亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

大型語言模型(LLMs)已在自然語言處理(NLP)領域催生了重大進展,然而它們面臨著諸如幻覺錯誤和對特定領域知識需求等挑戰。為了緩解這些問題,最近的方法學已將從外部資源檢索到的信息與LLMs整合,顯著提升了它們在NLP任務中的表現。這篇綜述論文針對缺乏對檢索增強語言模型(RALMs)、包括檢索增強生成(RAG)和檢索增強理解(RAU)的全面概述,提供了它們的范式、演變、分類和應用的深入考察。文章討論了RALMs的基本組件,包括檢索器、語言模型和增強組件,以及它們的互動如何導致多樣化的模型結構和應用。RALMs在從翻譯和對話系統到知識密集型應用的廣泛任務中顯示出其實用性。綜述還包括了幾種評估RALMs的方法,強調在評估中穩健性、準確性和相關性的重要性。同時也指出了RALMs的限制,特別是在檢索質量和計算效率方面,提供了未來研究的方向。總之,這篇綜述旨在提供對RALMs的結構化洞見、其潛力以及NLP未來發展的途徑。論文還附帶了一個包含已調研工作和進一步研究資源的Github倉庫://github.com/2471023025/RALM_Survey。

自然語言處理(NLP)是計算機科學和人工智能領域內的一個重要研究方向,致力于研究使人與計算機之間能夠使用自然語言有效溝通的理論和方法學框架。作為一個多學科領域,NLP整合了語言學、計算機科學和數學,旨在實現人類語言與計算機數據之間的相互轉換。其最終目標是賦予計算機處理和“理解”自然語言的能力,從而便于執行自動翻譯、文本分類和情感分析等任務。NLP的復雜性體現在它包括的眾多步驟上,如詞匯分割、詞性標注、解析、詞干提取、命名實體識別等,這些都增加了在人工智能系統中復制人類語言理解的難度。

傳統的自然語言處理任務通常使用基于統計的算法(Hogenboom et al., 2010)(Serra et al., 2013)(Aussenac-Gilles and S?rgel, 2005)和深度學習算法,如卷積神經網絡(CNN)(Yin et al., 2017)、遞歸神經網絡(RNN)(Banerjee et al., 2019)、長短時記憶網絡(LSTM)(Yao and Guan, 2018)等。最近,隨著變壓器架構(Vaswani et al., 2017)作為自然語言處理的代表性技術的出現,其受歡迎程度顯著提高。變壓器架構作為一個突出的大語言模型(Lewis et al., 2019)(Raffel et al., 2020)在自然語言處理領域已經持續展示出優越的性能,吸引了越來越多研究者的關注,他們致力于研究其能力。

當前最流行的語言模型是GPT系列(Radford et al., 2019)(Brown et al., 2020)(Achiam et al., 2023)和Bert系列(Liu et al., 2019)(Devlin et al., 2018)(Sanh et al., 2019),這些模型已經在多種自然語言處理任務中表現出色。其中,自編碼語言模型特別擅長于自然語言理解任務,而自回歸語言模型更適合于自然語言生成任務。雖然增加參數(Touvron et al., 2023b)和模型調優(Han et al., 2023)可以提升LLMs的性能,但“幻覺”現象(Ji et al., 2023)仍然存在。此外,語言模型在有效處理知識密集型工作(Feng et al., 2023)和更新其知識的能力不足(Mousavi et al., 2024)方面的限制也一直很明顯。因此,許多研究者(Lewis et al., 2020)(Izacard and Grave, 2020b)(Khandelwal et al., 2019)采用了檢索技術來獲取外部知識,這可以幫助語言模型在多種任務中獲得更好的性能。

當前關于使用檢索增強來提升LLMs性能的綜述還很少。Zhao et al.(2023)提供了關于多模態RAG的全面概述。Zhao et al.(2024a)專注于人工智能生成內容(AIGC)領域的檢索增強生成技術的利用。這篇文章提供了最近RAG工作的全面概述,但它沒有覆蓋所有相關領域。此外,文章缺乏足夠的細節來提供整體發展的全面時間線。Gao et al.(2023)研究了對大模型的RAG的增強。這篇文章總結了一些最近的RAG工作,但它獨立地介紹了檢索器和生成器,這不利于后續工作的組件升級和互動。Li et al.(2022b)專注于文本生成。文章中的圖表較少,內容更抽象,不利于讀者的理解。

關于NLP中的檢索增強方法,僅有關于RAG的綜述只講述了部分故事。不僅與自然語言生成(NLG)相關的任務需要檢索增強技術,自然語言理解(NLU)任務也需要外部信息。迄今為止,全面綜述NLP全譜系中應用增強檢索技術的文章還很少。為了改善當前狀況,本文提出以下貢獻: (1) 本文不僅關注與RAG相關的工作,還重點強調了RALM,并與NLP的概念保持一致。與生成相關的工作與NLG對齊,而其余的工作與NLU對齊。 (2) RALM的兩個組成部分,檢索器和語言模型,都進行了詳細描述,這兩個組件的不同交互模式也首次被準確定義。 (3) 提供了RALM工作計劃的全面概述,總結了當前RALM的常見和新穎應用,并分析了相關限制。提出了這些限制的潛在解決方案,并推薦了未來研究方向。

圖1提供了RALM方法框架的總體概述。以下是本文的摘要:第2節定義RALM。第3節提供了RALM中檢索器的詳細分類和總結。第4節提供了RALM中語言模型的詳細分類和總結。第5節對RALM的特定增強進行了分類和總結。第6節是RALM檢索數據來源的分類和總結。第7節是RALM應用的總結。第8節是RALM評估和基準的總結。最后,第9節討論了現有RALM的限制和未來工作的方向。

RALMs的整合代表了NLP系統能力的重大進步。本綜述提供了對RALMs的廣泛回顧,突出了它們的架構、應用和所面臨的挑戰。通過檢索和整合外部知識,RALMs增強了語言模型,從而在包括翻譯、對話生成和知識圖譜補全等多種NLP任務中提升了性能。

