用戶來說,自動創建最合適的算法,其最優的超參數適用于其擁有的現有數據。每個聯邦用戶的最優模型被用來創建一個集成學習模型。因此,每個用戶都有一個最新的、高度準確的模型,而不會在聯邦中暴露個人數據。實驗證明,這種集成模型具有更好的可預測性和穩定性。它的整體行為平滑了噪音,同時減少了因抽樣不足而導致的錯誤選擇風險。
關鍵詞:聯邦學習;元學習;集成學習;軍事行動;網絡防御
隨著步伐的加快,人工智能(AI)正在成為現代戰爭的重要組成部分,因為它為大規模基礎設施的完全自動化和眾多防御或網絡防御系統的優化提供了新的機會[1]。人工智能在軍事領域[2]的前景之一,似乎保證了它的采用,即它的廣泛適用性。在軍事方面,人工智能的潛力存在于所有作戰領域(即陸地、海洋、空中、太空和網絡空間)和所有級別的戰爭(即政治、戰略、戰役和戰術)[3]。但與此同時,隨著參與連續互聯和不間斷信息交換服務的互聯系統數量的實時擴大,其復雜性仍在成倍增長[4]。從概括的角度來看,可以說人工智能將對以下任務產生重大影響:
1.太快的任務,反應時間為幾秒鐘或更少,在高復雜度(數據、背景、任務類型)下執行。
2.操作時間超過人類耐力的任務,或意味著長期的高操作(人員)成本。
3.涉及巨大的復雜性的任務,需要靈活地適應環境和目標的變化。
4.具有挑戰性的行動環境,意味著對作戰人員的嚴重風險。
支持上述任務的實時監測事件的應用程序正在接收一個持續的、無限的、相互聯系的觀察流。這些數據表現出高度的可變性,因為它們的特征隨著時間的推移而發生巨大的、意想不到的變化,改變了它們典型的、預期的行為。在典型情況下,最新的數據是最重要的,因為老化是基于它們的時間。
利用數據的軍事人工智能系統可以將軍事指揮官和操作員的知識和經驗轉化為最佳的有效和及時的決策[3,4]。然而,缺乏與使用復雜的機器學習架構相關的詳細知識和專業知識會影響智能模型的性能,阻止對一些關鍵的超參數進行定期調整,并最終降低算法的可靠性和這些系統應有的概括性。這些缺點正在阻礙國防的利益相關者,在指揮鏈的各個層級,信任并有效和系統地使用機器學習系統。在這種情況下,鑒于傳統決策系統無法適應不斷變化的環境,采用智能解決方案勢在必行。
此外,加強國防領域對機器學習系統不信任的一個普遍困難是,采用單一數據倉庫對智能模型進行整體訓練的前景[1],由于需要建立一個潛在的單點故障和對手的潛在戰略/主要目標[6],這可能造成嚴重的技術挑戰和隱私[5]、邏輯和物理安全等嚴重問題。相應地,可以使更完整的智能分類器泛化的數據交換也給敏感數據的安全和隱私帶來了風險,而軍事指揮官和操作人員并不希望冒這個風險[7]。
為了克服上述雙重挑戰,這項工作提出了FAMEL。它是一個整體系統,可以自動選擇和使用最合適的算法超參數,以最佳方式解決所考慮的問題,將其作為一個尋找算法解決方案的模型,其中通過輸入和輸出數據之間的映射來解決。擬議的框架使用元學習來識別過去積累的類似知識,以加快這一過程[8]。這些知識使用啟發式技術進行組合,實現一個單一的、不斷更新的智能框架。數據保持在操作者的本地環境中,只有模型的參數通過安全流程進行交換,從而使潛在的對手更難干預系統[9,10]。
在提議的FAMEL框架中,每個用戶在水平聯邦學習方法中使用一個自動元學習系統(水平聯邦學習在所有設備上使用具有相同特征空間的數據集。垂直聯邦學習使用不同特征空間的不同數據集來共同訓練一個全局模型)。以完全自動化的方式選擇具有最佳超參數的最合適的算法,該算法可以最佳地解決給定的問題。該實施基于實體的可用數據,不需要在遠程存儲庫中處置或與第三方共享[11]。
