亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

近年來,在Instagram、Podcast、Clubhouse、YouTube等各種平臺上產生和發布了大量的多媒體數據。這一現象啟發了大規模多媒體分析的研究工作,包括分析方法的基礎,以及一些具體的下游應用(如識別、檢索和信息提取)。特別是多媒體的表示學習是其中最重要的研究方向之一。一個良好的多媒體數據實例特征表示具有可解釋性和通用性,可以提高下游任務的性能和效率。 由于多媒體內容的豐富性和噪聲性,對其進行良好的表示具有挑戰性。例如,在語音處理任務中,人類的話語包含語言信息,以及說話人的身份、說話風格和背景噪聲等其他因素。在這種情況下,我們需要一種表示類型,它從所有這些因素中捕獲信息,并為下游應用程序恢復有用的因素。大多數主流技術利用特征向量來表示訓練數據集中的每個實例,并通過進行預訓練任務來優化特征提取器。然而,基于向量的表示方法不足以保持多媒體數據的豐富度和處理噪聲。此外,常見的預訓練程序,如計算機視覺研究領域的ImageNet分類任務,只關注單一類型的鑒別信息,對于某些應用可能是不夠的。因此,在本文中,我探索了兩個研究方向來解決這些問題。 在本文的第一部分,我提出了兩種新的多媒體內容表示類型:概率分布和線性子空間。與基于向量的表示方法相比,這兩種方法都能較好地處理多媒體的豐富度和噪聲。為了在下游任務中利用這兩種表示,設計特定的算法和訓練策略是必要的。在這部分論文中,我介紹了將分布和子空間表示與深度神經網絡架構相結合的方法,這些方法可以端到端地進行優化。在下游任務上的實驗結果表明,與主流的向量表示方法相比,本文提出的兩種表示方法具有更好的性能。 在本文的第二部分,我研究了風格和內容解糾纏技術,它明確地保留了表征學習過程中多媒體內容中的不同因素。解糾纏表示提供了更好的可解釋性,并允許在數據合成場景中操縱隱藏因素。基于這一動機,我提出了兩種方法來有效地分離多媒體數據中的隱藏因素。第一種方法將風格和內容之間的關系建模為隱藏特征空間中的簡單矩陣操作。第二種方法通過制定對抗訓練準則來最小化兩個隱藏因素之間的互信息。在數據合成/生成任務的定性和定量實驗中,評價了兩種方法的優勢。此外,我進一步論證了風格和內容解糾纏技術的適用性,通過構建一個預訓練框架與生成模型。具體來說,生成模型產生的合成數據可以支持語音識別、人的重新識別等下游任務的監督訓練過程。此外,解纏生成過程將數據擴充的思想從原始數據空間擴展到可解釋的表示空間,允許我們在下游任務中納入更多的先驗知識。

付費5元查看完整內容

相關內容

博士論文是由攻讀博士學位的研究生所撰寫的學術論文。它要求作者在博士生導師的指導下,選擇自己能夠把握和駕馭的潛在的研究方向,開辟新的研究領域。由此可見,這就對作者提出了較高要求,它要求作者必須在本學科的專業領域具備大量的理論知識,并對所學專業的理論知識有相當深入的理解和思考,同時還要具有相當水平的獨立科學研究能力,能夠為在學科領域提出獨創性的見解和有價值的科研成果。因而,較之學士論文、碩士論文,博士論文具有更高的學術價值,對學科的發展具有重要的推動作用。

如何對不同設置下的序列數據建模是一個跨許多領域的重要機器學習問題,包括對時間序列數據、自然語言文本和事件流的預測。不同字段中的順序數據通常具有不同的特征。例如,自然語言文本可以被視為一個離散變量的序列,而傳感器網絡信號可以被視為一個連續向量空間中的多變量序列。為了在各種各樣的現實世界領域中開發成功的神經網絡模型,我們需要根據數據和問題的性質定制架構和算法。本文設計了新穎高效的神經網絡解決方案,用于序列建模和應用。具體來說,這些貢獻可以分為四部分。

第一部分重點研究了多變量序列數據中變量之間的相關性,如多傳感器的時間序列,并提出了新的算法,即深度可分圖卷積網絡(DSGC)(第二章)[60]和分解遞歸神經網絡(FRNN)(第三章)[63],以利用相關模式,提高預測精度。

第二部分側重于將人類先驗知識用于時序數據依賴模式的時間建模。具體地說,我們提出了一種新的方法,命名為長期和短期時間序列網絡(LSTNet)(第4章)[59],它被證明是特別有效的捕獲各種周期模式在不同的應用。