盡管取得了成功,RALMs仍面臨幾個限制。值得注意的是,它們對對抗性輸入的魯棒性、檢索結果的質量、部署相關的計算成本以及應用領域多樣性的缺乏被認為是需要進一步關注的領域。為了解決這些問題,研究社區提出了幾種策略,例如改進評估方法、完善檢索技術和探索在性能與效率之間保持平衡的成本效益解決方案。 未來,RALMs的進步將依賴于增強其魯棒性、提高檢索質量和擴展其應用范圍。通過采用更復雜的技術并將RALMs與其他AI技術整合,這些模型可以被用來應對更廣泛的挑戰。在這一領域持續的研究和開發預計將帶來更具韌性、效率和多功能性的RALMs,從而推動NLP及其它領域所能達到的界限。隨著RALMs的不斷演進,它們有望賦予AI系統更深入的理解力和更接近人類的語言能力,從而在廣泛的領域中開辟新的可能性。

付費5元查看完整內容

相關內容

自然語言處理(NLP)是語言學,計算機科學,信息工程和人工智能的一個子領域,與計算機和人類(自然)語言之間的相互作用有關,尤其是如何對計算機進行編程以處理和分析大量自然語言數據 。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

思維鏈(CoT)已經成為一種廣泛采用的提示方法,激發了大型語言模型(LLMs)的印象深刻的推理能力。受CoT的連續思維結構的啟發,已經開發了許多針對CoX(X鏈)的方法,以應對涉及LLMs的不同領域和任務中的各種挑戰。在本文中,我們提供了一個全面的關于LLMs在不同情境下的CoX方法的綜述具體來說,我們根據節點的分類,即CoX中的X,以及應用任務對它們進行分類。我們還討論了現有CoX方法的發現和含義,以及潛在的未來方向。我們的綜述旨在為尋求將CoT理念應用于更廣泛場景的研究人員提供一個詳細且最新的資源。

大型語言模型(LLMs)在使用思維鏈(CoT)方法提示時表現出強大的推理能力(Wei et al., 2022; Yao et al., 2024; Besta et al., 2024a)。CoT的本質是將復雜問題分解為一系列中間子任務(Chu et al., 2023; Zhou et al., 2023)。通過逐步處理這些子任務,LLMs能夠關注重要的細節和假設,這大大提高了它們在廣泛推理任務中的表現(Huang and Chang, 2023; Chu et al., 2023)。此外,CoT的中間步驟提供了一個更透明的推理過程,便于對LLMs的解釋和評估(Yu et al., 2023b)。隨著CoT的成功,開發了許多X鏈(CoX)方法(Yu et al., 2023a)。這些方法不僅限于推理思維,最近的CoX方法還構建了包含各種組件的鏈,如反饋鏈(Lei et al., 2023; Dhuliawala et al., 2023)、指令鏈(Zhang et al., 2023d; Hayati et al., 2024)、歷史鏈(Luo et al., 2024; Xia et al., 2024d)等。這些方法已被應用于解決涉及LLMs的多樣化任務中的挑戰,包括多模態交互(Xi et al., 2023a; Zhang et al., 2024a)、幻覺減少(Lei et al., 2023; Dhuliawala et al., 2023)、基于LLM的代理規劃(Zhan and Zhang, 2023; Zhang et al., 2024c)等。

盡管這些CoX方法的普及度不斷提高,但它們尚未被集體審查或分類,我們對它們的潛力和細微差別的理解還存在差距。為此,本綜述旨在提供一個結構化概覽,捕捉CoX方法的本質和多樣性,以便進一步探索和創新。雖然幾項綜述已經探討了CoT(Chu et al., 2023; Yu et al., 2023b; Besta et al., 2024b),它們主要關注不同結構的推理思維,例如圖1(a)所示的思維鏈。與此相反,本文關注的是如圖1所示,超越推理思維的多面向組件設計的X鏈,提供CoT概念在更廣泛領域的見解。我們通過CoX中的X的分類和應用這些方法的任務來呈現一個全面的綜述。綜述概覽首先提供思維鏈的背景信息并定義X鏈為其概括(§2)。接下來,我們根據用于構建鏈的組件類型對CoX方法進行分類(§3)。此外,根據這些CoX方法的應用領域,我們按任務對它們進行分類(§4)。然后,我們討論現有CoX方法的見解并探索潛在的未來方向(§5)。綜述的詳細結構在圖2中呈現。

什么是X鏈?

在本節中,我們首先介紹一些關于思維鏈(Chain-of-Thought,CoT)提示的背景信息,然后定義一個廣義的X鏈(Chain-of-X,CoX)概念。

思維鏈(CoT)提示是一種方法論,能顯著增強大型語言模型(LLMs)的推理能力。CoT由Wei等人(2022)引入,涉及以結構化的格式<input, thoughts, output>提示LLMs,其中“thoughts”包括通向最終答案的連貫的中間自然語言推理步驟。CoT在需要復雜推理的任務中效果最為顯著。傳統的少樣本學習方法在這類場景中經常會失敗,因為它們傾向于直接提供答案而不包括必要的中間步驟。Rae等人(2021)強調了這一局限性,指出這些方法隨著模型大小的增加而顯得不足。相比之下,CoT提示通過融入中間推理步驟而表現出色。這些步驟通過邏輯推進引導模型,增強其解決算術、常識和符號推理等復雜問題的能力(Wang等人,2023d;Lyu等人,2023)。CoT的本質在于通過將復雜問題分解為可管理的中間步驟來解決問題(Zhou等人,2023)。Kojima等人(2022)也展示了通過提示“讓我們一步一步思考。”的零樣本CoT的強大性能。明確的推理步驟還為模型的思考過程提供了一個透明的路徑,允許進一步的評估和糾正(Yu等人,2023b)。 受CoT的順序分解特性啟發,最近開發了大量的X鏈(CoX)方法(Yu等人,2023a)。在這里,我們將CoX定義為CoT方法的一種廣義形式,用于超越LLM推理的多樣化任務。我們將CoX中的X稱為鏈結構的“節點”。除了CoT提示中的思考外,CoX中的X可以采取針對特定任務定制的各種形式,包括中間件(§3.1)、增強(§3.2)、反饋(§3.3)甚至模型(§3.4),如圖1所示。我們在圖2中總結了現有CoX方法中的節點類型。CoX的想法是構建一個與問題相關的組件序列,這些組件要么組合貢獻解決方案,要么迭代精煉復雜任務的輸出。同樣,我們為CoX定義了一個結構化格式<input, X1, ..., Xn, output>,其中n是鏈的長度。請注意,這種格式超越了像CoT這樣的提示策略,可以適應多種算法框架或結構,用于涉及LLMs的多樣化任務。例如,驗證鏈(Chain-of-Verification,Dhuliawala等人,2023)是一個幻覺減少框架,使用LLM生成初始響應,構建一系列驗證問題,并根據這些問題修訂其先前的響應。除了減少幻覺外,CoX方法還被應用于多種任務,如圖2所示,包括多模態互動(§4.1)、事實性與安全(§4.2)、多步驟推理(§4.3)、指令跟隨(§4.4)、LLMs作為代理(§4.5)和評估工具(§4.6)。

