亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

第二次世界大戰是人類歷史上最大的全球性悲劇。歷史資料中對此有大量記載,但這些信息分散在不同的組織和國家,以多種語言書寫,并以不同的格式呈現。語義網技術為整合異構分布式歷史信息提供了解決方案。通過整合來自分散來源的信息,就有可能比單獨研究這些來源更深入地了解歷史。

本論文探討了如何利用語義網技術將異構的軍事歷史信息作為關聯數據來表示和建模,重點是描述第二次世界大戰中芬蘭的歷史。論文研究了來自分布式來源的軍事歷史數據的協調和整合,同時還研究了如何在基于網絡的用戶界面上搜索、瀏覽、分析和可視化由此產生的關聯數據。高度關聯的圖表集的維護面臨著新的挑戰,提出了解決這些問題的方案。這些主題都是在構建WarSampo信息系統的背景下進行研究的。

在WarSampo中,關聯數據和基于事件的CIDOC概念參考模型被結合使用,以實現異構軍事歷史數據集的互操作性。事件被用作粘合劑,將來自不同源數據集的信息結合在一起。基于事件的建模可以將國家軍事歷史描述為數據,并通過單個軍事單元和士兵的事件對其進行進一步豐富。WarSampo 語義門戶網站展示了這一理念,該門戶網站由九個不同的視角組成,可從分布式來源整合數據。每個視角都為 WarSampo 知識圖譜的特定部分(如戰爭事件、人物、戰時照片和地點)提供定制的用戶界面。

知識圖譜作為開放數據發布,是全球關聯開放數據云的一部分。所建議的方法和數據模型的實用性超出了本研究的地理和時間范圍。WarSampo 項目背后的愿望是,通過使軍事歷史數據更容易獲取,我們對戰爭現實的理解將得到改善,這也將促進未來的和平。

圖 3.1. 帶有實例數量和類實例之間聯系的核心類

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

復雜傳感器網絡是一套龐大而昂貴的系統、軟件、傳感器和發射器,可生成有助于戰區感知和戰斗識別的數據。多種傳感器網絡配置可收集大量數據,從而導致 "數據豐富、信息貧乏"(DRIP)的無效局面。可操作信息的理想解決方案是協調高價值單元(HVUs),以支持識別和瞄準等行動。目前,對未知信號的及時探測不足以在戰術層面保持對態勢的了解。很少有分析人員具備有效利用現有數據所需的經驗和數據訪問能力。有經驗的分析人員也不夠接近邊緣,無法為戰術和作戰層面的作戰提供支持。將經驗豐富的分析人員的工作流程和過程自動化,并與新的人工智能和建模技術相結合,將能更好、更及時地從數據中提取重要信息,支持更好的態勢感知和戰術決策。對戰斗和目標識別進行分析的動機源于通常需要做出快速、有效和知情決策的巨大壓力。目標識別的目標是分析潛在目標的威脅,以便就與目標交戰做出明智決策。利用這些基于圖形的方法的好處包括:通過自動化工具提高態勢感知能力,提煉出戰術和作戰層面的背景信息。

項目概述

復雜傳感器網絡是一套龐大而昂貴的系統、軟件、傳感器和發射器,可生成有助于戰區感知和戰斗識別的數據。多種傳感器網絡配置可收集大量數據,從而導致 "數據豐富、信息貧乏 "的無效局面。可操作信息的理想解決方案是協調高價值單元,為識別和瞄準等行動提供支持。目前,對未知信號的及時探測不足以在戰術層面保持對態勢的了解。很少有分析人員具備有效使用現有數據所需的經驗和數據訪問能力。而那些有經驗的分析人員也不夠接近戰爭邊緣,無法為戰術和作戰層面提供支持。將經驗豐富的分析人員的工作流程和過程自動化,并與新的人工智能和分析建模技術相結合,將能更好、更及時地從數據中提取重要信息,支持更好的態勢感知和戰術決策。對戰斗和目標識別進行分析的動機源于通常需要做出快速、有效和知情決策的巨大壓力。目標識別的目的是分析潛在目標的威脅,以便就與之交戰做出明智決策。利用這些基于圖形的方法的好處包括:通過自動化工具提高態勢感知能力,提煉出戰術和作戰層面的背景信息。