第三部分著重于序列分類任務中Transformers 的高效算法。具體來說,通過識別常用的Transformer架構中的計算冗余,并提出一種新的替代方案,即漏斗Transformers (第5章)[27],我們實現了更好的計算與精度之間的權衡。

第四部分側重于事件之間時間關系的建模/預測,其中的主要挑戰是從稀疏標記的數據中有效學習。我們通過結合高級數據增強、半監督學習和人類先驗知識的引入來應對這一挑戰(第6章)。因此,我們大大提高了這項任務的最先進性能。

付費5元查看完整內容

傳統的機器學習范式在單個任務上訓練特定任務模型,已經在許多領域(如計算機視覺和自然語言處理)取得了最先進的性能。為了使機器學習模型具有更廣泛的適用性,遷移學習旨在適應從源任務中學習到的知識,以提高在其他目標任務中的表現。然而,現有的遷移學習范式還有待進一步研究,因此我們對其潛在的局限性、潛在的機制以及實現更智能遷移的解決方案的認識有限。特別是,當知識從一個不太相關的來源轉移時,可能會對目標性能造成負面影響,這種現象稱為負轉移。然而,負遷移的原因尚不明確,負遷移如何影響模型的泛化和樣本效率也不清楚。在這篇論文中,我們的目標是徹底描述和解決機器學習模型中的負遷移,我們仔細研究了流行的視覺和自然語言處理設置中的負遷移,收集了其原因的見解,并提出了提高泛化和樣本效率的解決方案。本文由三個部分組成。第一部分對當前遷移學習模型中的負遷移現象進行了系統的分析。我們在領域適應和多語言自然語言處理模型中正式描述了其條件,并證明任務沖突是負遷移的一個關鍵因素。在第二部分,我們提出了各種對齊方法,通過更好的對齊表示和梯度解決上述任務沖突,增強可轉移模型的泛化。最后,在第三部分,我們探索了有效樣本遷移學習算法,使用較少的訓練和/或校準數據來緩解負遷移。本文的主要貢獻包括對遷移學習中的負遷移問題提出了新的見解,提出了一系列實用的方法和算法,提高了模型的泛化和效率。

//www.lti.cs.cmu.edu/sites/default/files/wang%2C%20zirui%20-%20final%20thesis.pdf

付費5元查看完整內容

在一個特定的數據集上訓練一個強大的神經預測器執行一項任務的主流NLP范式取得了在各種應用上的成功(如:情感分類、基于廣度預測的問答或機器翻譯)。然而,它建立在數據分布是平穩的假設之上,即。在訓練和測試時,數據都是從一個固定的分布中取樣的。這種訓練方式與我們人類在不斷變化的信息流中學習和操作的方式不一致。此外,它不適合于真實世界的用例,在這些用例中,數據分布預計會在模型的生命周期中發生變化。

本文的第一個目標是描述這種偏移在自然語言處理環境中可能采取的不同形式,并提出基準和評價指標來衡量它對當前深度學習體系結構的影響。然后,我們繼續采取步驟,以減輕分布轉移對NLP模型的影響。為此,我們開發了基于分布魯棒優化框架的參數化重構方法。從經驗上講,我們證明了這些方法產生了更魯棒的模型,正如在選擇的現實問題上所證明的那樣。在本文的第三部分和最后一部分,我們探索了有效地適應現有模型的新領域或任務的方法。我們對這個主題的貢獻來自于信息幾何學的靈感,獲得了一個新的梯度更新規則,緩解了適應過程中災難性的遺忘問題。

我們從評估開始,因為分布轉移特別難以描述和測量,特別是在自然語言方面。這部分是由于數據缺乏規范的度量結構。換句話說,如何有效地衡量兩個句子之間的語義相似度還不清楚,因此沒有直接的方法來衡量兩個樣本之間的差異,更不用說兩種分布了。因此,作為解決分布偏移的第一步,我們提出了一個新的基準(第3章)和評估指標(第4章),分別評估域偏移和對抗擾動的魯棒性。有了這些工具在手,我們開始構建魯棒的模型,這些模型經過訓練,即使在沒有關于轉移本質的明確信息的情況下,對分布轉移也不那么敏感。這是通過利用訓練分布中的數據多樣性來實現的,以確保在訓練數據(子群體)中存在的各種領域上的統一性能。具體來說,我們制定了一個分布魯棒優化框架的參數化版本,該框架允許訓練模型對子群體轉移更為穩健(第5章和第6章)。最后,在靜態環境中學習從根本上是次優的:我們不能期望我們的模型在每一個可能的未來環境中都表現良好,我們必須能夠使它們適應我們遇到的任何新情況。因此,我們研究了一種機制,通過這種機制,我們能夠根據新的證據微調訓練模型,而不會忘記之前獲得的知識(第7章)。

