亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

將超大規模人工智能融入國防建模與仿真(M&S)對于提高戰略和作戰能力至關重要。本文將探討超大規模人工智能如何通過提供前所未有的準確性、速度和模擬復雜場景的能力來徹底改變國防建模與仿真(M&S)。美國和中國等國家在采用這些技術方面走在前列,并取得了不同程度的成功。要最大限度地發揮超大規模人工智能的潛力,就必須解決一些關鍵挑戰,如封閉網絡、長尾數據、復雜決策和專家短缺等。未來的方向強調采用國內基礎模型、投資各種 GPU / NPU、利用大技術服務以及使用開源軟件。這些舉措將增強國家安全,保持競爭優勢,促進更廣泛的技術和經濟進步。有了這一藍圖,韓國就能加強國防能力,在現代戰爭的新興威脅面前保持領先。

圖 1:韓國國防部使用的生成式人工智能示例圖。

近年來,隨著全球安全威脅的演變,將人工智能融入國防 M&S 至關重要。模擬復雜場景的能力至關重要,而人工智能憑借其先進的算法可以徹底改變國防 M&S 系統。這些系統可提供前所未有的準確性和速度,從而做出更好的戰略決策。更好的結果可確保更高的國家安全,因此必須領先于對手。人工智能驅動的模型可以精確預測敵人的動向,而加速模擬則可以實現實時決策。更強的計算能力可支持復雜的分析,而數據驅動的洞察力可改善戰術反應。此外,人工智能還能有效簡化資源分配。

世界各國正在認識到人工智能在國防中的戰略重要性。美國(U.S.)、中國、日本、歐盟和英國等國家都制定了全面的人工智能戰略,強調人工智能在現代戰爭中的作用。韓國(ROK)也宣布了采用人工智能保持競爭力的國防人工智能戰略。國防戰略正在迅速演變,人工智能一體化現已成為全球優先事項。落后會帶來嚴重后果,尤其是隨著人工智能應用步伐的加快。因此,隨著全球對人工智能技術的投資不斷增加,早期采用者將獲得顯著優勢。

最近,許多國家已經利用人工智能來解決傳統國防 M&S 中以前未曾探索過的領域。這種整合不僅解決了未知的挑戰,還將以前需要大量人工和時間的任務自動化。例如,韓國國防部(MND)已經開發并正在使用一種名為 GeDAI(生成式國防人工智能)的 LLM(如圖 1 所示)來簡化各種流程。這種方法表明了向更高效、人工智能驅動的解決方案轉變的趨勢,可增強作戰能力并減少關鍵國防任務中對人工干預的依賴。此外,GeDAI 等人工智能技術的實施有望加速國防部門的決策過程并改善戰略規劃。

主要貢獻如下

  • 分析美國和韓國在國防 M&S 操作方法和人工智能采用策略方面的差異。通過比較,可以發現兩國在利用人工智能實現國防系統現代化的方法上存在差異的關鍵領域。
  • 確定將人工智能融入韓國國防 M&S 需要應對的挑戰。這些挑戰包括韓國國防領域特有的技術、操作和政策障礙。
  • 提出不僅針對美國戰略,而且專門針對韓國的人工智能采用戰略。這些戰略是根據韓國軍隊當前的環境專門設計的。

本文的其余部分安排如下。在第二節中,探討了國防 M&S 和超大規模人工智能的關鍵概念。在第三節中,描述了將人工智能應用于韓國國防 M&S 所面臨的挑戰。隨后,第四節介紹了未來的發展方向。最后,在第五部分提出了結束語。

圖 2:國防 M&S 層次結構示意圖。

超大規模人工智能以前所未有的規模運行,利用海量計算資源和龐大的數據集來解決復雜的問題。如圖 3 所示,超大規模人工智能的可能應用包括計算機視覺、自然語言、多模態、表格和音頻處理。超大規模人工智能正被用于加強預測分析、自動化決策過程,并通過深度學習和機器學習算法提供深刻見解。通過將超大規模人工智能應用于國防 M&S,可以像 COA-GPT 一樣,在減少人工干預的情況下進行兵棋推演。這樣就可以模擬眾多場景、戰略決策和結果預測,從而減少人類主導的模擬所需的時間和資源。

圖 3:可應用超大規模人工智能的領域示意圖。

圖 4:使用超大規模人工智能的國防 M&S 圖解。

韓國未來方向

  • 采用本土基礎模型

將人工智能納入韓國國防 M&S 的一個潛在未來方向是積極采用國內公司開發的基礎模型,如 HyperCLOVA X 和 Exaone 2.0,這與美國采用的戰略如出一轍。通過利用私營部門人工智能開發人員的專業知識,軍方可以加快先進人工智能技術的實施。這些基礎模型已經非常強大,并經過了充分的測試,可以為國防應用提供一個堅實的起點,減少開發時間和成本。與韓國人工智能公司合作還能促進創新,確保模型符合韓國國防領域的具體需求和環境。

雖然將數據轉讓給私營公司會引起安全和潛在泄密方面的擔憂,但這種合作有助于解決軍方人工智能專業人員短缺的問題。通過與外部專家合作,國防部門可以從內部可能無法獲得的專業知識和技能中獲益。此外,這些合作關系還能提供寶貴的見解,讓我們了解須通過作戰實驗收集哪些數據,以優化人工智能模型,供軍事使用。通過與私營公司密切合作,軍方可以為數據采集制定更明確的方向,確保人工智能模型有效適應其作戰要求,同時通過嚴格的數據處理協議降低安全風險。

  • 讓大型 IT 企業參與進來

與美國國防創新部門(DIU)的戰略相同,韓國未來的一個關鍵方向是鼓勵其領先的 IT 企業(如 NAVER、三星和 SK)積極參與國防 M&S 領域的研發活動。通過向這些開拓和主導最新物聯網市場的行業領導者敞開大門,軍方可以利用尖端技術提高國防 M&S 性能。這種合作能將先進的物聯網解決方案整合到軍事模擬和作戰中,促進創新,縮小民用技術進步與國防應用之間的差距。這種合作關系可以加速開發適合軍方特定需求的復雜仿真模型和人工智能系統。

讓大型 IT 公司參與國防項目,還能讓軍方通過調整現有的企業解決方案,使其適用于軍事用途,從而快速獲得新的武器系統。這些公司擁有尖端技術和專業知識,可以針對國防需求進行優化,從而減少開發時間和相關成本。通過與 IT 巨頭合作,軍方可以確保使用最高效、最安全的技術構建國防物聯網基礎設施。這不僅能增強作戰能力,還能通過利用這些公司的熟練勞動力來解決人工智能專業人才短缺的問題。最終,這種方法既能加強國防,又能促進軍方與私營部門之間的協同關系。

  • 實現 GPU/NPU 基礎設施的多樣化

需要多樣化的 GPU/NPU 基礎設施,這是未來將人工智能融入韓國國防 M&S 的關鍵方向。目前,采購英偉達?(NVIDIA?)人工智能硬件具有挑戰性,過度依賴單一公司的產品可能會導致國防能力受到公司決策的影響或制約。這種依賴性會給安全和戰備帶來風險,因為供應鏈的任何中斷或公司政策的變化都可能對軍隊的人工智能能力產生不利影響。因此,必須減少對單一供應商的依賴,以確保國防技術的穩健性和自主性。

通過采用和利用英特爾、三星電子和 AMD 等多家供應商的 GPU 和 NPU,軍方可以建立更具彈性和靈活性的人工智能基礎設施。這種多樣化不僅能降低與供應鏈中斷相關的風險,還能促進供應商之間的競爭性創新,從而可能帶來更好的性能和成本節約。納入三星電子等國內公司的硬件還能支持民族工業,并通過更緊密的合作提高安全性。多供應商方法可確保國防部門不會受制于任何一家公司的技術,從而加強國家安全和技術主權。

  • 利用開源軟件和數據

要在軍方內部加強基于人工智能的保密數據 M&S,不僅要利用私營公司的軟件和數據,還必須利用公開的軟件和數據。通過整合開源工具和數據集,軍方可以開發出強大的人工智能模型,而無需輸出敏感數據,從而在受益于最新技術進步的同時維護了安全性。這種方法可以利用全球人工智能社區的集體創新,在內部開發適合軍方特定需求的人工智能解決方案。