結論

本綜述探討了基于思維鏈概念構建的X鏈方法。通過根據節點和任務對它們進行分類,我們提供了一個全面的概覽,突出了CoX在增強大型語言模型(LLMs)能力方面的潛力,并為未來研究開辟了新的途徑。通過這項綜述,我們旨在激發對LLMs的X鏈范式進行更深入理解和更有創造性使用的進一步探索。

付費5元查看完整內容

大型語言模型(LLMs)在靜態、預先收集的通用數據集上的訓練取得的最近成功,已經引發了眾多研究方向和應用。其中一個方向解決了將預訓練的LLMs整合到動態數據分布、任務結構和用戶偏好中的非平凡挑戰。這個問題的主要挑戰在于平衡模型適應性和知識保存。為特定需求量身定制的預訓練LLMs經常在之前的知識領域經歷顯著的性能退化——這一現象被稱為“災難性遺忘”。雖然在持續學習(CL)社區進行了廣泛研究,但在LLMs領域呈現出新的表現形式。在這篇綜述中,我們提供了一個關于大型語言模型在持續學習背景下當前研究進展的全面概覽和詳細討論。除了介紹初步知識外,這篇綜述被分為四個主要部分:我們首先描述了持續學習LLMs的概覽,包括兩個連續性方向:垂直連續性(或垂直持續學習),即從一般到特定能力的持續適應;和水平連續性(或水平持續學習),即跨時間和領域的持續適應(第3節)。在垂直連續性之后,我們總結了在現代CL背景下學習LLMs的三個階段:持續預訓練(CPT)、領域適應性預訓練(DAP)和持續微調(CFT)(第4節)。然后我們提供了LLMs的持續學習評估協議的概覽,以及當前可用的數據來源(第5節)。最后,我們討論了有關LLMs持續學習的引人深思的問題(第6節)。這篇綜述揭示了持續預訓練、適應和微調大型語言模型這一相對未受到足夠研究的領域,表明需要社區更多的關注。需要立即關注的關鍵領域包括開發實用且易于訪問的評估基準,以及專門設計的方法論,以對抗遺忘和在不斷演變的LLM學習范式中啟用知識轉移。在這項綜述中檢查的完整論文列表可在//github.com/Wang-ML-Lab/llm-continual-learning-survey找到。

近期大型語言模型(LLMs)的進步顯示了實現人工普遍智能(AGI)的巨大潛力。研究人員觀察到,隨著參數規模的增加,多步驟推理、小樣本上下文學習和指令跟隨等復雜能力有所提高。LLMs的發展具有重大影響和革命性,促使機器學習從業者重新考慮傳統的計算范式,用于處理一些曾經具有挑戰性的人類水平任務,如問答、機器翻譯和對話系統。然而,LLMs通常在包含通用領域的靜態、預先收集的數據集上進行訓練,導致性能隨時間逐漸降低,并且在不同內容領域之間也會降低。此外,單一的預訓練大模型無法滿足每個用戶的需求,需要進一步的微調。盡管重新收集預訓練數據和根據額外的具體需求重新訓練模型是一種潛在的解決方案,但這種方法在現實世界場景中代價高昂且不切實際。為了有效地適應LLMs到下游任務,同時盡量減少對以前知識領域的性能退化,研究者采用了持續學習的方法,也稱為終身學習或增量學習。持續學習受到人類大腦中觀察到的增量學習模式的啟發,涉及按順序在一系列任務上訓練機器學習模型,期望在所有任務中保持性能。在訓練過程中,模型對以前的數據有限或無法訪問,這在保留過去知識時構成了一個挑戰,因為在當前任務學習時,來自未見過的以前數據的優化約束是不存在的。這一挑戰,被稱為災難性遺忘,自持續學習研究開始以來一直是研究的中心焦點。多年來,研究者探索了各種技術來減輕機器學習模型中的遺忘,這些技術包括基于重放的方法、參數規范化和模型架構擴展。這些技術共同顯著推進了在不同任務、模型架構和學習范式中實現零遺忘的持續學習目標。在順序訓練和適應LLMs的背景下,CL的重要性也正在發生自身的語義轉變。為了更好地突出這一持續的轉變,在這篇綜述中,我們提供了一個關于LLMs在CL背景下當前研究進展的全面概覽和詳細討論。對于持續學習LLMs的總體情況,我們將其分為兩個需要由從業者解決的連續性方向(第3節):

  • 垂直連續性(或垂直持續學習),指的是LLMs從大規模通用領域到小規模特定領域的持續適應,涉及學習目標和執行實體的轉變。例如,醫療機構可能開發專門為醫療領域定制的LLMs,同時保留其一般推理和問答能力,以服務用戶。
  • 水平連續性(或水平持續學習),指的是跨時間和領域的持續適應,通常涉及多個訓練階段和對災難性遺忘的增加脆弱性。例如,社交媒體平臺不斷更新LLMs以反映最近的趨勢,確保精確地定位下游服務如廣告和推薦,同時為現有用戶提供無縫的用戶體驗。