整個過程在圖1中描述。
圖1.FAMEL框架。
具體來說就是:
步驟1--微調最佳局部模型。微調過程將有助于提高每個機器學習模型的準確性,通過整合現有數據集的數據并將其作為初始化點,使訓練過程具有時間和資源效率。
步驟2--將本地模型上傳至聯邦服務器。
步驟3--由聯邦服務器對模型進行組合。這種集成方法使用多種學習算法,以獲得比單獨使用任何一種組成的學習算法都要好的預測性能。
步驟4--將集成模型分配給本地設備。
從這個過程中產生的最佳模型(贏家算法)被輸送到一個聯邦服務器,在那里通過啟發式機制創建一個集成學習模型。這個集成模型基本上包含了本地最佳模型所代表的知識,如前所述,這些知識來自用戶持有的本地數據[12]。因此,總的來說,集成模型提供了高概括性、更好的預測性和穩定性。它的一般行為平滑了噪音,同時降低了在處理本地數據的場景中由于建模或偏見而做出錯誤選擇的總體危險[13,14]。
將機器學習應用于現實世界的問題仍然特別具有挑戰性[44]。這是因為需要訓練有素的工程師和擁有豐富經驗和信息的軍事專家來協調各自算法的眾多參數,將它們與具體問題關聯起來,并使用目前可用的數據集。這是一項漫長的、費力的、昂貴的工作。然而,算法的超參數特征和理想參數的設計選擇可以被看作是優化問題,因為機器學習可以被認為是一個搜索問題,它試圖接近輸入和輸出數據之間的一個未知的潛在映射函數。
利用上述觀點,在目前的工作中,提出了FAMEL,擴展了制定自動機器學習的一般框架的想法,該框架具有有效的通用優化,在聯邦層面上運作。它使用自動機器學習在每個聯邦用戶持有的數據中找到最佳的本地模型,然后,進行廣泛的元學習,創建一個集成模型,正如實驗所顯示的那樣,它可以泛化,提供高度可靠的結果。這樣,聯邦機構就有了一個專門的、高度概括的模型,其訓練不需要接觸他們所擁有的數據的聯合體。在這方面,FAMEL可以應用于一些軍事應用,在這些應用中,持續學習和環境適應對支持的行動至關重要,而且由于安全原因,信息交流可能很難或不可能。例如,在實時優化有關任務和情況的信息共享方面就是這種情況。在部署了物聯網傳感器網格的擁擠環境中,FAMEL的應用將具有特別的意義,需要滿足許多安全限制。同樣,它也可以應用于網絡空間行動,在雜亂的信息環境和復雜的物理場景中實時發現和識別潛在的敵對活動,包括對抗負面的數字影響[45,46]。必須指出的是,在不減少目前所描述的要點的情況下,所提出的技術可以擴展到更廣泛的科學領域。它是一種通用的技術,可以發展和產生一種開放性的整體聯邦學習方法。
盡管總的來說,聯邦學習技術的方法論、集成模型以及最近的元學習方法已經強烈地占據了研究界,并提出了相關的工作,提升了相關的研究領域,但這是第一次在國際文獻中提出這樣一個綜合框架。本文提供的方法是一種先進的學習形式。計算過程并不局限于解決一個問題,而是通過一種富有成效的方法來搜索解決方案的空間,并以元啟發式的方式選擇最優的解決方案[47,48]。