實現這種整合需要在內部使用外部可用軟件和數據時取消復雜的審批程序。通過簡化官僚程序并提供一個相對沒有懲罰措施的環境,研究人員和開發人員可以更快地在國防 M&S 中采用新技術。行政障礙的減少鼓勵了創新和靈活性,使軍方能夠走在技術進步的前列。為技術采用創造更寬松的環境不僅能加快發展,還能吸引渴望在支持性和前瞻性環境中工作的人才。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

在這個快節奏的世界里,軍事行動在很大程度上依賴于技術。另一方面,技術的發展速度也比以往任何時候都要快。人工智能(AI)就是這樣一種新興技術,它吸引了許多人的興趣,并正在快速發展。2022 年 Gen-AI 的蓬勃發展為人工智能在民用和國防領域的應用打開了大門。目前,大多數國家都在試圖利用人工智能來推進其軍事和軍事行動。這種技術在軍事領域的完美應用案例--C4ISR--將在未來的戰爭中占得先機。有鑒于此,本期簡報試圖了解人工智能在塑造軍事 C4ISR 系統和行動中可以發揮的作用,并提出可能的建議。

印度軍方人工智能賦能的C4ISR

印度正在對顛覆性軍事技術進行密切研究和持續開發,以實現軍隊現代化。印度越來越重視在這些領域實現國產化,以加強本土國防基礎。為了在人工智能領域創造戰略優勢,印度國防部國防生產局(DDP,MoD)于 2018 年 2 月成立了一個特別工作組,研究人工智能在國防應用中的未來使用。根據 2018 年 6 月 “國家安全與國防人工智能戰略實施 ”特別工作組提出的建議,2019 年成立了國防人工智能委員會(DAIC)和國防人工智能項目機構(DAIPA)。該委員會由國防部長領導,主要成員包括三軍首長、NCSC(國家網絡安全協調員)以及 DRDO 和相關行業的成員。印度已撥出 100 億英鎊的預算用于促進人工智能的發展。

然而,在 2022 年舉行的首屆國防人工智能研討會上發布了 75 項新的人工智能產品/技術之后,人工智能才正式被納入印度武裝部隊的發展。這些產品由印度武裝部隊和國防和安全部隊開發,旨在提高軍事能力、效率、數據分析和領域意識。這些人工智能產品尤其在 C4ISR 領域的應用如下:

  • 指揮與控制: 指揮與控制(C2)是指指揮官的最高權力。涉及 C2 的系統利用各種技術循環執行 OODA(觀察、定位、決策和行動)功能。利用人工智能等新興技術可以幫助指揮官和部隊獲得有價值的見解,并實現快速、大規模決策。人工智能支持的系統可幫助增強領域意識,提供戰術視角并協助地面行動。

  • 通信: 軍用通信系統使用高級加密系統(AES),通常被稱為軍用級加密,具有高度的安全性和可靠性。但僅靠加密無法實現語音到語音的翻譯(口音、清晰度等)。國防部在防務研討會上推出了人工智能語音翻譯(DYSL AI Translator),使軍人之間的交流順暢無縫。同時推出的通信情報(COMINT)系統將識別和攔截音頻數據,用于安全和監視目的。

  • 網絡安全: 互聯網技術的出現對網絡構成了重大威脅。由于數據在 21 世紀已變得至關重要(被視為 “下一個石油”),網絡威脅在當今世界變得越來越普遍。網絡攻擊對國家的 CII(關鍵信息基礎設施)構成了高風險,因為任何人都可以從任何地方發起攻擊。最近發生的 BSOD(藍屏死機)事件讓我們看到了一行代碼中的錯誤是如何在幾秒鐘內破壞經濟的。創建由人工智能驅動的自動模型解決方案有助于更好地分析和評估威脅。

  • 監視和偵察(SR): 印度武裝部隊使用的監視和偵察系統包括雷達系統、衛星系統、無人機、信號情報(SIGINT)、地面監視等。傳統上,這些系統需要人工監控,但人工智能系統可以幫助實現無須人工監控的監視。印度國防部的舉措包括

    • 無人機饋送分析系統,這是一種基于 DL 的目標識別模式;

    • 支持人工智能的 STORM 無人機,可在 GPS 信號缺失的地區進行監視;

    • 基于人工智能的運動檢測和識別系統

  • 情報: 情報是監視和偵察以及其他數據的綜合結果。其目的是提供信息和評估,通過支持決策、軍事規劃、敵方欺騙、識別對手和評估戰斗力來幫助完成任務。由國防部國防生產局發起的 “無人機饋送分析項目 ”是一個目標識別系統,將有助于改進 ISR 任務。

付費5元查看完整內容

人工智能能否解決戰爭中的倫理、道德和政治困境?人工智能(AI)驅動的戰爭如何改變我們思考戰爭倫理-政治困境和實踐的方式?本文探討了現代數字化戰爭中人機互動的倫理、道德和政治困境的關鍵因素。有觀點認為,人工智能的 “理性 ”效率可以同時為人類在戰斗中的心理和生理缺陷提供可行的解決方案,同時保留人類對戰爭機器的 “有意義的 ”控制,本文對這一觀點提出了反駁。這種龐洛士式的假設忽視了人機互動的心理特征、未來人工智能沖突的速度以及現代戰爭復雜而混亂的本質。文章闡述了人機互動的關鍵心理學見解,以闡明人工智能如何塑造我們思考未來戰爭的政治和倫理困境的能力。文章認為,通過人機融合的心理過程,人工智能將不僅僅是現有先進武器的武力倍增,而將成為戰爭中事實上的戰略行動者--“人工智能指揮官問題”。

文章分為三個部分。第一部分通過對人類與技術以及人機互動的更廣泛對接進行背景分析,為論點提供框架。文章探討了人類為何以及如何與機器和新出現的復雜社會技術系統糾纏在一起、軍事技術倫理的根源以及無風險、無摩擦戰爭的概念。報告將人工智能技術描述為這一社會技術趨勢的新表現形式。它認為,在戰爭決策中外包人類良知--幻想解決戰爭的倫理、道德和政治困境--有可能侵蝕人類與戰爭之間的重要聯系。本節還討論了質疑 “用機器取代人類一定是個壞主意 ”這一觀點的各種反駁意見(“人工智能樂觀主義者”)。例如,人類會犯錯誤,經常做出非理性的行為,而且容易產生暴力、不道德和非人化等原始本能(Haslam,2006 年;Brough,2007 年)。

第二部分探討了人機互動的心理特征。具體地說,本節分析了人類的幾種偏差--控制幻覺、啟發式捷徑(Einstellung效應、存在偏差)和自動化偏差--這些偏差會使指揮官容易濫用或過度使用軍事力量以達到不公正的目的。報告還討論了這些偏差在更廣泛的政治驅動力中的潛在影響,這種政治驅動力就是通過技術神器來實現戰爭的可預測性和集中控制。

最后,第三部分探討了利用人工智能等技術完善無風險、無摩擦戰爭的手段對軍事倫理和戰爭中的道德責任的潛在影響。它將圍繞人工智能技術將人類倫理編碼到機器中的爭論背景化。它還探討了人類情感的作用,人類情感賦予我們理性和深思熟慮的感覺,影響我們的決策,并塑造我們對倫理和道德困境--沒有明顯理想結果的情況--的反應。人類的倫理道德能否被編程到算法中?如果可以,那么如果道德責任外包給人工智能,人類又該如何保留自己的倫理和價值觀?