在圖1中,繼垂直連續性之后,我們勾畫了現代CL中LLM學習的三個關鍵階段:持續預訓練(CPT)、領域適應性預訓練(DAP)和持續微調(CFT)(第4節)。在CPT中,現有研究主要調查三種類型的分布式轉變:時間、內容層次和語言層次。每種都呈現出獨特的焦點和挑戰。在DAP中,雖然它主要被視為為下游任務準備LLMs的過程,但頻繁地使用CL評估和技術。然而,這些技術的多樣性明顯不足,考慮到傳統CL社區的成熟度。在CFT中,我們關注的是學習LLMs的新興領域,涵蓋持續指令調整(CIT)、持續模型精煉(CMR)、持續模型對齊(CMA)和持續多模態LLMs(CMLLMs)等主題。接下來,我們呈現了一系列公開可用的評估協議和基準(第5節)。我們總結我們的綜述,討論了LLMs持續學習的最新出現的特性,傳統增量學習類型和LLMs持續學習中的記憶約束的角色變化,以及這個主題的潛在研究方向(第6節)。總結而言,本文提供了一份詳盡的現有持續學習研究LLMs的綜述,顯著區別于相關主題的現有文獻。我們的綜述突出了持續開發LLMs的研究領域,特別是在持續預訓練(CPT)和領域適應性預訓練(DAP)領域的研究。我們強調需要社區更多的關注,迫切需要包括開發實用、易于訪問且廣為認可的評估基準。此外,需要定制方法來解決在新興的大型語言模型學習范式中的遺忘問題。我們希望這篇綜述能提供一個系統而新穎的持續學習視角,在迅速變化的LLMs領域中,幫助持續學習社區為開發更有效、可靠和可持續的LLMs做出貢獻。

組織結構

本文的其余部分安排如下。我們首先在第2節介紹大型語言模型和持續學習的背景和初步知識。然后我們在第3節展示了大型語言模型的現代持續學習概覽。從垂直角度來看,它可以大致分為三個階段的LLMs持續訓練,我們將在第4節逐一介紹每個階段。在4.3節中,將介紹持續微調LLMs的獨特方面,包括持續指令調整(4.3.3節)、持續模型精煉(4.3.4節)、持續模型對齊(4.3.5節)和持續多模態大型語言模型(4.3.6節)。在第5節中,我們提供了公開可用的LLMs持續學習評估協議和基準的全面介紹。最后,在第6節中,我們討論了在大型語言模型時代持續學習的角色,包括大規模持續LLMs的新興能力(6.1節)、三種類型的持續學習(6.2節)、LLMs持續學習中的記憶角色(6.3節)以及未來的研究方向(6.4節)。 持續學習與大型語言模型相遇:概覽****大型語言模型(LLMs)在多個維度上都非常龐大,包括模型參數的大小、預訓練數據集、計算資源、項目團隊和開發周期。LLMs的巨大規模為開發團隊帶來了顯著的挑戰,特別是在快速變化的環境中保持更新。舉例來說,2023年,用戶發布的新推文的平均每日流量超過5億,即使是在這么大量數據的“小”子集上進行訓練也是不可承受的。在考慮到它們對下游應用的連鎖影響時,有效且可靠地適應LLMs變得更為關鍵。下游用戶通常缺乏收集和存儲大規模數據、維護大規模硬件系統以及自行訓練LLMs的專業知識。《可回收調整》是首個明確概述現代LLM生產流水線供應商-消費者結構的先導研究。在供應商側,模型在一系列大規模未標記數據集上持續進行預訓練。每次預訓練模型發布后,消費者需要利用更新、更強大的上游模型以獲得更好的下游性能。為了提高下游消費者微調的效率,他們最初對持續預訓練的LLMs進行了幾項關鍵觀察,聚焦于模式連接性和功能相似性。此外,他們提出在上游預訓練LLM進行重大更新后,復用過時的微調組件。基于《可回收調整》引入的概念框架,我們在本綜述中提出了一個包含各種研究的現代生產流水線的全面框架,涉及持續LLM預訓練、適應和部署,如圖1所示。我們的框架與現有研究的不同之處在于融入了兩個連續性方向:垂直連續性和水平連續性。

結論

在這項工作中,我們提供了一份關于持續LLMs的綜述,從持續學習的角度總結了它們在訓練和部署方面的最新進展。我們根據它們在我們提出的現代分層持續學習LLMs的更廣框架內的位置,對問題和任務進行了分類。雖然這一領域在社區中的興趣廣泛且日益增長,但我們也注意到幾個缺失的基石,包括算法多樣性以及對大模型行為(如知識遺忘、轉移和獲取)的基本理解。通過全面而詳細的方法,我們希望這篇綜述能激勵更多從業者探索持續學習技術,最終有助于構建健壯和自我進化的人工智能系統。

付費5元查看完整內容

大型語言模型已成為自然語言處理(NLP)和自然語言理解(NLU)任務中的最新技術水平。自從Vaswani等人在2017年發布變壓器(Transformer)架構以來,多位作者已經利用這一架構或其變體來處理翻譯、摘要、問答、情感分析或文本生成等任務。自OpenAI在2022年11月宣布并發布ChatGPT以來,該技術將大型語言模型(LLMs)的能力帶給了廣泛的用戶群體,引發了幾個主要問題,主要關注這些模型與社會價值和法律規則的一致性。這些關注點包括這些模型對勞動市場的影響、對個人隱私權的影響、對版權法的影響、對偏見和歧視的進一步推動,以及生成可能用于傷害人們的有害內容的潛力。解決這些問題的一個提議是數字遺忘。數字遺忘的目標是,給定一個具有不希望知識或行為的模型,獲得一個不再出現檢測到的問題的新模型。然而,有效的數字遺忘機制必須滿足可能沖突的要求:遺忘的有效性,即新模型遺忘不希望的知識/行為的程度(通過正式保證或通過實證評估);模型在期望任務上的保留性能;以及遺忘程序的及時性和可擴展性。 本文檔的結構如下。第2節提供了LLMs的背景,包括它們的組成部分、LLMs的類型及其通常的訓練流程。第3節描述了數字遺忘的動機、類型和期望屬性。第4節介紹了LLMs中數字遺忘的方法,其中遺忘方法學作為最新技術而脫穎而出。第5節提供了LLMs機器遺忘方法的詳細分類,并綜述和比較了當前的方法。第6節詳細介紹了用于評估遺忘、保留和運行時間的數據集、模型和指標。第7節討論了該領域的挑戰。最后,在第8節中我們提供了一些結論性的評論。

付費5元查看完整內容

將大型語言模型(LLMs)與圖表示學習(GRL)的整合標志著分析復雜數據結構的一次重要進化。這種合作利用LLMs的復雜語言能力來提高圖模型的上下文理解和適應性,從而擴大了GRL的范圍和潛力。盡管越來越多的研究致力于將LLMs整合到圖領域,但顯著缺乏一篇深入分析這些模型內核組成部分和操作的全面綜述。我們的綜述通過提出一種新穎的分類法來填補這一空白,該分類法從新的技術角度將這些模型分解為主要組成部分和操作技術。我們進一步將近期文獻分解為兩個主要組成部分,包括知識提取器和組織器,以及兩種操作技術,包括整合和訓練策略,揭示了有效的模型設計和訓練策略。此外,我們識別并探索了這一新興但尚未充分探索的領域中潛在的未來研究方向,提出了持續進步的路徑。