另一方面,聯邦學習模型應該對合作訓練數據集應用平均聚合方法。這引起了人們對這種普遍方法的有效性的嚴重關注,因此也引起了人們對一般聯邦架構的有效性的關注。一般來說,它將單個用戶的獨特需求扁平化,而不考慮要管理的本地事件。如何創建解決上述局限性的個性化智能模型,是目前一個突出的研究問題。例如,研究[49]是基于每個用戶必須以聯邦的形式解決的需求和事件。解釋是可解釋系統的各種特征,在指定的插圖的情況下,這些特征有助于得出結論,并在局部和全局層面提供模型的功能。建議只對那些變化程度被認為對其功能的演變相當重要的特征進行再訓練。
可以擴大擬議框架研究領域的基本課題涉及元集成學習過程,特別是如何解決創建樹和它們的深度的問題,從而使這個過程自動完全簡化。還應確定一個自動程序,以最佳的分離方式修剪每棵樹,以避免負收益。最后,探索將優化修剪的樹的版本添加到模型中的程序,以最大限度地提高框架效率、準確性和速度。
(完整內容請閱讀原文)
人工智能(AI)是一項具有廣泛用途的新興技術。《美國防戰略》強調了人工智能對軍事行動的重要性,以使美國保持對其近似競爭對手的優勢。為了充分實現這一優勢,不僅要在戰術層面,而且要在戰爭的作戰層面整合人工智能。人工智能可以最有效地融入作戰計劃的復雜任務,方法是將其細分為其組成部分的作戰功能,這些功能可以由狹義的人工智能來處理。這種組織方式將問題減少到可以由人工智能解析的規模,并保持人類對機器支持的決策的監督。
人工智能是一套新興的、變革性的工具,有可能幫助軍事決策者。美國國家戰略將人工智能(AI)納入戰爭。《2020年國防授權法》11次提到了人工智能。國防戰略強調了利用人工智能和機器學習方面的商業突破的重要性。人工智能的軍事用途是保留國家安全的一個引人注目的方式。創造工具來支持戰術行動,如摧毀敵軍和從一個點導航到另一個點,具有顯著和可見的效果,使他們在資源有限的環境中在政治上可以接受。它們在訓練和測試方面的可重復性,使它們在采購過程中成為人工智能系統的快速贏家。然而,戰術行動的范圍和時間是有限的。僅在戰術層面上整合人工智能,忽視了在作戰層面上發生的決定性影響。
作戰,也就是實踐者將戰術行動轉化為戰略效果的層面,取決于領導者做出正確決策的能力。聯合部隊海事部分指揮官(JFMCC)的艱巨任務是制定計劃,將戰區戰略和聯合部隊指揮官(JFC)的目標結合起來,通過決定性的海軍交戰來塑造環境。在人工智能的快速認知能力的幫助下,JFMCC將能夠制定并更徹底地分析行動方案(COA)。這些品質對于未來的沖突是必要的。
人工智能必須在戰爭的各個層面進行整體集成,以充分實現其優勢。除了局部的、短期的戰斗,它還需要應用于主要的行動和戰役,涉及整個戰區的數月或數年。在戰爭的戰役(作戰)層面上的實施,放大了為實現戰略目標而進行的有序交戰和同步行動之間的協同作用。除了技術發展之外,行動上的整合將刺激政策和理論的建立,以使作戰人員有意愿使用人工智能。隨著使用人工智能的經驗的增加,其采用率也會增加。為協助海軍作戰計劃而實施的特定人工智能技術可能與那些用于計算射擊方案或在被拒絕的淺灘水域規劃路線的技術不同。然而,在作戰層面的接受度將推動戰術上的使用。
在JFMCC層面,人工智能系統網絡將為決策者提供決定性的優勢,將專注于作戰功能的獨立的人工狹義智能(ANI)單位統一起來將實現最顯著的好處。首先,人工智能解決方案比它們的通用人工智能(AGI)同行更適合于軍事問題的解決。其次,戰爭的性質促使有必要在作戰層面上整合人工智能。最后,雖然有許多方法可以整合,但沿著功能線這樣做會帶來最顯著的好處。不僅在技術意義上吸收人工智能,而且描述其在政策、理論和培訓中的使用,將使海軍能夠充分使用它,并在與我們的戰略競爭對手的競爭中獲得優勢。