付費5元查看完整內容

新技術的影響和未來作戰空間速度的加快可能會使指揮和控制職能過度集中于政治或戰略層面,從而繞過合格參謀人員所發揮的咨詢作用。政治和/或戰略領導人可能會發現,發動先發制人的戰爭或預防性戰爭,以此作為獲取對敵不對稱優勢的戰略是很有吸引力的。本文研究了這一趨勢的根源,將歷史觀點與下一代技術可能對指揮和控制產生的影響聯系起來。

圖 3. 自主武器與自主戰爭之間的平行關系

新技術的影響和未來戰場節奏的加快可能會使政治或戰略層面的指揮和控制職能過度集中。政治和戰略領導人可能會將先發制人或預防性戰爭作為一種戰略,以獲得對敵人的不對稱優勢,這不是因為他們必須這樣做,而是因為他們可以這樣做。因此,高級領導人可能會被鼓勵繞過其合格參謀人員所發揮的咨詢作用,并削弱下級指揮官的自主權。技術系統的進步可能會終結任務指揮、Auftragstaktik。唐納德-E-范德格里夫(Donald E. Vandergriff)將 Auftragstaktik 定義為軍事職業化的一種文化理念: 總指揮官的意圖是讓成員努力追求專業精神,作為回報,個人將在完成既定任務時獲得自由。將采用嚴格的、但經過驗證且站得住腳的標準來識別少數有能力從事軍事職業的人。一旦一個人被接納加入這一職業,就會與戰友們形成一種特殊的紐帶,這種紐帶使團隊合作和解決復雜任務成為可能。這種指揮文化......必須從基礎訓練一開始就融入所有教育和培訓中。

本文探討了這一趨勢的根源,將歷史觀點與下一代技術可能對指揮與控制產生的影響聯系起來。

技術創新在戰爭中發揮著至關重要的作用。在戰爭中采用新技術有助于取代傳統上由人類扮演的角色。在第一次世界大戰和第二次世界大戰之間的戰時,戰爭得到了優化,以便通過日益復雜的機器來應對更遠的距離和更快的執行速度。武裝部隊的總參謀部變得更加精密和復雜,以處理更多的信息。戰場逐漸遠離指揮官,而作為戰爭關鍵職能的指揮和控制則走向自動化。

當前的軍事能力是技術和信息不斷發揮核心作用的演變趨勢的結果。隨著以網絡為中心的戰爭(NCW)作戰概念的引入,或各級網絡化部隊的使用,指揮官現在可以訪問由傳感器、決策者和士兵組成的網絡,從而在幾乎全球范圍內提供共享意識、更快的節奏、更強的殺傷力和生存能力。新技術的開發和采用使政治和戰略決策者能夠實時控制戰場,甚至在戰術層面也是如此。新技術的影響和未來戰場速度的加快可能會使政治或戰略層面的指揮和控制職能過于集中。其后果可能不利于在作戰和戰術層面開展軍事行動。此外,自主武器和人工智能是戰爭自動化的下一步,對指揮與控制有著至關重要的影響。

在對指揮與控制的調查中,作者沿用了《指揮與控制》、《海軍陸戰隊條令出版物(MCDP)6》所采取的方法,并使用了美國空軍上校約翰-R-博伊德的 OODA 循環(觀察、定向、決策和行動),因為用《指揮與控制》的話說,它 “描述了指揮與控制過程的基本順序”。此外,OODA 循環對有效決策也有重要作用。作者認為,雖然高度自主技術的引入已經并將繼續對觀察(O)、定向(O)和行動(A)階段產生重大影響,但決策(D)階段仍需要 “環路上 ”的人來控制行動的進行。新技術的采用將大大加快 OOA 階段的速度,決策階段也將從中直接受益,但運用判斷和專業經驗的能力仍將是這一階段的關鍵因素。戰爭規劃》(MCDP 1)正確地強調,軍事決策不僅僅是數學計算。決策既需要有識別特定問題本質的情境意識,也需要有制定切實可行解決方案的創造能力。這些能力是經驗、教育和智慧的產物。

然而,對可靠、準確和快速軍事選擇的追求可能會讓人類從許多過程和程序中消失。事實上,機器可能會在決策過程的許多關鍵階段取代人類。這種可能性引起了軍事工作者和學者的一些擔憂。在經常被描述為超戰爭的未來戰爭中,由于競爭要素的反應近乎瞬時,OODA 循環中可能幾乎完全沒有人類決策。這篇文章描述了未來作戰環境自動化程度的提高所帶來的速度提升的副作用:不可避免且必要的 OODA 循環壓縮。

付費5元查看完整內容

無人機已成為現代戰爭中不可或缺的一部分,其向更大自主性的演進是不可避免的。本研究探討了軍用無人機向智能化、最小程度依賴人類方向發展的軌跡,并詳細介紹了必要的技術進步。我們模擬了無人機偵察行動,以確定和分析新出現的挑戰。本研究深入探討了對提高無人機智能至關重要的各種技術,重點是基于物體檢測的強化學習,并提供了實際實施案例來說明這些進步。我們的研究結果證實了增強軍用無人機智能的巨大潛力,為更自主、更有效的作戰解決方案鋪平了道路。

圖 3 智能無人機偵察場景和應用技術。

在最近的沖突中,如俄羅斯入侵烏克蘭和亞美尼亞-阿塞拜疆戰爭,無人機被認為是不可或缺的力量。目前,大多數可用于作戰的無人機都是遙控的。雖然無人機在一定程度上實現了自動化,但由于技術和道德問題,仍需要操作人員。從戰術角度看,無人機的最大優勢是 "低成本 "和 "大規模部署"。然而,這兩個優勢只有在無人機無需操作人員即可控制時,也就是無人機智能化時才能發揮作用。

自主無人機本身并不是一個新概念,因為人們已經進行了廣泛的研究。例如,我們生活在一個無人機用于送貨和搜救任務的時代 [1]、[2]、[3]。然而,民用智能無人機技術能否直接用于軍事目的呢?我們的答案是'不能',因為軍用無人機的操作在以下情況下與民用無人機有明顯區別。首先,軍用環境比民用環境更加復雜。想想特斯拉在未鋪設路面的道路上自動駕駛時,駕駛員必須干預的頻率有多高。軍事行動并不發生在 "鋪設良好的道路上"。此外,軍事行動涉及在任意地點分配任務。其次,伴隨軍事行動而來的是敵人無數次的反擊。這些反作用包括主動和被動拒絕,主動拒絕包括試圖攔截,被動拒絕包括隱藏和欺騙。這些敵方活動增加了問題的復雜性。第三,由于軍事的特殊性和安全性,缺乏與軍事行動相關的數據。例如,缺乏坦克和運輸機發射器(TEL)的鳥瞰數據,而這些都是物體探測的常用目標。第四,軍用智能無人機執行任務時需要考慮安全和道德問題。智能無人機在執行任務時如果缺乏穩定性,就會產生不可預測的行為,導致人員濫傷和任務失敗。從倫理角度考慮,即使無人機的整體操作實現了智能化,也需要有最終攻擊決策由人類做出的概念。換句話說,關鍵的考慮因素不應該是無人機是否能自主做出攻擊決定,而是無人機如何提供信息,協助人類做出攻擊的最終決定。這些倫理問題與人類的責任和機器的作用有關。

鑒于這些軍事方面的考慮,對自主軍用無人機和民用無人機的研究應以不同的理念推進。有關軍用智能無人機的研究正在積極進行中,但與民用研究不同的是,大部分研究都沒有進入公共領域。因此,本研究有以下目標。

  • 首先,考慮到軍事行動的特殊性,本研究探討了智能軍用無人機的概念。

  • 其次,我們對該領域出現的各種問題進行案例研究,從工程師的角度看待這些問題,并討論從案例研究中得出的直覺。

圖 1. 智能無人機在民用領域的工程研究

智能偵察無人機案例研究

軍用無人機根據其使用目的分為偵察、攻擊、欺騙、電子戰和作為目標等類別 [38],[39]。在本案例研究中,我們重點關注偵察無人機的智能化。案例研究中的無人機以韓國 "Poongsan "公司的無人機為模型。根據應用模塊的不同,該模型可以執行多種任務。不過,本研究使用的是配備偵察模塊的無人機。模塊包括攝像頭、LRF、GNSS 等傳感器和系統。在規范假設方面,假定無人機能夠配備物體檢測和強化學習神經網絡。

