這篇介紹旨在為讀者提供對高斯過程回歸的直觀理解。高斯過程回歸(GPR)模型由于其表示法的靈活性和預測的固有不確定性,在機器學習應用中得到了廣泛的應用。本文首先解釋了高斯過程所建立的數學基礎,包括多元正態分布、核、非參數模型、聯合概率和條件概率。然后,通過顯示不必要的數學推導步驟和缺少關鍵的結論性結果的平衡,以可訪問的方式描述高斯過程回歸。給出了一個標準高斯過程回歸算法的說明性實現。除了標準的高斯過程回歸之外,現有的軟件包實現了最先進的高斯過程算法。最后,給出了更高級的高斯過程回歸模型。這篇論文的寫作方式通俗易懂,理工科本科學生理解文章內容不會有困難。
為土木工程專業的學生和專業人士介紹概率機器學習的關鍵概念和技術;有許多循序漸進的例子、插圖和練習。
這本書向土木工程的學生和專業人員介紹了概率機器學習的概念,以一種對沒有統計學或計算機科學專業背景的讀者可訪問的方式提出了關鍵的方法和技術。通過一步步的例子、插圖和練習,它清晰而直接地展示了不同的方法。掌握了材料,讀者將能夠理解更高級的機器學習文獻,從這本書中提取。
本書介紹了概率機器學習的三個子領域的關鍵方法:監督學習、非監督學習和強化學習。它首先涵蓋了理解機器學習所需的背景知識,包括線性代數和概率論。接著介紹了有監督和無監督學習方法背后的貝葉斯估計,以及馬爾可夫鏈蒙特卡洛方法,該方法使貝葉斯估計能夠在某些復雜情況下進行。這本書接著涵蓋了與監督學習相關的方法,包括回歸方法和分類方法,以及與非監督學習相關的概念,包括聚類、降維、貝葉斯網絡、狀態空間模型和模型校準。最后,本書介紹了不確定環境下理性決策的基本概念,以及不確定和序列上下文下理性決策的基本概念。在此基礎上,這本書描述了強化學習的基礎,虛擬代理學習如何通過試驗和錯誤作出最優決策,而與它的環境交互。
目錄內容: Chapter 1: 引言 Introduction Part one: 背景 Background
Chapter 2: 線性代數 Chapter 3: 概率理論 Probability Theory Chapter 4: 概率分布 Probability Distributions Chapter 5: 凸優化 Convex Optimization Part two: 貝葉斯估計 Bayesian Estimation Chapter 6: 從數據中學習 Learning from Data Chapter 7: 馬爾科夫鏈蒙特卡洛 Markov Chain Monte Carlo
Part three: 監督學習 Supervised Learning Chapter 8: 回歸 Regression Chapter 9: 分類 Classification Part four: 無監督學習 Unsupervised Learning Chapter 10: 聚類 Clustering Chapter 11: 貝葉斯網絡 Bayesian Networks Chapter 12: 狀態空間 State-Space Models Chapter 13: 模型 Model Calibration Part five: 強化學習 Reinforcement Learning Chapter 14: 不確定上下文決策 Decision in Uncertain Contexts Chapter 15: 序列決策 Sequential Decisions
管理統計和數據科學的原理包括:數據可視化;描述性措施;概率;概率分布;數學期望;置信區間;和假設檢驗。方差分析;簡單線性回歸;多元線性回歸也包括在內。另外,本書還提供了列聯表、卡方檢驗、非參數方法和時間序列方法。
教材:
題目
Fundamentals of Graphics Using
簡介
本書介紹了2D和3D圖形的基本概念和原理,是為學習圖形和/或多媒體相關主題的本科生和研究生編寫的。 關于圖形的大多數書籍都使用C編程環境來說明實際的實現。 本書偏離了這種常規做法,并說明了為此目的使用MATLAB?的情況。 MathWorks,Inc.的MATLAB是一種數據分析和可視化工具,適用于算法開發和仿真應用。 MATLAB的優點之一是它包含內置函數的大型庫,與其他當代編程環境相比,該庫可用于減少程序開發時間。 假定該學生具有MATLAB的基本知識,尤其是各種矩陣運算和繪圖功能。 提供了MATLAB代碼,作為對特定示例的解答,讀者可以簡單地復制并粘貼代碼來執行它們。 通常,代碼顯示預期結果的答案,例如曲線方程,混合函數和變換矩陣,并繪制最終結果以提供解決方案的直觀表示。 本書的目的是,首先,演示如何使用MATLAB解決圖形問題,其次,通過可視化表示和實際示例,幫助學生獲得有關主題的深入知識。
本書大致分為兩個部分:2D圖形和3D圖形,盡管在某些地方這兩個概念重疊在一起主要是為了突出它們之間的差異,或者是為了使用較簡單的概念使讀者為更復雜的概念做準備。
本書的第一部分主要討論與2D圖形有關的概念和問題,涵蓋了五章:(1)內插樣條線,(2)混合函數和混合樣條線,(3)近似樣條線,(4)2D變換, (5)樣條曲線屬性。
第1章介紹了各種類型的插值樣條及其使用多項式的表示。 詳細討論了樣條方程的推導原理以及所涉及的矩陣代數的理論概念,然后通過數值示例和MATLAB代碼來說明過程。 在大多數示例后均附有圖形化圖表,以使讀者能夠直觀地看到方程式如何根據給定的起點,終點和其他相關參數轉換為相應的曲線。 本章還重點介紹了使用線性,二次方和三次方變體的樣條方程的標準或空間形式以及參數形式的這些過程的差異。
首課:設置環境。Hello world!