//www.zhuanzhi.ai/paper/c5e7a9742d6a6313d63c5976499166dc

付費5元查看完整內容

深度神經網絡可以解決多種學習問題,但前提是有大量的數據可用。對于很多問題(如醫學成像),獲取大量標記數據的成本很高,因此提高深度學習方法的統計效率是非常必要的。在這篇論文中,我們探索了利用對稱性來提高卷積神經網絡從相對較小的樣本中泛化的能力的方法。

//dare.uva.nl/search?identifier=0f7014ae-ee94-430e-a5d8-37d03d8d10e6

我們通過經驗論證并證明,在深度學習的背景下,學習等變表示比學習不變表示更好,因為不變表示在網絡中過早丟失了信息。我們提出了一組越來越一般的群等變卷積神經網絡(G-CNNs)序列,適應于各種空間的特殊對稱性。具體來說,我們提出了用于平面圖像和體積信號的旋轉平移等變網絡,用于分析球形信號如全球天氣模式和全方位圖像的旋轉等變球面CNN,以及用于分析一般流形信號的規范等變CNN。

我們已經評估了這些網絡在視覺和醫學成像中的圖像分類和分割、三維模型分類、極端天氣事件檢測、量子化學和蛋白質結構分類等問題上的能力。我們全面地證明,G-CNNs在表現出對稱性的問題上優于傳統的平移等變CNN。

在第二部分中,我們提出了G-CNN的一般數學理論。該理論將卷積特征空間描述為流形上的域空間,即相關向量束的部分空間。對稱被描述為通過自同構作用于主束上的群,網絡的層被描述為場空間之間的線性和非線性等變映射。通過使用一種通用的數學語言,建立了與理論物理(特別是規范理論)的類比。我們證明了一般情況下,類卷積映射產生于對稱原理,特別是在第一部分中使用的每個廣義卷積都是從對稱原理中恢復的,作為最一般的一類線性映射,它與特定的一組對稱是等價的。

付費5元查看完整內容

概率圖建模(PGM)提供了一個框架,以設計一個可解釋的生成過程的數據和表達不確定性的未知數。這使得PGM對于理解數據背后的現象和決策非常有用。在可解釋推理是關鍵的領域內,PGM取得了巨大的成功,例如市場營銷、醫學、神經科學和社會科學。然而,PGM往往缺乏靈活性,這阻礙了它在建模大規模高維復雜數據和執行需要靈活性的任務(例如在視覺和語言應用程序中)時的使用。

深度學習(DL)是另一個從數據中建模和學習的框架,近年來取得了巨大的成功。DL功能強大,具有很大的靈活性,但缺乏PGM的可解釋性和校準性。

本文研究了深度概率圖建模(DPGM)。DPGM通過利用DL使PGM更加靈活。DPGM帶來了從數據中學習的新方法,這些方法展示了PGM和DL的優點。

我們在PGM中使用DL來構建具有可解釋潛在結構的靈活模型。我們提出一系列模型擴展指數族主成分分析(EF-PCA),使用神經網絡提高預測性能,同時加強潛在因素的可解釋性。我們引入的另一個模型類支持在建模順序數據時考慮長期依賴關系,這在使用純DL或PGM方法時是一個挑戰。該序列數據模型類已成功應用于語言建模、情感分析的無監督文檔表示學習、會話建模和醫院再入院預測的患者表示學習。最后,DPGM成功地解決了概率主題模型的幾個突出問題。

在PGM中利用DL也帶來了學習復雜數據的新算法。例如,我們開發了熵正則化對抗學習,這是一種與PGM中使用的傳統最大似然方法不同的學習范式。從DL的角度來看,熵正則化對抗學習為生成式對抗網絡長期存在的模式崩潰問題提供了一種解決方案。

付費5元查看完整內容

摘要

多任務學習(Multi-Task Learning, MTL)是機器學習中的一種學習范式,其目的是利用多個相關任務中包含的有用信息來幫助提高所有任務的泛化性能。

本文從算法建模、應用和理論分析三個方面對MTL進行了綜述。在算法建模方面,給出了MTL的定義,并將不同的MTL算法分為特征學習、低秩、任務聚類、任務關系學習和分解五類,并討論了每種方法的特點。