圖 4. 用于訓練 YOLOv4 微型目標檢測模型的跟蹤車輛圖像。

圖 12. 根據 Unity 中的情景驗證技術應用

付費5元查看完整內容

新興技術和顛覆性技術及其在安全和國防領域的應用已成為歐洲聯盟(歐盟)倡議的核心。人工智能(AI)系統也不例外。作為大國競爭和日益武器化的焦點,人工智能技術因其軍民兩用的特點,以及在網絡物理領域的日益部署,在改變軍民關系方面既帶來了風險,也帶來了機遇。本文探討了歐盟最近所做的工作,確定了共同的計劃和項目,并考慮了歐洲技術主權的論述、最近的戰略舉措以及所涉及的主要利益相關者。由于歐盟缺乏明確闡述對這一新興技術領域及其負責任的軍事研究、開發和實戰的立場的戰略愿景,這些工作有可能成為缺失的總體知識拼圖中的零散片段。本文還對將人工智能驅動的技術解決方案納入歐盟安全與防務的主流提出了警示,指出這將使特定的地緣政治和軍國主義創新想象合法化,而這種想象可能與歐盟倡導的對此類系統負責任、可信賴和以人為本的愿景不符。

人工智能(AI)系統等新興和顛覆性技術(EDT)正在開創一個高科技全球競爭和地緣政治對抗的新時代。人工智能,尤其是機器學習(ML)的進步,已經以各種方式影響著戰爭。尖端的人工智能系統作為美國和中國等主要大國的 "終極助推器",預示著巨大的戰略優勢,但也有可能對武裝沖突的全球監管和基于規范的制度造成不可預見的破壞。作為一種無所不能的使能技術,人工智能是一個總括性術語,經常被認為會徹底改變戰爭的本體,并引發戰略、作戰和戰術軍事實踐的范式轉變。不可否認,人工智能已成為國家戰略和軍事條令的基石。出于軍事目的開發人工智能加劇了人們對新一輪 "軍備競賽 "的擔憂,并擔心對抗性的零和思維將主導全球政治。尤其是人工智能在安全和國防領域的應用,正引發有關該技術武器化和廣泛軍事化的激烈辯論,以及對在戰場上使用和部署人工智能技術的倫理和監管問題的擔憂。

需要對 "軍事人工智能 "這一概念進行更多批判性的探討,特別是因為它已被狹隘地與軍國主義對技術顛覆未來的設想混為一談,從而助長了相關的研發(R&D)努力和部署致命自主武器系統(LAWS)的競賽。最近,這一概念與使用人工智能無人機群(或稱 "軍事蜂群")進行軍事行動聯系在一起。雖然為更多地將致命武力交給此類技術鋪平道路的努力值得認真反思,但從國防工業供應鏈到研發、軍事決策、作戰、訓練、后勤和部隊保護等方面的軍民動態,智能軍事的快速發展已準備好改變戰爭的幾乎所有方面。最近的分析主要集中在美國和中國的力量動態上,而較少關注歐洲聯盟(歐盟)的努力或其對軍事人工智能的看法。

在此背景下,人工智能系統的地緣政治因素在歐盟層面吸引了更多關注,它被視為經濟、政治和軍事國家策略的有力工具。在最近關于加強歐洲 "戰略自主權 "和 "技術主權 "的討論中,以及在現任主席烏蘇拉-馮德萊恩自詡為 "地緣政治 "歐盟委員會的領導下,這一地緣政治因素也得到了體現。鑒于將軍事人工智能等關鍵技術納入歐洲安全與防務實踐的主流所面臨的挑戰,這并不奇怪,主要是因為歐盟內部及其成員國在外交、安全與防務等高政治領域的權限各不相同。事實上,安全和防務事務,包括與技術和工業領域相關的事務,以及各自的戰略研發舉措,傳統上一直是成員國的專屬權限。這些事務由歐盟內部的政府間決策機構負責,而不是受歐盟的超國家領導。然而,近年來,歐盟委員會通過基于市場和工業的倡議,擴大了其在這些領域的權限,以塑造和加強歐洲防務技術和工業基地(EDTIB)的競爭力和創新能力。歐盟委員會還越來越多地將民用科學、技術和創新計劃與歐盟主導的安全和國防研發政策領域的興起聯系起來,這些領域受益于關鍵軍民兩用技術的創新。在此背景下,本文通過探討歐盟主導的融資計劃(如歐洲防務基金(EDF)及其前身計劃)下的項目,以及歐洲防務局(EDA)主導的項目,重點介紹歐盟近期的人工智能安全與防務技術計劃。

首先,第二節探討了歐盟人工智能安全與防務倡議的研發趨勢。然后,第三節討論了歐盟國防研究試點項目下的無人蜂群系統計劃。第四節描繪了防務研究預備行動(PADR)下與人工智能相關的防務研究項目,第五節重點介紹了歐洲防務工業發展計劃(EDIDP)中由人工智能支持的幾個防務工業項目。第六節評估了歐洲國防工業發展計劃在改變人工智能國防技術游戲規則方面的作用。最后,第七節探討了歐洲防務局率先提出的幾項人工智能防務倡議和應用,最后在第八節和第九節提出了本文的建議和總體結論**。

隨著技術解決主義的現實政治愿景在布魯塞爾和歐盟成員國首都獲得越來越多的戰略牽引力,重要的是要注意到,這同樣使特定的地緣政治和軍國主義想象合法化,而這種想象可能并不總是與歐盟作為規范和民事大國的身份相一致。社會技術想象是群體的成就和集體持有的愿景,在這種想象中,某些愿景和愿望占據了主導地位,并隨著時間的推移,隨著主要利益相關者調動資源使其愿景更加持久和理想而獲得集體力量。這種軍國主義愿景的形成有助于將歐洲塑造成一個在戰略上獨立的全球大國和技術上擁有主權的想象空間。但與此同時,也應關注歐盟如何為基于規則的國際秩序和軍事人工智能軍備控制制度做出貢獻,從而緩解軍事人工智能和自主系統在戰爭中的使用及其在戰場上的廣泛部署日益正常化的趨勢。

為實現這一目標,歐盟資助的計劃和歐洲防務局的倡議都應采取相關措施,制定最佳做法,應對軍事人工智能帶來的潛在風險、挑戰和不希望出現的結果,從建立人類對人工智能技術的監督標準,到考慮某些系統的不可預測性和安全性,以及認識到沖突升級和違反國際法及道德原則的可能性增加。懷疑論者反對過分夸大人工智能系統的破壞性影響,認為這預示著一場新的 "軍事革命"。不過,應該指出的是,人工智能帶來了一系列新的挑戰和風險,因為這關系到人的作用。本文旨在通過識別具有人工智能驅動的安全與國防技術元素的共同項目,批判性地參與歐盟主導的努力。重點是歐盟層面的超國家和政府間防務合作。

付費5元查看完整內容

雖然戰爭的基本性質保持不變,但軍事戰略仍在根據新技術帶來的能力不斷演變。因此,軍事領導人必須了解新興的顛覆性技術,以保持部隊的相關性。量子技術就是這樣一種技術,由于其在廣泛領域的潛在應用,它在過去幾年里受到了廣泛關注。特別是,量子技術有望通過大幅提升當前的軍事技術,在戰爭的各個領域實現突破。本文基于現實評估,探討了量子技術在國防領域的三大應用--量子計算、量子傳感和量子通信--及其對未來戰爭的影響。

隨著美國國家戰略重點轉向與大國競爭,對美國海軍陸戰隊是否能滿足美國需求提出了質疑。海軍陸戰隊目前的兵力設計是針對大規模兩棲聯合強行進入作戰(JFEO)和岸上持續作戰而優化的。然而,隨著遠程精確導彈、先進預警雷達、無人機(UAV)和網絡能力在全球的擴散,美國前國防部長羅伯特-蓋茨(Robert M. Gates)以及新美國安全中心(Center for a New American Security)和戰略與預算評估中心(Center for Strategic and Budgetary Assessments)的學者們對海軍陸戰隊數十年來的多海軍陸戰隊遠征旅兩棲聯合強行進入作戰(JFEO)組織設計和相關投資提出了質疑。作為回應,海軍陸戰隊第 38 任司令戴維-伯杰(David H. Berger)將軍于 2020 年 3 月宣布了 "兵力設計 2030"(Force Design 2030),概述了海軍陸戰隊當前兵力設計的不足之處以及變革的必要性,以保持海軍陸戰隊在競爭環境中與先進的同級競爭對手的相關性。