付費5元查看完整內容

表格推理旨在根據提供的表格以及可選的表格文本描述,按照用戶需求生成相應的問題答案,有效提高獲取信息的效率。近來,使用大型語言模型(LLMs)已成為表格推理的主流方法,因為它不僅顯著降低了注釋成本,還超過了以往方法的性能。然而,現有研究仍然缺乏基于LLM的表格推理工作的總結。由于現有研究的缺乏,哪些技術可以在LLMs時代提高表格推理性能、LLMs為何在表格推理上表現出色、以及如何在未來增強表格推理能力的問題,仍然大部分未被探索。這一差距顯著限制了研究進展。為了回答上述問題并推進LLMs下的表格推理研究,我們呈現了這篇綜述,以分析現有研究,激發未來的工作。在這篇論文中,我們分析了在LLM時代用于提高表格推理性能的主流技術,以及LLMs相比于LLMs之前的模型在解決表格推理問題時的優勢。我們從現有方法的改進和實際應用的擴展兩個方向提供研究指導,以激發未來的研究。

付費5元查看完整內容

盡管大型語言模型(LLMs)的表現令人印象深刻,但由于在推理過程中需要大量的計算和內存資源,它們的廣泛應用面臨挑戰。最近在模型壓縮和系統級優化方法方面的進展旨在增強LLM的推理能力。本綜述提供了這些方法的概覽,強調了近期的發展。通過對LLaMA(/2)-7B的實驗,我們評估了各種壓縮技術,為高效部署LLM提供了實用的見解。在LLaMA(/2)-7B上的實證分析突出了這些方法的有效性。借鑒綜述洞察,我們識別了當前的局限性,并討論了提高LLM推理效率的潛在未來方向。我們在//github.com/nyunAI/Faster-LLM-Survey上發布了代碼庫,以復現本文中呈現的結果。

大型語言模型(LLMs)的出現,特別是通過如GPT [Brown et al., 2020]和LLaMa [Touvron et al., 2023a; Touvron et al., 2023b]系列等模型的顯著標志,為與語言相關的任務開啟了新的革命,這些任務范圍從文本理解和總結到語言翻譯和生成。這些通常由數十億參數組成的模型,在捕捉復雜模式、細節豐富的上下文和自然語言的語義表達方面展現出了卓越的性能。因此,它們已成為各種應用中不可或缺的工具,推動了人工智能、信息檢索和人機交互等多個領域的發展。 盡管LLMs的性能無與倫比,但它們廣泛應用受到了巨大的計算和內存需求的阻礙,這在資源受限的環境中部署它們時構成了挑戰。例如,加載一個LLaMa-70B模型需要140GB的VRAM,這還不包括模型推理所需的內存。對高效部署的需求促使近期研究開始關注模型壓縮以及特別為LLMs量身定制的系統級修改技術。這些早期工作已經識別出改進LLMs推理效率的潛在方法。然而,當前的改進往往伴隨著模型性能的顯著下降,需要確定新的研究方向來找到解決這一問題的理想解決方案。 最近的一項綜述研究提供了最新提出的LLM壓縮方法的簡明概覽,以及用于基準測試它們的評估指標和數據[Zhu et al., 2023]。然而,為了進一步推動研究前沿,朝著LLMs的實際推理改進方向努力,還缺少一項全面的研究。在本綜述論文中,我們探索旨在通過模型壓縮以及系統級優化使LLMs高效的現有方法。為了公平比較各種方法,我們提供了使用不同壓縮技術對LLaMa(/2)-7B應用的經驗觀察。我們的評估包括了提供實際優勢的方法,包括現有文獻中不同推理引擎提供的結構化剪枝、量化和系統級優化。我們分享從這些實驗中獲得的寶貴見解,以呈現高效LLMs的有用和實際理解。此外,我們還將與實驗相關的代碼和基準測試公開。我們還檢查了當前壓縮方法在通用深度學習以及特別為LLMs提出的方法中的困難,并討論了克服這些問題的潛在研究方向。 總的來說,本文的貢獻如下。