目前人工智能在海上行動中的最佳應用是將復雜的海上行動問題分解成子問題,由人工智能來解決,并組合成COA建議。解決小問題的人工智能需要更少的訓練數據,有更直接的邏輯,并且可以連鎖起來解決更重要的問題。麻省理工學院人工智能實驗室前主任羅德尼-布魯克斯(Rodney Brooks)認為,創建動態環境的符號表示是困難的或不可能的。然而,特定任務的智能體可以利用足夠的傳感器數據智能地行動,更重要的是,可以連貫地互動。通過將簡單的活動連鎖起來,失敗的風險很低,更復雜的問題就可以得到解決。多個簡單的行動可以在低認知層平行運行,并將其輸出結合起來,為更高層次的復雜活動提供支持。這種結構的優點是允許軍事工程師開發和訓練人工智能,以首先解決可操作的問題。對人工智能開發者來說更具挑戰性的功能可以保留只由人類決定的方法,直到他們產生解決這些問題的專業知識。與其等待一個完整的系統,部分系統將提供一個臨時的邊際優勢。
鑒于人工智能可以通過將問題分解成更小的決策來最好地解決問題,問題仍然是如何劃分這些問題。重述作戰任務的一個模式是將它們分成作戰功能:指揮和控制(C2)、通信、情報、火力、運動和機動、保護和維持。這些作戰功能為開展有效行動提供了基礎。它們為一個行動提供了采用手段實現其目的的方法。因此,與決定如何實施這些功能以實現目標的決策者一起使用人工智能是很自然的。
如同應用于海上作戰戰爭,最低層的決策支持系統將由感知環境的活動組成:探測艦艇、飛機和潛艇;燃料水平;天氣;以及其他客觀的戰斗空間數據。通過將外部輸入限制在特定的、低層次的任務上,該系統將最大限度地減少對抗性例子或旨在消極操縱自動系統的數據的風險。中間層將把下層的輸出與作戰目標和因素結合起來,如時間、空間和力量的限制,以提供解決問題的方法和作戰功能。由于上層的對抗性數據注入的威脅較小,這些系統可以使用深度學習。深度學習是機器學習的一個子集,它不像其他形式那樣需要高度格式化的數據,但計算成本會更高,而且容易受到欺騙。深度學習將增加這一層的人類互動,并暴露出更復雜的關系。最高層將把C2流程應用于其他六個業務功能,以產生業務建議。中間層的每個功能人工智能將向其他功能人工智能和最高C2層提供建議。中間層的人工智能對復雜的數據和相鄰單位及C2功能的建議進行理解。
如果將中間層人工智能納入規劃和指導、收集、處理、分析和傳播的情報周期,將促進收集資產的更好分配。判斷對有限的收集資產的請求以滿足行動和戰術信息需求是JFMCC關注的一個問題。在收集計劃期間,人工智能可以使用已知的對手軌跡、地點、個人和組織來定義和優先考慮指定的利益區域(NAI)。在執行過程中,人工智能可以根據優先級驅動收集路線,就像企業用它來規劃送貨路線以減少勞動力、燃料和維護成本一樣。采集計劃者可以通過增加對手監視點的位置和范圍來減少反偵查的風險。在C2層面,指揮官和情報官員可以利用收集成果來證明更多的JFMCC收集資產和COA的修改。這種方法適用于其他功能。