《2030 年部隊設計》是適應性的縮影,是一種應對選擇性壓力的生存機制。迫使海軍陸戰隊進行變革的主要選擇性壓力之一是同行競爭對手的技術以前所未有的速度進步。雖然技術本身并不會改變戰爭的根本性質,但它肯定會影響必須采用的制勝戰略。由于技術在國家安全中的重要性,美國政府每年繼續投入數十億美元資助國防實驗室,如國防高級研究計劃局(DARPA)、海軍研究辦公室和陸軍研究實驗室。這些研究機構開發新的國防技術,并隨時向領導人通報這些技術可能對戰爭各個方面產生的影響。不過,海軍陸戰隊的最終責任是采用和調整這些新技術,使其能夠為聯合部隊提供相關的獨特能力。各級領導層對新興技術的進一步了解將加速新技術的采用,這也是快速技術進步的要求。本文是作者試圖提高人們對量子技術這一重大新興技術和潛在顛覆性技術及其對未來戰場潛在影響的認識,從而使海軍陸戰隊能夠共同積極地維持一支適合未來需求的部隊。

結論

量子技術不會取代現有技術,相反,它將增強現有技術。量子密碼分析可以使美軍,特別是海軍陸戰隊在進攻和防御領域的網絡行動多樣化。抗量子算法的發明和實施就是網絡防御的一個例子。量子優化算法可以解決各種優化問題,包括但不限于路線規劃、供應鏈、多無人機部署和導彈防御,在提高作戰效率的同時減少所需資源。量子模擬可以開發出更輕、更堅固、更節能的材料,使海軍陸戰隊能夠在分布式環境中以更輕的足跡維持更長的時間。量子傳感器可以實現擴展導航和寬帶無線電頻率接收,同時占用空間更小,幾乎沒有電磁特征。量子網絡可提供高水平的通信安全,并實現量子信息的分發。

值得注意的是,由于實施方面的工程挑戰,這些應用仍停留在理論層面。第二次量子革命的大多數技術距離實際應用還有幾十年的時間。海軍陸戰隊不應該太有遠見,因為它必須能夠隨時投入戰斗--但同時,它也不應該太近視,以免在未來落伍并失去相關性。美國同行競爭對手的技術突飛猛進,要求海軍陸戰隊迅速采用新技術。及時合理地獲取、發展條令并在戰術上運用新技術的一個先決條件是,各級領導層要保持對新興顛覆性技術的集體認識,以便海軍陸戰隊能夠適當地組織、裝備和訓練海軍陸戰隊員,使其成為國家未來的替補部隊。

付費5元查看完整內容

將人工智能(AI)融入陸軍后勤工作,可以徹底改變供應鏈管理、優化資源配置并增強決策能力。不過,這需要采取全面的方法,解決實施過程中的挑戰和問題。

人工智能技術的迅猛發展為將其應用于包括陸軍后勤在內的各行各業提供了新機遇。認識到人工智能的潛力,陸軍應努力大規模利用其能力,并將其應用到戰術層面,以改善供應鏈管理、資源分配和決策過程。通過與《聯合出版物 4-0:聯合后勤》、《野戰手冊 4-0:維持行動》和《陸軍條令出版物 4-0:維持》中概述的指導原則保持一致,陸軍可以在日益復雜和快速發展的世界中發展適應性強、反應迅速和有效的后勤行動。然而,將人工智能融入陸軍后勤工作會帶來一些挑戰和問題,如在自動化與人類專業技能之間找到最佳平衡點、確保強大的網絡安全、解決倫理問題以及使勞動力適應不斷變化的技術環境。本文探討了在陸軍后勤中整合人工智能的潛在優勢和劣勢,并討論了在最大限度地提高效益的同時,最大限度地降低風險和解決與實施人工智能相關的問題所需的全面方法。

最大化供應鏈管理: 真實案例

人工智能在大幅提升陸軍供應鏈管理方面的變革能力毋庸置疑。正如美陸軍物資司令部前司令埃德-戴利(Ed Daly)將軍所強調的那樣,人工智能對于實現實際后勤所需的相關速度至關重要。他的愿景是將人工智能和機器學習無縫融入陸軍后勤流程的方方面面,從而為戰場上的士兵提供無與倫比的效率和及時支持。為支持這一觀點,《國際生產經濟學雜志》上發表的一項研究顯示,將人工智能融入供應鏈管理可將效率提高 20% 或更多。

人工智能分析海量數據、預測未來趨勢和資源分配需求的能力是陸軍后勤的另一大優勢。通過利用人工智能驅動的分析,陸軍可以更精確地預測士兵的需求,確保重要物資在正確的時間和地點到達目的地。此外,預測分析還能通過簡化人員和裝備分配來優化陸軍行動。陸軍后勤中的預測分析可以確定車輛部件何時需要更換,從而在故障發生前進行主動維護。這種方法可節省大量成本并提高運營安全性,減少因維護和事故而計劃外停機的可能性。此外,預測性分析還可以通過預測供應需求和驗證在正確的時間和地點是否有正確的資源來完善供應鏈管理。這一戰略可提高運營效率、縮短交付周期并提高供應鏈的可見性。

自適應后勤與決策: 對實時信息做出反應

適應當地快速變化條件的能力是現代軍事行動的重要組成部分。適應性后勤和決策對于維持陸軍在復雜環境中的有效性和反應能力至關重要。人工智能通過提供實時信息、復雜的分析和先進的決策支持工具,有可能徹底改變軍事后勤的這一方面。

人工智能在適應性后勤方面的一個重要優勢是它有能力收集和分析來自各種來源的大量數據,包括傳感器、衛星和其他情報平臺。此外,人工智能還能訪問來自不同陸軍源系統的記錄系統數據,如全球指揮與控制系統-陸軍、后勤現代化計劃、港口自動化工具和運輸協調員移動信息自動化系統 II。人工智能還可以利用非陸軍系統,如全球決策支持系統和后勤功能區服務。通過這種全面的數據分析,可以做出更明智的決策,提高后勤效率。

這些信息可為作戰環境提供全面的最新情況,使指揮官能夠根據實時情報做出明智決策。通過獲取準確及時的數據,陸軍可以更有效地應對新出現的威脅,最大限度地降低風險,并抓住機遇。

除了提供實時信息外,人工智能還能通過識別人類分析人員可能不易察覺的模式和趨勢來加強決策。通過機器學習算法和先進的數據分析,人工智能系統可以發現隱藏的相關性,并產生可操作的見解,為戰略和戰術決策提供依據。例如,人工智能可以幫助預測敵人的動向,預測后勤瓶頸,或在潛在的供應鏈中斷發生之前加以識別。有了這些洞察力,指揮官就能做出更明智的決策,更有效地分配資源,并在戰場上保持競爭優勢。

人工智能還能通過自動化某些后勤規劃和決策環節,提高陸軍應對突發事件和緊急情況的能力。例如,人工智能驅動的系統可以根據不斷變化的環境條件或供應鏈的突然中斷,自動調整物資和人員的路線。通過實現這些流程的自動化,陸軍可以最大限度地減少延誤,并確保將關鍵資源運送到最需要的地方,即使在不確定和逆境中也是如此。

人工智能在適應性后勤中的另一項應用涉及使用模擬和優化技術來支持復雜多變條件下的決策。人工智能驅動的模擬模型可以幫助指揮官探索各種場景,評估潛在的行動方案,并確定實現目標的最有效策略。這可以使后勤計劃更加穩健、更具彈性,并提高任務的整體成功率。

反駁意見

雖然將人工智能融入陸軍后勤會帶來諸多益處,但也有合理的擔憂和潛在的弊端需要考慮。一些批評者認為,依賴人工智能可能會導致過分強調技術,而忽視人的經驗和直覺,而人的經驗和直覺在復雜和不可預測的情況下至關重要。人工智能有可能造成虛假的安全感,導致過度自信和戰略失誤。

此外,與實施人工智能技術相關的巨大成本,如基礎設施升級、軟件開發和持續維護,可能會超過潛在的好處。預算限制和相互競爭的優先事項可能會使為人工智能集成分配足夠的資源變得具有挑戰性,從而可能限制其有效性。