我們提供了模型壓縮領域的簡要概述,強調了對輕量化和加速LLMs領域作出顯著貢獻的基本方法。

作為模型壓縮的補充,系統級修改在加速LLM推理中發揮了重要作用,我們也討論了這些方法。

為了提供一個實踐視角,我們對在標準化設置下的LLMs的知名壓縮方法進行了實證分析。從中得到的洞察可以幫助根據部署環境做出有關選擇LLM壓縮方法的明智決定。

基于我們的綜述和實證分析得出的見解,我們系統地指出了現有的局限性,并提出了實現LLM推理最佳效率的可行途徑

付費5元查看完整內容

高效的分子建模和設計對于新分子的發現和探索至關重要,深度學習方法的引入已經徹底改革了這一領域。特別是,大型語言模型(LLMs)提供了一種全新的方法來從自然語言處理(NLP)的角度解決科學問題,引入了一種稱為科學語言建模(SLM)的研究范式。然而,仍有兩個關鍵問題:如何量化模型與數據模態之間的匹配度以及如何識別模型的知識學習偏好。為了應對這些挑戰,我們提出了一個多模態基準,命名為ChEBI-20-MM,并進行了1263次實驗來評估模型與數據模態和知識獲取的兼容性。通過模態轉換概率矩陣,我們提供了關于任務最適合的模態的見解。此外,我們引入了一種統計上可解釋的方法,通過局部特征過濾發現特定上下文的知識映射。我們的先驅性分析提供了對學習機制的探索,并為推進分子科學中的SLM鋪平了道路。 Transformers[8]以其強大的文本編碼和生成能力提供了優勢。這些模型可以通過最小的任務特定調整進行微調,使它們在分子建模和設計中更加多才多藝和高效。此外,自從ChatGPT[9]和GPT-4[10]的出現以來,大型語言模型(LLMs)已成為尤其在分子科學中的一種突破性趨勢。LLMs憑借其在處理和生成類人文本的先進能力,提出了一個理解和設計分子結構的新范式。它們吸收和分析大量文本數據的能力可以提供前所未有的洞察,克服了傳統AI方法的一些限制。這種新能力結合了準確性和新穎性,以改善結果,被稱為化學知識。其有效性取決于輸入數據、模型架構和訓練策略等因素。然而,對這一能力的當前綜述和基準評估并不全面。 分子科學中現有的綜述,如分子生成綜述[11],通常缺乏全面的模型比較,并且任務范圍有限。知識驅動的綜述[12]對分子學習進行了分類,但缺少詳細的方法比較和數據集討論。而最近的基準測試,如測試ChatGPT的[13],涵蓋了八個化學任務,每個任務都提供了獨特的化學洞察。Mol-Instructions[14]提供了一個用于微調的數據集,包含各種分子和蛋白質指令,增強了LLMs中的生物分子理解。然而,這些綜述和基準測試缺乏多模態內容,也沒有充分探索模型的化學知識。 總結來說,本研究全面回顧了Transformers和LLMs在分子建模與設計中的應用。我們將六個常見的分子任務分類為三個不同的目標:描述、嵌入和生成,如圖1所生動描繪。此外,我們建立了一個統一的多模態基準ChEBI-20-MM,并進行實驗評估數據模態、模型架構和不同任務類型的兼容性,考察它們對任務性能的影響。此外,我們的端到端可視化方法展示了嵌入化學知識的建模洞察的發現。總體來說,我們的主要貢獻包括: ? 本工作分析了LLMs在分子建模中的應用,分類現有模型,并提出了一個多模態基準(ChEBI-20-MM)進行性能評估,支持1263次實驗。 ? 我們分析了模態轉換概率矩陣,并確定了不同數據模態和模型架構之間的最佳匹配。 ? 我們引入了一種統計上可解釋的方法,通過局部特征過濾展示了知識獲取。 本文的其余部分如下組織。第2節介紹相關定義和背景。然后,我們探討分子建模和設計中的六個關鍵任務。第3節展示了我們的基準測試和洞察。第4節討論了關鍵結果和限制,第5節總結了我們的貢獻和未來研究方向。

付費5元查看完整內容

這篇綜述論文深入探討了大型語言模型(LLM)的可解釋性領域,這是自然語言處理中的一個關鍵且充滿挑戰的方面。隨著LLM在各種應用中扮演著關鍵角色,它們的“黑盒”特性引發了關于透明度和道德使用的擔憂。本文強調增強LLM可解釋性的必要性,旨在解決公眾對這些模型的信任問題以及技術社區對深入理解這些模型的需求。我們專注于預訓練的基于Transformer的LLM,例如LLaMA(Touvron et al., 2023),它們由于規模和復雜性,呈現出獨特的解釋挑戰。我們的綜述歸類了現有的解釋性方法,并討論了它們在提高模型透明度和可靠性方面的應用。我們還討論了代表性的評估方法,強調它們的優勢和局限性。這篇綜述的目標是在理論理解和實際應用之間架起一座橋梁,為未來LLM可解釋性領域的研究和發展提供洞見。

**1 引言 **

在迅速發展的自然語言處理領域,大型語言模型(LLM)已成為一個基石,展現出在各種任務中的卓越能力。盡管它們效果顯著,LLM通常被視為“黑盒”系統,這在解釋性和透明度方面提出了重大挑戰。這種不透明性可能導致意想不到的后果,例如生成有害或誤導性內容(Gehman et al., 2020),以及模型幻覺的出現(Weidinger et al., 2021)。這些問題凸顯了增強解釋性的緊迫性,不僅是為了理解,更是為了負責任和倫理的應用。 在LLM中,解釋性具有兩個關鍵功能。對于終端用戶,它通過以非技術方式闡明模型的推理過程,增強了對其能力和潛在缺陷的理解,從而培養信任(Zhao et al., 2023)。對于開發者和研究人員,它提供了對意外偏見和改進領域的洞察,作為提升模型在下游任務上性能的工具(Bastings et al., 2022; Meng et al., 2023a; Li et al., 2023b)。然而,LLM的規模為解釋性帶來了獨特的挑戰。更大的模型、更多的參數和廣泛的訓練數據使得解釋變得更加困難。傳統的解釋方法,如SHAP值(Lundberg and Lee, 2017),對于這些大規模模型變得不太實用(Zhao et al., 2023)。此外,全面理解LLM特有現象,包括在上下文中的學習(Halawi et al., 2023; Hendel et al., 2023; Todd et al., 2023; Wang et al., 2023),以及解決模型幻覺(Ji et al., 2023; Chuang et al., 2023)和固有偏見(dev, 2023; An and Rudinger, 2023; Schick et al., 2021)等問題,對于模型設計的持續改進至關重要。 在這篇文獻綜述中,我們關注預訓練的基于Transformer的LLM的解釋性方法,這些模型通常被稱為基礎模型。這些模型通常在訓練數據上進行擴展,并擁有數十億個參數,例如GPT-2(Radford et al., 2019)、GPT-J(Chen et al., 2021)、GPT-3(Brown et al., 2020)、OPT(Yordanov et al., 2022)和LLaMA系列(Touvron et al., 2023)。在第2節中,我們根據文獻綜述對研究問題進行分類。基于這種分類,在第3節中,我們回顧了解釋性方法,隨后在第4節中討論了如何利用這些洞察。我們進一步在第5節中討論評估方法和指標。我們的目標是綜合并批判性地評估當代研究,旨在彌合理論理解與從復雜語言模型中提取的洞見的實際應用之間的差距。

2 概述

大型語言模型(LLM)領域正在迅速發展,使得解釋性不僅成為理解這些復雜系統的工具,而且對它們的改進至關重要。本節對當前的解釋性方法進行分類,強調在倫理和可控生成方面的挑戰,并提出未來探索的研究問題。 方法分類 我們在圖1中呈現了對解釋性方法及其應用的結構化分類。圖1展示了對預訓練語言模型(LM)解釋性方法的結構化分類。我們將這些方法分為兩大領域:局部分析和全局分析。局部分析涵蓋了特征歸因和Transformer塊分析,深入探討模型的詳細操作。另一方面,全局分析包括基于探針的方法和機制性解釋性,提供對模型行為和能力的全面理解。除了理解之外,我們還探索這些洞察在增強LLM能力方面的應用,重點關注模型編輯、能力增強和受控生成。