人工智能可以在部隊部署不斷變化和對手存在不確定的環境中改善維持能力。相互沖突的要求使如何使用有限的后勤資產來滿足作戰人員的需求的決策變得復雜。后勤單位較低的生存能力促使人們決定是將它們帶入被對手防御系統拒絕的區域,還是將戰斗飛船引離目標。人工智能可以利用軍事和民用運輸的可用性、預先部署的庫存和供應商的響應能力來制定船舶和飛機需求的解決方案。企業利用人工智能準確預測需求,并分辨出影響運輸和倉儲的采購模式。維持型人工智能可以使用這個過程的一個變種,來計劃在高級后勤支持站點(ALSS)或前方后勤站點(FLS)的材料堆放。它可以決定如何以及何時使用穿梭船和站立船來運送到攻擊組。機器學習將使用燃料、食品和武器庫存、威脅環、戰備水平和維修時間來訓練維持人工智能。維持型人工智能可以提供比人類單獨完成的更有效的量化解決方案,并將其反饋給其他功能區和C2高層。
C2層將對來自下層的決定進行仲裁,并提供一個統一的建議。就像一個軍事組織的指揮官一樣,它將把其副手AI的建議合并起來。人工智能過程的早期階段使用傳感器數據和其他客觀信息來確定指揮官的方向;決定行動方案需要建立對戰斗空間的理解,這是一種更高層次的欣賞。戰斗空間的可變性和模糊性將使這一層的人工智能元素最難開發。最終,該系統將作為一個可信的智能體,壓縮指揮官負責的信息量。壓縮的信息減輕了時間有限的決策者工作時的疑慮負擔,使她能夠向下屬單位發出更及時的命令。
圖1說明了基于這些原則的系統的擬議架構。以對手預測為例,許多單一用途的ANI將在最低層結合原始傳感器和單位報告數據。它將評估敵方單位的最可能位置。公司分析評論、社交媒體和論壇發帖的情緒,以確定產品的滿意度。同樣地,這個系統將通過公開的言論和秘密的報告來確定對手的意圖。它將評估當前和歷史天氣模式,以評估氣候對敵人行動的影響。這三個輸入和其他信息將被功能情報ANI用來形成對敵方COA的評估。同樣,火力節點將使用敵人的組成、JFC的優先級和預測的彈藥可用性來產生目標指導。中間層節點將橫向傳遞他們的評估,以完善鄰近的建議,如部隊保護水平。獨立的功能建議也將直接反饋給C2層,以創建整體行動方案。
圖1. 海上人工智能系統的擬議架構
首先,利用聯合人工智能資源的優勢,針對海軍的具體問題修改標準組件。擅長開發軍事人工智能系統的工程師的稀缺性將限制新系統的開發。美國防部的人工智能戰略具體規定了建立通用的工具、框架和標準,以便進行分散的開發和實驗。使用這些現成的組件,為人工智能決策網的所有子系統創建低級別的系統和標準接口。將海軍的資源集中于采購和實施用于海事具體決策的中層和高層系統。避免技術上令人著迷但無效的解決方案,并通過將職能領域的專家與設計團隊相結合來保持解決海事問題的目標。
第二,創建并維護可通過機器學習攝入的作戰數據數據庫,以訓練海軍人工智能。實施能夠在海上作戰中心(MOC)讀取和集中匯總基本作戰數據報告的技術和工藝,如燃料狀態、導彈裝載量。開發記錄和定性評分作戰決策結果的方法,如對手態勢的變化、傷亡修復率和公眾對行動的反應。將輸入與作戰決策和結果聯系起來的數據庫將加速開發符合現實世界標準的系統。
第三,將人工智能的使用納入政策和條令。條令應該編纂人工智能可以被整合到戰爭戰役層面決策中的領域。明確地說,關于情報、行動、火力、后勤、規劃和通信的海軍作戰出版物應說明人工智能在決策過程中產生優勢的地方和方式。描述海上聯合行動的聯合出版物應明確說明如何將JFC的要求解析為JFMCC的AI系統。如果國防部和海軍的政策對指揮官因整合人工智能的決策建議而產生的責任量進行了定性,那么他們在使用人工智能時就可以采取經過計算的風險。讓指揮官和作戰人員掌握使用人工智能的戰術、技術和程序將加速其在艦隊中的應用。