為了進一步提高學習任務的性能,MTL可以與半監督學習、主動學習、無監督學習、強化學習、多視圖學習和圖形模型等學習范式相結合。當任務數量較大或數據維數較高時,我們回顧了在線、并行和分布式的MTL模型,以及維數降維和特征哈希,揭示了它們在計算和存儲方面的優勢。

許多現實世界的應用程序使用MTL來提高它們的性能,我們在本文中回顧了代表性的工作。最后,我們對MTL進行了理論分析,并討論了MTL的未來發展方向。

引言

人類可以同時學習多個任務,在這個學習過程中,人類可以使用在一個任務中學習到的知識來幫助學習另一個任務。例如,根據我們學習打網球和壁球的經驗,我們發現打網球的技巧可以幫助學習打壁球,反之亦然。多任務學習(Multi-Task learning, MTL)[1]是機器學習的一種學習范式,受人類這種學習能力的啟發,它的目標是共同學習多個相關的任務,使一個任務中包含的知識能夠被其他任務利用,從而提高手頭所有任務的泛化性能。

在其早期階段,MTL的一個重要動機是緩解數據稀疏問題,即每個任務都有有限數量的標記數據。在數據稀疏性問題中,每個任務中標記數據的數量不足以訓練出一個準確的學習器,而MTL則以數據增強的方式將所有任務中的標記數據進行聚合,從而為每個任務獲得更準確的學習器。從這個角度來看,MTL可以幫助重用已有的知識,降低學習任務的手工標注成本。當“大數據”時代在計算機視覺和自然語言處理(NLP)等領域到來時,人們發現,深度MTL模型比單任務模型具有更好的性能。MTL有效的一個原因是與單任務學習相比,它利用了更多來自不同學習任務的數據。有了更多的數據,MTL可以為多個任務學習到更健壯、更通用的表示形式和更強大的模型,從而更好地實現任務間的知識共享,提高每個任務的性能,降低每個任務的過擬合風險。

MTL與機器學習中的其他學習范式有關,包括遷移學習[2]、多標簽學習[3]和多輸出回歸。MTL的設置與遷移學習相似,但存在顯著差異。在MTL中,不同任務之間沒有區別,目標是提高所有任務的性能。而遷移學習是借助源任務來提高目標任務的性能,因此目標任務比源任務起著更重要的作用。總之,MTL對所有的任務一視同仁,但在遷移學習中目標任務最受關注。從知識流的角度來看,遷移學習中的知識轉移流是從源任務到目標任務,而在多任務學習中,任何一對任務之間都存在知識共享流,如圖1(a)所示。持續學習[4]是一個一個地學習任務,任務是有順序的,而MTL是將多個任務一起學習。在多標簽學習和多輸出回歸中,每個數據點都與多個標簽相關聯,這些標簽可以是分類的或數字的。如果我們把所有可能的標簽都當作一個任務,那么多標簽學習和多輸出回歸在某種意義上可以看作是多任務學習的一種特殊情況,不同的任務在訓練和測試階段總是共享相同的數據。一方面,這種多標簽學習和多輸出回歸的特點導致了與MTL不同的研究問題。例如,排名損失使得與數據點相關的標簽的分數(例如分類概率)大于沒有標簽的分數,可以用于多標簽學習,但它不適合MTL,因為不同的任務擁有不同的數據。另一方面,這種在多標簽學習和多輸出回歸中的特性在MTL問題中是無效的。例如,在2.7節中討論的一個MTL問題中,每個任務都是根據19個生物醫學特征預測患者帕金森病的癥狀評分,不同的患者/任務不應該共享生物醫學數據。總之,多標簽學習和多輸出回歸與圖1(b)所示的多任務學習是不同的,因此我們不會對多標簽學習和多輸出回歸的文獻進行綜述。此外,多視圖學習是機器學習的另一種學習范式,每個數據點與多個視圖相關聯,每個視圖由一組特征組成。雖然不同的視圖有不同的特征集,但是所有的視圖是一起學習同一個任務的,因此多視圖學習屬于具有多組特征的單任務學習,這與圖1(c)所示的MTL是不同的。