3 大型語言模型的解釋性

3.1 局部分析 LLM中的局部解釋旨在闡明模型如何為特定輸入生成特定預測,例如情感分類或令牌預測。本節將局部解釋方法分為兩類:特征歸因分析和對單個Transformer(Vaswani et al., 2017)組件的分析。

3.2 全局分析 與側重于闡明單個模型預測的局部分析不同,全局分析旨在理解和解釋模型隱藏狀態激活中編碼的知識或語言屬性。本節探討全局分析的兩種主要方法:審視模型表示的探針方法和機制性解釋性(Transformer Circuits, 2022),這是一種新興的觀點,旨在逆向工程深度神經網絡的內部工作機制。

4 利用解釋性

在本節中,我們討論如何將解釋性作為一個工具來調試和改進模型。雖然各種方法旨在通過微調或重新訓練來提高模型的能力,但我們專注于那些特別基于模型解釋性的強大基礎設計的方法。

4.1 模型編輯

盡管我們能夠訓練出熟練的大型語言模型(LLM),但確保它們的相關性和糾正錯誤的方法仍然難以捉摸。近年來,編輯LLM的技術出現了激增。其目標是在不對其他輸入的性能產生負面影響的情況下,高效地修改LLM在特定領域內的知識或行為(Yao et al., 2023)。

4.2 增強模型能力

雖然大型語言模型(LLM)在各種自然語言處理任務中表現出多樣性,但來自解釋性的洞察可以顯著增強這些能力。本節重點介紹了解釋性在最近的工作中顯示出顯著影響的兩個關鍵任務:改進長文本的利用(Xiao et al., 2023; Liu et al., 2023; Pope et al., 2022)和增強上下文中學習(In-Context Learning, ICL)的性能(Hendel et al., 2023; Halawi et al., 2023; Wang et al., 2023)。

4.3 可控生成

盡管大型語言模型在文本生成方面取得了卓越的表現,但有時它們在生成事實內容方面表現不佳。利用解釋性為構建推理時快速技術提供了機會,這些技術旨在提高生成模型的事實性、校準性和可控性,使其更符合人類偏好。

5 評估

近期,像GPT-4(OpenAI, 2023)這樣的大型語言模型展現了生成其預測的自然語言解釋的令人印象深刻的能力。然而,這些解釋是否真正幫助人類理解模型的推理過程,目前尚不明確(Zhao et al., 2023)。為了更好地評估解釋性方法(如歸因)的性能,需要專門設計的評估方法。此外,還需要校準的數據集和指標來評估解釋性在下游任務中的應用,例如真實性評估。 5.1 評估解釋的合理性 評估歸因解釋合理性的一種常見技術是移除K%估計重要性最高或最低的令牌,以觀察其對模型輸出的影響(Chen et al., 2020; Modarressi et al., 2023)。另一種評估解釋合理性的方法涉及間接方法,例如衡量模型編輯的性能,尤其是對于嚴重依賴解釋準確性的“定位-然后編輯”編輯方法。近期研究(Yao et al., 2023; Zhao et al., 2023)表明,擁有評估數據集對于評估LLM中的事實編輯至關重要。此目的常用的兩個數據集是ZsRE(Levy et al., 2017),一個通過反向翻譯生成問題改寫的問答(QA)數據集,以及CounterFact(Meng et al., 2023a),一個更具挑戰性的數據集,包含了與正確事實相比起始得分較低的反事實。 5.2 評估真實性 模型真實性是衡量生成模型可信度的重要指標。我們期望模型輸出既有信息量又事實正確且忠實。理想情況下,人類評注員會根據標準答案標記模型答案為真或假,但這通常成本較高。(Lin et al., 2022)提出使用兩個微調過的GPT-3-13B模型(GPT-judge)對每個答案進行真實或假的及有信息量或無信息量的分類。使用GPT-judge進行評估是TruthfulQA基準測試的標準做法,這是一個廣泛使用的數據集,對抗性構建以衡量語言模型在生成答案時的真實性(Askell et al., 2021; Li et al., 2023b; Chuang et al., 2023)。TruthfulQA的主要指標是真實*信息量,真實和信息量得分的乘積。這個指標不僅捕捉了有多少問題被真實地回答,還通過評估每個答案的信息量,防止模型無差別地回復“我無可奉告”。

6 結論

在本文中,我們提供了關于LLM的可解釋性及其應用的全面概述。我們總結了基于解釋目標的局部和全局分析方法。此外,我們討論了利用解釋來增強模型和評估這些方法的使用。理解LLM的主要未來研究方向包括開發針對不同語言模型的解釋方法,以及通過利用解釋性知識使LLM更值得信賴且與人類價值觀更一致。隨著LLM的不斷進步,可解釋性將變得極其重要,以確保這些模型是透明的、公平的和有益的。我們希望這篇文獻綜述為這一新興研究領域提供了有用的概述,并突出了未來研究的開放問題和方向。

付費5元查看完整內容

大型語言模型(LLMs)在自然語言處理領域表現出令人印象深刻的影響,但它們仍然在完整性、時效性、可靠性和適應性等方面存在一些問題。雖然最近的努力集中在將LLMs與外部知識源連接上,但知識庫(KBs)的集成仍未得到充分研究,并面臨一些挑戰。本文介紹了KnowledGPT,一個將LLMs與各種知識庫連接起來的綜合框架,促進知識的檢索和存儲。檢索過程采用思維提示程序,該程序以代碼格式生成用于KB操作的搜索語言。除了檢索外,KnowledGPT還提供了將知識存儲在個性化KB中的能力,以滿足個人用戶的需求。通過廣泛的實驗,我們表明,通過將LLMs與KBs集成,KnowledGPT與普通LLMs相比,能夠適當地回答更廣泛的需要世界知識的問題,利用廣泛存在的KBs中的知識和提取到個性化KB中的知識。

付費5元查看完整內容

大型的、預訓練的基于Transformer的語言模型,如BERT,已經極大地改變了自然語言處理(NLP)領域。我們對最近的研究進行了調研,這些研究使用了大型語言模型來解決NLP任務,通過預訓練、微調、提示或文本生成方法。我們還提出了使用預訓練語言模型生成數據的方法,用于訓練增強或其他目的。最后,我們討論了局限性,并提出了未來研究的方向。