另一個令人擔憂的問題是人工智能系統易受網絡攻擊和敵方操縱。隨著人工智能驅動的后勤系統對陸軍行動越來越關鍵,它們也成為對手試圖破壞或損害軍事能力的高價值目標。制定強有力的網絡安全措施至關重要,但無法保證這些防御措施在應對快速發展的威脅時始終有效。

此外,還要考慮與軍事后勤中的人工智能有關的倫理問題。使用人工智能可能會導致決策偏差、缺乏透明度或意想不到的后果。必須明確界定人工智能系統行動的責任,以確保在出現錯誤或故障時能追究責任。

最后,將人工智能融入陸軍后勤可能會給后勤軍事職業專業帶來意想不到的后果。雖然特定任務的自動化可以提高效率,但也可能導致工作崗位的轉移,并需要對勞動力進行大量的再培訓。確保陸軍能夠適應這些變化并保留一支熟練的勞動力隊伍至關重要,但這需要持續的努力和投資。

雖然反駁意見中提出的擔憂不無道理,但必須指出,不應完全否定整合人工智能的潛在好處。相反,有必要采取一種平衡的方法,仔細考慮與人工智能實施相關的風險和挑戰,同時尋求利用其在陸軍后勤中的變革潛力。通過制定全面的戰略,陸軍可以解決這些問題,最大限度地發揮人工智能集成的效益。

結論

將人工智能融入陸軍后勤工作,為徹底改變供應鏈管理、優化資源配置和加強決策過程提供了眾多機會。然而,至關重要的是要認識到并解決與實施人工智能相關的挑戰和問題,如在自動化和人類專業知識之間取得適當平衡、確保強大的網絡安全、解決道德問題以及使勞動力適應不斷變化的技術環境。

為了充分利用人工智能的潛力,陸軍應采取全面的方法,包括投資人工智能基礎設施、促進公共和私營部門之間的合作、為人員提供持續的教育和培訓,以及制定強有力的網絡安全措施。此外,必須就人工智能在軍事后勤中的道德影響保持公開對話,并建立明確的指導方針和問責結構,以確保負責任地部署人工智能。

通過采取全面的方法,陸軍可以克服與人工智能集成相關的挑戰,釋放其變革潛力,并在日益復雜和快速發展的全球安全環境中保持競爭優勢。

付費5元查看完整內容

近來,物聯網(IoT)技術為農業、工業和醫學等許多學科提供了后勤服務。因此,它已成為最重要的科研領域之一。將物聯網應用于軍事領域有許多挑戰,如容錯和 QoS。本文將物聯網技術應用于軍事領域,創建軍事物聯網(IoMT)系統。本文提出了上述 IoMT 系統的架構。該架構由四個主要層組成: 通信層、信息層、應用層和決策支持層。這些層為 IoMT 物聯網提供了容錯覆蓋通信系統。此外,它還采用了過濾、壓縮、抽象和數據優先級隊列系統等數據縮減方法,以保證傳輸數據的 QoS。此外,它還采用了決策支持技術和物聯網應用統一思想。最后,為了評估 IoMT 系統,使用網絡仿真軟件包 NS3 構建了一個密集的仿真環境。仿真結果證明,所提出的 IoMT 系統在性能指標、丟包率、端到端延遲、吞吐量、能耗比和數據減少率等方面均優于傳統的軍事系統。

提議的IoMT系統架構

IoMT 系統由一組在戰場上應組織良好的軍事設備組成。無人機、作戰基地、艦艇、坦克、士兵和飛機等這些物品應在一個有凝聚力的網絡中進行通信。在 IoMT 網絡中,態勢感知、響應時間和風險評估都會得到提高。此外,IoMT 環境應涉及對普適計算、普適管理、普適傳感和普適通信的全面認識。此外,IoMT 可能會導致傳感器等網絡事物產生超大規模的數據。此外,這類網絡所需的計算量非常大,而這些計算的結果應能實時準確地實現。因此,IoMT 系統架構應考慮上述注意事項。

因此,建議的體系結構由四層組成: 通信層、信息層、應用層和決策支持層(見圖 1)。通信層關注的是事物如何在一個大網絡中相互通信。信息層涉及軍事數據的收集、管理和分析。應用層包括控制不同通信軍事系統的應用程序。最后,決策支持層負責決策支持系統,幫助戰爭管理者做出準確、實時的決策。下文將對每一層進行深入討論。

3.1 通信層

IoMT 系統可視為物聯網的一個特殊例子。因此,IoMT 環境與物聯網環境有些相似,只是在事物類型、通信方式等方面略有不同。根據這一理念,IoMT 環境可定義為一組使用互聯網相互通信的不同網絡。這些網絡應包括軍事任務中的主動和被動事物。IoMT 系統中應構建的主要網絡包括無線傳感器(WSN)、射頻識別(RFID)、移動特設(MANET)、衛星和高空平臺(HAP)網絡。由于 WSN 在許多軍事問題中的重要性,它被納入了 IoMT 系統。WSN 通過快速收集和提供危險數據來協助戰爭行動。然后,將這些數據發送給最合適的人員,以便實時做出正確決策。因此,除了協調自身的軍事活動外,WSN 的主要目標是監測和跟蹤敵方士兵和其他敵方事物的動向。傳感器可以遠距離分布,覆蓋大片區域。這些傳感器通過控制其行為的基站進行通信。由于 RFID 網絡在軍事領域的重要性,它在 IoMT 環境中得到了體現。軍隊中最重要的問題之一就是大部分物品都要貼上標簽。在戰場上使用 RFID 可以為士兵、貨物、小型武器、飛機、射彈、導彈等提供一個具有監控功能的跟蹤系統。例如,定期掃描每個人的醫療情況和效率是戰爭中一個非常重要的問題。城域網在 IoMT 系統中的表現也是一個重要問題,因為它可以用來促進士兵、武器、車輛等的通信。城域網在軍事上有許多特別的應用,如安裝在飛機和地面站之間的網絡或船舶之間的網絡。每種特設網絡的要求都取決于軍事任務的類型。此外,在軍事應用中使用的特設設備都配備了路由場景,可以利用最佳路由路徑自動轉發數據。物聯網依賴互聯網技術來促進通信,這是一個普遍的邏輯。遺憾的是,某些作戰地點可能沒有互聯網技術。因此,尋找替代通信技術非常重要。這就是在覆蓋目標中使用 HAP 網絡的原因。軍用物資分布面積大,因此必須以可靠的方式進行覆蓋,以保證通信效率。HAP 網絡可作為互聯網之外的第二種通信策略選擇。HAP 網絡的高度有限,因此容易成為敵方的攻擊目標,其故障概率可能很高。如果 HAP 網絡出現故障,通信系統將面臨很大問題,可能會影響軍事任務的執行。因此,應構建一個衛星網絡來覆蓋故障的 HAP 網絡,并覆蓋 HAP 網絡或互聯網可能無法覆蓋的軍事事物(見圖 2)。不同網絡之間的通信難題只需使用報頭恢復技術即可解決。在這種技術中,每個網絡之間都應添加一個翻譯器,用目的節點的報頭封裝每個數據包。新的報頭使數據包可以被理解;這可以通過系統路由器來實現(見圖 3)。

圖2: 通信網絡(該圖部分摘自[23])

圖3: 報頭轉換過程

3.2 信息層

這一層非常重要,因為它代表著 IoMT 系統架構的核心。射頻識別(RFID)、傳感器等軍用設備收集的信息應以安全、珍貴、實時的方式進行傳輸、存儲和分析。這一層的首要功能是在信息處理后對收集到的信息進行組織和存儲。IoMT 系統數據的處理被認為是一個具有挑戰性的問題,因為在短時間內可以收集到 TB 級的數據。因此,應在不影響質量的前提下盡量減少這些數據。此外,IoMT 的特殊要求(如實時決策)也不容忽視。在 IoMT 系統架構中,數據處理包括四個步驟: 優先化、過濾、壓縮和抽象。下面將對優先級排序過程進行說明。數據過濾、數據壓縮和數據抽象技術在第 4.1 小節中說明。