在過去的幾十年里,MTL在人工智能和機器學習領域引起了廣泛的關注。許多MTL模型已經被設計出來,并在其他領域得到了廣泛的應用。此外,對MTL的理論問題也進行了大量的分析。本文從算法建模、應用和理論分析三個方面對MTL進行了綜述。在算法建模方面,首先給出了MTL的定義,然后將不同的MTL算法分為5類: 特征學習方法,又可分為特征轉換與特征選擇方法、低秩方法、任務聚類方法、任務關系學習方法和分解方法。然后,我們討論了MTL與其他學習范式的結合,包括半監督學習、主動學習、無監督學習、強化學習、多視圖學習和圖形模型。為了處理大量的任務,我們回顧了在線、并行和分布式的MTL模型。對于高維空間中的數據,引入特征選擇、降維和特征哈希作為處理這些數據的重要工具。MTL作為一種很有前途的學習范式,在計算機視覺、生物信息學、健康信息學、語音、自然語言處理、web等領域有著廣泛的應用。從理論分析的角度,對MTL的相關工作進行回顧。最后,討論了MTL的未來發展方向。

付費5元查看完整內容

深度卷積網絡的出現推動了視覺識別領域的新一波進步。這些學習到的表示大大優于手工設計的特征,在視覺任務上獲得更高的性能,同時在數據集上有更好的泛化性。盡管這些模型看起來很普遍,但當它們所訓練的數據與所要求操作的數據之間存在不匹配時,它們仍然會受到影響。領域適應提供了一種潛在的解決方案,允許我們將網絡從源領域訓練到新的目標領域。在這些領域中,標記數據是稀疏的或完全缺失的。然而,在端到端可學習表示出現之前,視覺域適應技術很大程度上局限于在固定的、手工設計的視覺特征上訓練的分類器。在這篇論文中,我們展示了如何將視覺域適應與深度學習相結合,以直接學習能夠適應域移動的表示,從而使模型能夠泛化到源域之外。

在第2章中,我們將演示如何設計損失,以衡量兩個領域的不同程度。我們表明,通過優化表示來最小化這些損失,我們可以學習從源到目標更好地泛化的表示。在第3章和第4章中,我們展示了我們可以訓練模型來嘗試測量域差異,而不是手工設計這些域損失。由于這些模型本身是端到端可學習的,我們可以通過它們反向傳播來學習表示,從而最小化學習的差異。這在概念上與生成式對抗網絡類似,我們還探索了兩者之間的關系,以及我們如何在對抗環境中使用為GANs開發的技術。最后,在第5章和第6章中,我們證明了適應性不需要局限于深度網絡的中間特征。對抗適應技術也可以用于訓練模型,直接改變圖像的像素,將它們轉換成跨域的類似物。然后,這些轉換后的圖像可以用作標記的偽目標數據集,以學習更適合目標領域的監督模型。我們表明,這種技術是基于特征的適應性的補充,當兩者結合時產生更好的性能。

//www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-69.html

付費5元查看完整內容

機器人研究的一個長期目標是創建能夠從零開始自動學習復雜控制策略的算法。將這種算法應用到機器人上的挑戰之一是表示的選擇。強化學習(RL)算法已經成功地應用于許多不同的機器人任務中,如帶有機器人手臂的cup中的Ball-in-a-Cup任務和各種機器人世界杯機器人足球啟發的領域。然而,RL算法仍然存在訓練時間長、所需訓練數據量大的問題。為狀態空間、行動空間和策略選擇合適的表示可以大大減少所需的訓練時間和所需的訓練數據。

本文主要研究機器人的深度強化學習。具體來說,狀態空間、動作空間和策略表示的選擇如何減少機器人學習任務的訓練時間和樣本復雜度。特別集中注意兩個主要領域: 1)通過張量狀態-動作空間表示 2)多狀態表示的輔助任務學習

第一個領域探索了在環境變化中改進機器人策略遷移的方法。學習策略的成本可能很高,但是如果策略可以在類似的環境中傳輸和重用,那么訓練成本可以平攤。遷移學習是一個被廣泛研究的領域,涉及多種技術。在這篇論文中,我們著重設計一個易于傳輸的表示。我們的方法將狀態空間和動作空間映射為多維張量,設計成當環境中機器人和其他對象的數量變化時保持固定維數。我們還提出了全卷積Q-Network (FCQN)策略表示,這是一種特殊的網絡架構,與張量表示相結合,允許跨環境大小進行零距離傳輸。我們在模擬的單代理和多代理任務上演示了這種方法,靈感來自于RoboCup Small - Size League (SSL)和Atari Breakout的修改版本。我們還表明,在真實世界的傳感器數據和機器人中使用這樣的表示和模擬訓練策略是可能的。