引言

近年來,大型預訓練的基于Transformer的語言模型(PLMs),如BERT (Devlin et al., 2019)和GPT (Radford et al., 2018)系列模型席卷了自然語言處理(NLP),在許多任務中實現了最先進的性能。

這些大型PLM推動了NLP的范式轉變。以分類任務p(y|x)(將文本輸入x分類為標簽y)為例:傳統統計NLP方法通常設計手工特征來表示x,然后應用機器學習模型(如SVM (Cortes and Vapnik, 1995)、邏輯回歸)來學習分類函數。深度學習模型通過深度神經網絡(LeCun et al., 2015)。注意,每個新的NLP任務都需要重新學習潛在特征表示,而且在許多情況下,訓練數據的大小限制了潛在特征表示的質量。考慮到語言的細微差別對所有NLP任務來說都是共同的,我們可以假設我們可以從一些通用任務中學習一個通用的潛在特征表示,然后在所有NLP任務中共享它。語言建模需要學習如何在給定前一個單詞的情況下預測下一個單詞,這是一項具有大量自然出現的文本的通用任務,可以預訓練這樣一個模型(因此得名預訓練語言模型)。事實上,最新的、正在進行的范式轉換從引入PLMs開始: 對于大量的NLP任務,研究人員現在來利用現有的PLMs通過對感興趣的任務進行微調,提示PLMs執行期望的任務,或者將任務重新構造為文本生成問題,并應用PLMs來解決相應的問題。這三種基于PLM的范式的進步不斷地建立了新的最先進的性能。

本文調研了最近利用PLM進行NLP的工作。我們將這些工作組織成以下三種范式:

  • 先進行預訓練,然后進行微調(§2): 先對大量未標記語料庫進行通用預訓練,然后對感興趣的任務進行少量的任務特定微調。

  • 基于提示的學習(§3):提示一個PLM,這樣解決NLP任務就會減少到類似于PLM的訓練前任務(如預測一個遺漏的單詞),或一個更簡單的代理任務(如文本包含)。提示通常可以更有效地利用PLM中編碼的知識,從而產生“少樣本”的方法。

  • NLP作為文本生成(§4): 將NLP任務重新定義為文本生成,以充分利用生成語言模型(如GPT-2 (Radford et al., 2019)和T5 (Raffel et al., 2020)中編碼的知識。

  • 生成式PLMs也可以用于文本生成任務。我們向讀者推薦關于文本生成的優秀調研,如Li et al. (2021b) 和Yu et al. (2021b)。除非另有說明,本文主要關注非生成性任務(如分類、序列標注和結構預測),這些任務仍然涵蓋廣泛的NLP任務,包括文本的語法或語義解析、信息抽取(IE)、問答(QA)、文本蘊涵(TE)、情感分析、等等。除了這三種范式之外,還有另一種互補的方法:間接使用上述任何一種PLM范式來改善目標NLP任務的結果:

  • 數據生成(§5): 運行PLM自動生成NLP任務的數據。生成的數據可以是銀色標記的數據,通常生成的PLM是針對任務進行微調的,或者是一些輔助數據,如反例、澄清、上下文或其他。在第一種情況下,銀色標記數據可以添加到現有的標記數據中。在第二種情況下,輔助數據以某種方式支持目標任務。

論文組織如下: 第2節提供了PLM的背景,并描述了第一種范式,即預訓練然后微調。第三節討論第二種范式,即基于提示的學習。第4節總結了第三種范式,即作為文本生成的NLP。在第5節中,我們將描述通過PLM為廣泛的NLP任務生成數據的方法。我們將在第6節討論局限性并提供未來研究的方向,并在第7節進行總結。

范式1: 先訓練,然后微調

傳統統計NLP的工作重點是在標記數據集上訓練特定任務的模型,而這種模式轉變為在一個共享的、“基本”的預訓練任務上訓練一個大型模型,然后在第二步中將其調整(“微調”)到各種任務。預訓練任務幾乎總是一種語言建模任務,它可以利用大量的未標記數據來學習有利于一系列NLP任務的表示(Rogers et al., 2020)。在本節中,我們首先提供關于預訓練的大型語言模型(PLMs)的入門知識,然后描述使用凍結或微調PLM進行NLP任務的方法。

范式2: 基于提示的學習

我們使用提示指的是在輸入或輸出中添加自然語言文本(通常是短語)的做法,以鼓勵預訓練的模型執行特定任務(Yuan et al., 2021)。使用提示符有幾個優點。提示,特別是上下文學習(例如Brown et al., 2020),可能不需要更新PLM的參數,與微調方法相比,或在2.4.4中描述的基礎上,減少了計算需求。提示還能促使新任務的制定與預訓練的目標更好地結合,從而更好地利用預訓練獲得的知識。更緊密的匹配還支持少樣本方法(Liu et al., 2021b),特別是對于具有小訓練數據集的任務;一個好的提示可以值幾百個標簽數據點(Le Scao and Rush, 2021)。最后,提示允許以一種不受監督的方式探索PLM,以評估PLM對特定任務所獲得的知識(如Petroni et al., 2019)。

下面我們討論三種基于提示的學習方法:從指令和演示中學習、基于模板的學習和從代理任務中學習。圖3顯示了這三種方法的說明。

范式3 NLP即文本生成

基于生成式Transformer的PLMs10(如GPT、BART和T5)的成功,最近激發了人們對利用生成式PLM解決各種非生成式NLP任務的興趣。這些任務包括但不限于傳統的判別任務,如分類和結構預測。例如,圖4說明了Raffel等人(2020)所描述的這種“文本到文本”方法。與傳統的NLP任務判別模型不同,這些任務被重新表述為文本生成問題,從而可以直接用生成式PLM解決。生成的輸出序列通常包括給定任務所需的標簽或其他輔助信息,從而能夠準確地重構預期的類標簽(即避免映射中的歧義),并促進生成/解碼過程(即為預測提供足夠的上下文)。

總結

在這篇文章中,我們介紹了三種使用預訓練語言模型進行自然語言處理的趨勢。我們對每一種方法都進行了深入的描述,并對其應用前景進行了總結。此外,我們還描述了使用預先訓練過的語言模型來自動生成用于提高NLP任務性能的數據。我們希望這一調研將為讀者提供關鍵的基本概念和對范式轉變的全面看法。

付費5元查看完整內容
北京阿比特科技有限公司