確定優先級的步驟包括處理不同優先級的數據。對于戰爭管理者(即軍隊將領)來說,收集到的每項數據都有一定的重要程度。因此,應將數據分為若干優先級,以便在 IoMT 系統饑餓的情況下優先處理和發送高優先級的數據。隊列系統就是用來實現這一優先級劃分步驟的。由于 IoMT 系統數據分類數量龐大,因此采用了六隊列系統。因此,IoMT 系統數據將被分為六個不同的類別。第一類代表最重要的 IoMT 系統數據;第二類代表不太重要的數據,依此類推。分類過程將動態完成,因此每個類別中的數據可能會根據戰爭任務的性質發生變化。為切實實現這一步,下一代路由器應具備對 IoMT 系統數據進行分類的能力。圖 4 說明了優先級排序過程。

圖4: 數據分類過程的簡單視圖

3.3 應用層

IoMT 系統架構中的應用層包括管理、監視等戰爭任務中使用的異構應用。該層應使用一個通用應用程序管理這些應用程序的功能,同時不影響其效率。這些應用程序的統一過程應基于通信數據(信息交換)來實現。在數據通信中,一個應用系統的輸出數據可能是另一個應用系統的輸入數據。因此,確定戰爭應用程序的輸入數據和輸出數據被認為是這一層最重要的目標之一。例如,飛機或發射器的火箭發射應用的輸入需要衛星監控應用的輸出數據,而衛星監控應用可能需要 WSN 應用的數據。信息層和應用層之間的通信非常重要,因為作為輸入和輸出的數據應首先在信息層處理。因此,在設計用于管理軍事應用程序的通用應用程序時,應首先確定每個應用程序的輸入和輸出數據。然后,應確定數據處理的時間(硬、實或軟)。例如,在戰斗停止期間,某個目標的坐標突然發生變化,三個應用程序應實時交互,以完成任務并擊中新位置上的目標。這些相互作用的應用程序構成了 WSN、戰爭管理以及執行任務的飛機機艙。還應確定應用特殊應用程序的優先順序。例如,在敵方多次攻擊特定目標的情況下,防御應用程序將優先啟動。

根據上述討論,一般管理應用程序應有一個專門的數據庫。該數據庫存儲有關單個軍事應用程序的動態變化數據。這些數據與以下主題有關: 輸入和輸出、單個應用程序之間的數據流方向、硬時間軍事情況、實時軍事情況、軟時間軍事情況以及每個應用程序的優先級。這些優先級應根據戰爭形勢來確定。根據綜合管理 IoMT 應用程序的性質,IoMT 系統數據庫的設計可以是分布式的,也可以是集中式的。在分布式數據庫中,應注意數據庫服務器之間交互的復雜性,特別是在需要硬時間或實時交互的事件中(見圖 6)。 、

3.4 決策支持層

戰爭中最重要的問題之一是決策過程。在技術戰爭中,決策應具備準確性、實時性、清晰性、安全性和快速分發等諸多規格。所有這些指標都應與信息層收集的數據相關。雖然信息與軍事決策之間關系密切,但所提出的 IoMT 系統架構在信息層和決策支持層之間還有一個中間層,即應用層。短時間內收集到的大量 TB 信息需要進行分析、過濾、優先排序和壓縮。這些過程已經在信息層中完成。但是,信息層沒有能力確定信息在應用層之間的移動方向(即信息的正常順序)。這種信息順序意味著,每個數據段都應指向一個合適的應用程序,以便實現互補和平衡。這些信息將用于決策過程。例如,假設戰爭管理者有一個目標,要求以特定的安排和特定的順序處理信息,直到軍事偵察之旅取得一定的結果。該目標的完成將通過步兵和防空來實現。因此,應用層和決策支持層之間的聯系將對高精度規格的決策產生良好的影響,這將在關鍵的戰爭事件中發揮作用。

簡單地說,本文概述的決策支持流程包括五個步驟: 事件權重、解決方案識別、選擇一種解決方案、行動和輸出評估(見圖 7)。戰爭管理者可根據自身經驗水平提取事件權重。一旦對事件有了充分了解,就該確定解決方案了。在準備決策時,有許多不同的備選方案。因此,確定可用行動的范圍非常重要。接下來,應選擇備選方案,并確定每個備選方案的風險。然后,就該采取行動了。應確定實施計劃,并提供實施所選解決方案所需的資源。應預先確定執行時間,然后開始執行。最后,應對選定解決方案的執行結果進行評估。請注意,有許多決策支持系統在經過實際測試(如 [24,25])后,可在 IoMT 中實施。

決策支持層可能面臨三大挑戰。第一個挑戰是數據過多或不足。這意味著決策支持層的輸出會延遲或不準確,這可能會造成災難,因為在大多數戰爭時期都需要實時決策。第二個挑戰是問題識別錯誤。在大多數戰爭任務中,圍繞一項決策會有許多問題。然而,有時卻無法確認這些問題的真實性。第三個挑戰是對結果過于自信。即使決策過程得到了準確執行,實際產出也可能與預期產出不完全一致。應用層將通過確定決策構建所需的準確信息、對問題的準確定義以及輸出調整來應對這些挑戰。因此,決策支持層將使用應用層的輸出。因此,在擬議的 IoMT 架構中,這些層之間的分離是一個需要考慮的重要問題。

仿真

首先,應構建一個軍事模擬環境,以測試所提議的 IoMT 架構的性能。網絡模擬器 3(NS3)是最廣泛使用的網絡模擬軟件包之一,將用于實現這一目標。軍事模擬環境由五種不同類型的網絡組成,其中包括分布在大片區域的大量節點。這五種網絡分別是 WSN、RFID、MANET、HAP 和衛星網絡。這些網絡是根據戰場需求確定的。文獻[26]中的仿真用于評估所提出的 IoMT 架構。在 WSN 仿真中,成千上萬的傳感器分布并部署在戰爭環境中。一個或多個基站將這些傳感器相互連接起來,并從中收集信息。在突發事件中,傳感器能夠向基站發送陷阱信息。然后,如果情況緊急,需要迅速做出決定,基站將直接把信息發送給執行者,如戰士、管理人員等。不過,在正常情況下,基站會將收集到的信息(詳細信息或摘要)重新發送給負責決策的管理人員。基站應該是智能的,并通過編程來實現這一目標。為了在 IoMT 中準確呈現 WSN,傳感器應具有不同的傳輸范圍。對于 RFID,美國軍方在第二次海灣戰爭中使用了最佳方案[27]。每個士兵身上都應貼有一個 RFID 標簽,以便在戰場上進行追蹤。此外,商業貨運和航空托盤等戰爭工具也應貼上 RFID 標簽,以便了解坦克和計劃等關鍵工具的最新狀態。此外,為了挽救士兵的生命,建議的模擬系統考慮了專門用于戰爭的移動醫院,并應配備 RFID 技術。此外,還利用 RFID 技術觀察軍隊的小型庫存物品,以實現更嚴格的庫存控制。對于城域網仿真,它包含戰場對象(如車輛、士兵和信息提供者)之間的臨時通信。在某些軍事情況下,很難通過數據采集中心傳遞或發送信息。因此,城域網仿真的一個考慮因素就是在數據傳輸中使用這種網絡。文獻[28]中所述的架構用于 HAP 和衛星網絡的通信。互聯網仿真使用了 [29] 中介紹的路由算法和 [30] 中介紹的物聯網混合組播架構。多媒體傳輸使用[31],但傳統軍事系統的模擬則使用[32,33]中所述的準則。

在信息層模擬中,將隨機、動態地創建 IoMT 數據。然后,這些數據將被分類并進入隊列,每個隊列將作為一個數據類別。動態數據的創建取決于存儲在特殊數據庫中的戰爭任務。本模擬場景中使用了 [34] 中所述的壓縮技術和數據過濾技術來減少數據,這是信息層的主要目標之一。應用層模擬也取決于戰爭任務,其中包括許多模擬網絡場景。每個網絡應用程序的輸入和輸出數據都在模擬文件中預先確定。網絡應用程序與綜合管理應用程序之間的通信是通過信息傳輸實現的。文獻[35]中的仿真用于決策支持層。戰爭任務的部分建模和仿真來自文獻[36],仿真中使用的武器的一般規格來自文獻[37]。圖 8 顯示了擬議的 IoMT 系統模擬環境的全貌。

付費5元查看完整內容

人工智能(或稱 AI)的應用正以各種方式影響著戰爭的性質和更廣泛的國際安全。在我們討論這些人工智能軍事應用的影響之前,先就如何思考它們的影響提出一些更具普遍性的想法:

通常情況下,人們會把人工智能這個詞賦予那些新穎的、能解決以往與人類智能相關問題的應用,賦予它神奇的光環。然而,當這種應用成為主流時,人工智能的標簽往往就會被摘掉。

在人類戰爭史上,影響戰爭方式的新技術層出不窮。從步槍到雷達,從刀劍到潛艇,從電報到戰斧:每一次新技術的出現都會激發烏托邦式的觀點,但當然也有烏托邦式的觀點,即特定的技術或武器系統將如何極大地影響戰爭的性質。我們的歷史證明了這一點:在萊特兄弟于 1903 年首飛之后,科幻小說家和軍事戰略家們紛紛宣稱空戰時代即將到來。最近,隨著網絡空間的出現,人們開始討論未來的戰爭是否會是網絡戰爭,觀察家們對網絡珍珠港的相關風險提出了警告。目前,學者、專業人士和普通人正在就人工智能對未來戰爭的影響展開激烈辯論,REAIM 會議當然也是一個證明。同樣,辯論也呈現出類似的模式,既有合理的擔憂,也有許多夸張的說法,還有未來戰爭將由機器而非人類自主發動的強大而可怕的畫面。

這次的不同之處在于,"一個人工智能系統 "并不存在。取而代之的是大量的算法應用,它們共同代表了一種萬能技術,一種在多個維度和整個 OODA 循環(軍事術語,即觀察-定向-決策-行動)中影響戰爭特征的萬能技術。這種技術既適用于戰場內外,也適用于戰爭與和平時期。

軍事史也表明,戰爭性質的真正變化往往是漸進的而不是點狀的,是進化的而不是革命的。變革不是通過某種新的銀彈或殺手級應用來實現的,而是通過軍事組織的艱苦工作來實現的,在這些工作中,軍事組織發展和完善作戰概念,將技術嵌入到新的作戰方式中,同時相應地調整組織結構。

有鑒于此,我們現在可以談談人工智能如何改變戰爭性質的問題。一些觀察家對變化的程度感到失望。他們將充滿機器人士兵的烏托邦式軍營與當前俄烏戰爭中充滿人類尸體的血腥戰壕這一同樣烏托邦式的現實相比較,發現戰爭仍然是 "To ánthrōpos,或者說是 "人類的事情"--這是有充分理由的。

盡管至少在可預見的未來,戰爭仍將是人類的事情,但很明顯,ANI(人工狹義智能)的突破與計算能力的爆炸性增長相結合,已經產生了大量的算法應用,國防組織在發動戰爭時可以加以利用。女士們、先生們,這并不是遙遠未來的某種烏托邦式現實,而是此時此地正在發生的算法戰爭現實的一部分。因此,人工智能應用正以各種方式影響著戰爭的性質,(目前)還不是通過人形終結者營,而是通過在整個 OODA 循環中將人工智能集成到現有應用中。

在戰場上,這已經產生了重大變化,通過更好的態勢感知和理解,以及通過所謂的 "戰斗云 "中壓縮殺傷鏈的分散式指揮網絡縮短決策周期,提高了武裝部隊的戰場效率。

沖突的加速為沿著 OODA 循環進一步整合算法提供了戰略依據,并標志著半人馬團隊的出現,人類仍處于循環中,但與人工智能應用近乎無縫整合。對 Sigint 的算法分析還提高了戰場透明度--無處可藏!- 并要求武裝部隊在有爭議和混亂的環境中開展分散行動。算法還用于無人駕駛飛機的導航和目標捕獲,包括進攻性的(通過閑逛彈藥)和防御性的(綜合防空和導彈防御)。

然而,算法的應用并不局限于戰場,它對核穩定也有相當大的影響。首先,徹底透明化將以各種方式改變核威懾的基本原則。例如,發射系統位置的曝光以及運載工具更高的精確度和機動性將影響威懾動態,并可能引發新的第一次和第二次打擊的不穩定性。此外,與技術變革相關的不確定性正促使人們擴大核武庫,并采用更靈活的核指揮與控制態勢--這些發展目前已在發揮作用。

算法也在開辟新的領域,沖突各方試圖在其中施加影響,包括通過我的同事弗蘭克-霍夫曼(Frank Hoffman)所說的 "認知戰爭"。現在有了經過實戰檢驗的劇本、現成的腳本,還有類似劍橋分析的服務可供雇傭。同樣,這不僅會影響戰爭的戰術層面,也會影響戰爭的戰略層面。想象一下,普京宣布發射核武器的 Deep Fake 會給戰略穩定帶來怎樣的影響,即使管理得當,也會造成怎樣的社會動蕩。重要的是要注意到,我們僅僅處于信息時代的黎明:5G、AR(增強現實)和 VR(虛擬現實)的出現以及 Metaverse 的出現將為沖突參與者帶來大量制造混亂的新機會。

總之,人工智能對戰爭性質和國際穩定的影響已經到來,它是真實存在的,并有望在未來幾年逐步實現。

這催化了倫理和法律領域的變革,并對如何限制和規范此類技術的生產、擴散和使用提出了多層次的重要挑戰。

付費5元查看完整內容

在過去的75年里,蘭德公司進行了支持美國國家安全的研究,目前為聯邦政府管理著四個聯邦資助的研究和發展中心(FFRDCs):一個為國土安全部(DHS),三個為國防部(DoD)。本文將重點評論國防部如何能夠最好地確保人工智能(AI)的進展有利于美國國家安全,而不是降低它。

在一系列廣泛的技術中,人工智能因其進展速度和應用范圍而脫穎而出。人工智能具有廣泛改變整個行業的潛力,包括對我們未來經濟競爭力和國家安全至關重要的行業。由于幾個原因,將人工智能納入我們的國家安全計劃帶來了特殊的挑戰:

  • 這些技術是由商業實體驅動的,而這些商業實體經常在國家安全框架之外。

  • 這些技術正在迅速發展,通常超過了政府內部的政策和組織改革。

  • 對這些技術的評估需要集中在私營部門的專業知識,而這些專業知識很少被用于國家安全。

  • 這些技術缺乏區分良性和惡意使用的常規情報特征。

美國目前是全球人工智能的領導者;然而,這種情況可能會改變,因為中國尋求在2030年前成為世界主要的人工智能創新中心--這是中國人工智能國家戰略的明確目標。此外,中國和俄羅斯都在追求軍事化的人工智能技術,加劇了挑戰。作為回應,將強調美國防部可以采取的四組行動:

1.確保美國防部的網絡安全戰略和網絡紅方活動跟蹤可能影響網絡防御和網絡進攻的人工智能的發展,如網絡武器的自動開發。

2.為防止不良行為者獲得先進的人工智能系統,(1)確保對領先的人工智能芯片和芯片制造設備進行強有力的出口控制,同時許可芯片的良性使用,如果需要的話,可以進行遠程節流;(2)利用國防生產法的授權,要求公司報告大型人工智能計算集群、訓練運行和訓練模型的開發或分發情況;(3) 在美國防部與云計算供應商簽訂的合同中,要求他們在訓練大型人工智能模型之前對所有客戶進行 "了解你的客戶 "篩選;(4) 在美國防部與人工智能開發商簽訂的合同中包括 "了解你的客戶 "篩選,以及強大的網絡安全要求,以防止大型人工智能模型被盜。

3.與情報界合作,大幅擴大收集和分析敵國參與人工智能的關鍵外國公共和私營部門行為者的信息,包括評估關鍵外國公共和私營實體;他們的基礎設施、投資和能力;以及他們的工具、材料和人才供應鏈。通過以下方式加強國防部開展此類活動的機構能力:(1)在美國和盟國政府機構、學術實驗室和工業公司之間建立新的伙伴關系和信息共享協議;(2)招募私營部門的人工智能專家以短期或兼職的方式為政府服務。

4.投資于人工智能安全的潛在計劃,包括(1)嵌入人工智能芯片的微電子控制,以防止開發沒有安全保障的大型人工智能模型,以及(2)在部署人工智能系統之前評估其安全性的通用方法。

付費5元查看完整內容
北京阿比特科技有限公司