第二個領域考察了一個機器人深度RL狀態表示的優勢如何彌補另一個機器人深度RL狀態表示的劣勢。例如,我們經常想要利用機器人可用的傳感器來學習任務,其中包括像攝像機這樣的高維傳感器。最近的Deep RL算法可以通過圖像進行學習,但是數據的數量對于真實的機器人來說是難以接受的。或者,可以使用任務完成所需的最小集創建狀態。這樣做的好處是:1)減少策略參數的數量,2)刪除不相關的信息。然而,提取這些特征通常會在工程、額外硬件、校準和實驗室之外的脆弱性方面有很大的成本。我們在仿真和現實世界的多個機器人平臺和任務上演示了這一點。我們證明它在模擬的RoboCup小型聯賽(SSL)機器人上工作。我們還演示了這樣的技術允許在真實的硬件上從零開始學習,通過機器人手臂執行一個球在一個杯子的任務。

//www.ri.cmu.edu/publications/robot-deep-reinforcement-learning-tensor-state-action-spaces-and-auxiliary-task-learning-with-multiple-state-representations/

付費5元查看完整內容

本篇推薦來自CMU-LTI的小姐姐Zhuyun Dai博士論文《Neural Matching and Importance Learning in Information Retrieval》,是信息檢索領域值得關注的最新工作。

作者介紹:

Zhuyun Dai

卡內基梅隆大學語言技術學院(LTI)的博士生。研究方向是提升當今信息檢索系統的語言理解能力,構建下一代信息助理系統,幫助人們無縫地獲取世界上的知識。

//www.cs.cmu.edu/~zhuyund/index.html

信息檢索中的神經匹配與重要性學習

地址:

在50-60年的時間里,信息檢索(IR)系統依賴于詞匯袋方法。盡管詞包檢索有一些長期存在的限制,但解決這些問題的嘗試大多是不成功的。最近,神經網絡為自然語言建模提供了一種新的范式。這篇論文的目的是結合IR的觀點和神經網絡的關鍵優勢,以帶來更深入的語言理解IR。

本論文的第一部分主要研究如何匹配查詢和文檔。 最先進的排序器以前依賴于精確的詞匯匹配,這導致了眾所周知的詞匯不匹配問題。本文開發了將軟匹配引入相關性排序的神經模型。利用分布式文本表示,我們的模型可以對每個查詢詞和每個文檔詞進行軟匹配。由于軟匹配信號有噪聲,本文提出了一種新的核池技術,該技術根據軟匹配對相關性的貢獻對軟匹配進行分組。本文還研究了預訓練好的模型參數是否可以改善低資源域,以及模型架構在非文本檢索任務中是否可重用。我們的方法比以前最先進的排名系統有很大的優勢。

本論文的第二部分主要研究如何表示查詢和文檔。一個典型的搜索引擎使用頻率統計來確定單詞的權重,但是頻繁的單詞對文本的意義不一定是必要的。本論文開發的神經網絡,以估計詞的重要性,基于如何相互作用的語言語境。開發了一種弱監督方法,允許在沒有任何人工注釋的情況下訓練我們的模型。我們的模型可以離線運行,在不影響效率的前提下顯著提高了第一階段的檢索。

總之,本文提出了一種新的神經檢索范式,克服了傳統檢索模型在匹配和重要性加權方面的局限性。在神經相關性排序、深度檢索模型和深度文檔理解等方面提出了一些有前景的方法。

付費5元查看完整內容

作者Jacob Andreas是自然語言處理的研究者,研究興趣為用語言作為更有效學習的支架和理解模型行為的探針,以及結合深度表示和離散組合性優點的結構化神經方法。近期公開發布了他的博士論文。

博士論文介紹:

本文探討了語言結構在結構和參數化中用于語言處理和其他應用的機器學習模型的方法。作者將該模型應用于問答系統,指令跟蹤,圖像分類等多種任務。

作者首先介紹一類稱為神經模塊網絡(NMN)的模型,并介紹它們在自然語言問答中的應用。NMN旨在實現同時利用深層網絡的表征能力和構成問題的語言結構。我們的方法將問題分解為語言子結構,并使用這些子結構動態地從可重復使用的模塊庫構建網絡。由此產生的復合網絡是共同訓練的。作者并在含有圖像和結構化知識庫的問答數據集上的方法評估模型。隨后,作者將這種思想轉移到策略學習中,研究在面對不同但相似的問題時,怎么組合策略。

付費5元查看完整內容
北京阿比特科技有限公司