第一課:變量。大數字的數學。
第二課:if - then - else。數字游戲。
第三課:列表。有趣的MadLibs發生器。
第四課:循環。把所有的數字加到10億或更多。
第五課:循環2。生成大量的句子。石頭、剪刀、布的游戲。
第六課:功能。很酷的烏龜庫圖紙。
第七課:從文件中讀/寫。從網頁讀取。數一數一本書里所有的單詞!
第八課:字典。如何寫密信。
這本教科書通過提供實用的建議,使用直接的例子,并提供相關應用的引人入勝的討論,以一種容易理解的方式介紹了基本的機器學習概念。主要的主題包括貝葉斯分類器,最近鄰分類器,線性和多項式分類器,決策樹,神經網絡,和支持向量機。后面的章節展示了如何通過“推進”的方式結合這些簡單的工具,如何在更復雜的領域中利用它們,以及如何處理各種高級的實際問題。有一章專門介紹流行的遺傳算法。
這個修訂的版本包含關于工業中機器學習的實用應用的關鍵主題的三個全新的章節。這些章節研究了多標簽域,無監督學習和它在深度學習中的使用,以及歸納邏輯編程的邏輯方法。許多章節已經被擴展,并且材料的呈現已經被增強。這本書包含了許多新的練習,許多解決的例子,深入的實驗,和獨立工作的計算機作業。
//link.springer.com/book/10.1007/978-3-319-63913-0#about
為工程師寫的機器學習簡介(A Brief Introduction to Machine Learning for Engineers)
摘要
本專著的目標是介紹機器學習領域內的關鍵概念、算法和理論框架,涵蓋了監督學習與無監督學習、統計學習理論、概率圖模型和近似推斷等方向。本專著的目標讀者是具有概率學和線性代數背景的電氣工程師。本書基于第一原理(first principle)寫作,并按照有清晰定義的分類方式對其中的主要思想進行了組織,其中的類別包含鑒別式模型和生成式模型、頻率論者和貝葉斯方法、準確推斷和近似推斷、有向模型和無向模型、凸優化和非凸優化。本書中的數學框架使用了信息論的描述方式,以便工具具有統一性。書中提供了簡單且可重復的數值示例,以便讀者了解相關的關鍵動機和結論。本專著的目的并不是要為每個特定類別中已有的大量解決方案提供詳盡的細節描述(這些描述讀者可參閱教科書和論文了解),而是為了給工程師提供一個切入點,以便他們能借此進一步深入機器學習相關文獻。
高斯過程(GPs)為核機器的學習提供了一種有原則的、實用的、概率的方法。在過去的十年中,GPs在機器學習社區中得到了越來越多的關注,這本書提供了GPs在機器學習中理論和實踐方面長期需要的系統和統一的處理。該書是全面和獨立的,針對研究人員和學生在機器學習和應用統計學。
這本書處理監督學習問題的回歸和分類,并包括詳細的算法。提出了各種協方差(核)函數,并討論了它們的性質。從貝葉斯和經典的角度討論了模型選擇。討論了許多與其他著名技術的聯系,包括支持向量機、神經網絡、正則化網絡、相關向量機等。討論了包括學習曲線和PAC-Bayesian框架在內的理論問題,并討論了幾種用于大數據集學習的近似方法。這本書包含說明性的例子和練習,和代碼和數據集在網上是可得到的。附錄提供了數學背景和高斯馬爾可夫過程的討論。
概率圖模型是機器學習中的一種技術,它使用圖論的概念來簡明地表示和最佳地預測數據問題中的值。
圖模型為我們提供了在數據中發現復雜模式的技術,廣泛應用于語音識別、信息提取、圖像分割和基因調控網絡建模等領域。
這本書從概率論和圖論的基礎開始,然后繼續討論各種模型和推理算法。所有不同類型的模型都將與代碼示例一起討論,以創建和修改它們,并在它們上運行不同的推理算法。有一整章是關于樸素貝葉斯模型和隱馬爾可夫模型的。這些模型已經通過實際例子進行了詳細的討論。
你會學到什么
圖模型中的示例算法 通過真實的例子來掌握樸素貝葉斯的細節 使用Python中的各種庫部署PGMs 獲得隱馬爾可夫模型的工作細節與現實世界的例子
詳細 概率圖模型是機器學習中的一種技術,它使用圖論的概念來簡潔地表示和最佳地預測數據問題中的值。在現實問題中,往往很難選擇合適的圖模型和合適的推理算法,這對計算時間和精度有很大的影響。因此,了解這些算法的工作細節是至關重要的。
這本書從概率論和圖論的基礎開始,然后繼續討論各種模型和推理算法。所有不同類型的模型都將與代碼示例一起討論,以創建和修改它們,并在它們上運行不同的推理算法。有一個完整的章節專門討論最廣泛使用的網絡樸素貝葉斯模型和隱馬爾可夫模型(HMMs)。這些模型已經通過實際例子進行了詳細的討論。
風格和方法 一個易于遵循的指南,幫助您理解概率圖模型使用簡單的例子和大量的代碼例子,重點放在更廣泛使用的模型。