利用機器學習算法、人工智能、知識圖譜和圖形識別技術,主要結果令人鼓舞:如果我們將預先訓練好的數據集應用于先前加權的神經網絡算法,那么機器學習算法的第一次迭代或歷時的準確率為 20.2%。隨后的迭代會顯示出更顯著的準確率增長,在五個或更多迭代之后,準確率會達到 94.9%。雖然結果顯示準確率很高,但運行深度卷積神經網絡算法的大型數據集需要大量時間,有時需要多個小時才能完成。如果所需信息的時間至關重要,則需要專用的高功率計算。要評估本報告所述方法的實際功效,可能需要進行實際測試。在未來的研究中還可以應用其他方法,例如用目標的基帶調制同相和正交分量代替視覺表示,將其應用到知識圖譜中,可能會提高作戰目標識別的效率和準確性。

研究背景

神經網絡的協同和自組織如何影響復雜網絡傳感器的效率和作戰識別?我們能否通過信息的動態形成形成弱聯系和強聯系以支持新知識?圖機器學習和建模技術(概率圖模型、神經網絡和聚類算法)可應用于射頻(RF)信號數據的知識圖譜。因此,本研究的主要目的是了解自組織和復雜自適應系統是否會產生新的特性,從而更好地探測、識別和分析潛在目標,以便進行戰斗識別。研究假設必須考慮新知識的可信度、不確定性和準確性等關鍵因素。將對收集數據的方法(如時間和位置屬性、關系強度、知識圖譜的精確度和召回率)進行仔細研究。這些指標將與地面真實目標校準信號進行比較,以證明本研究在戰斗識別方面取得的進步。

這與當前有關美國防部行動的研究有重大關聯。將通過適當的艦隊實驗來考慮適當和可行的以數據為中心的方法,從而實現 JADC2 的作戰概念,如 "感知、理解和行動"。戰術態勢感知(TACSIT)、遠征高級基地作戰(EABO)、分布式海上作戰(DMO)和有爭議的環境都是提供交戰決策所需知識的因素。必須在正確的時間、正確的地點提供所需的適當數據,以實現決策優勢。本研究將重點關注利用戰區現有傳感器、參考發射器和多信息協調解決方案(MIOS)架構進行聯合作戰識別。JADC2 概念、數據結構和信息共享格式將是調整的主要參考方案。在美軍方面,基于圖形的技術能夠以一種新的方式來解決高置信度超視距估算問題,以確定任務風險和部隊風險。

在方法論方面,當前的研究利用已知的飛機圖片作為訓練數據集,同時應用機器學習算法。我們的測試使用了 14,806 張經過驗證的圖片,這些圖片被分成一個個小塊,稱為 "類"。研究說明了我們對深度神經網絡的測試結果,因為它們與戰斗識別應用有關。測試使用的 Python 代碼加載了各種分析庫,如 NumPy、Pandas、Seaborn、Efficient Net 和 Tensor Flow Keras。加載了一個包含 14 806 張圖片的大型數據集,該數據集可以隨機分割或拆分為訓練集和測試集。這兩組數據會被進一步分割成更小的數據塊進行處理,例如以 40 張圖片為一批。在訓練和驗證過程中,對準確率和信息損失進行測量。訓練過程在 20 個神經元層上多次重復和迭代。每次迭代或歷時的結果都會反饋到下一輪迭代中。具體來說,權重被保存并用于下一輪迭代。然后使用測試數據集上的最佳迭代結果進行預測。

結果和結論

復雜傳感器網絡是一套龐大而昂貴的系統、軟件、傳感器和發射器,會產生大量數據,如果能對這些數據進行快速有效的分析,就能提供戰斗空間感知和戰斗識別。由于目前的方法不足以在戰術層面保持流暢高效的態勢感知,因此提供可操作信息和及時發現未知信號的高效解決方案意義重大。這項研究考察了使用機器學習和知識圖譜的各種算法,以評估能否提高效率和準確性。研究結果表明,使用圖形文件識別目標是可行的,但要獲得更高的準確度,必須進行多次迭代。例如,如果采用標準的非加權快速算法,運行視覺數據集的準確率為 5.6%。但是,如果使用先前加權的神經網絡來啟動這一過程,第一個迭代的準確率就會達到 20.2%。使用這些初始權重,在隨后的五個epoch后,準確率大幅提高至94.9%。運行大型數據集的主要問題是深度卷積神經網絡的運行時間。一個只有 14,806 張圖片的中等數據集,5 個epochs 可能需要 3 個半小時以上。因此,如果時間要求很高,就需要專用的高功率計算。此外,除了運行時間外,深度神經網絡的局限性還在于需要多次迭代,在迭代過程中,任何低級別的準確度和精確度類類型都需要用更好的圖片來替換。建議下一步可以進行實際測試,以確定本報告所述方法的實際功效。

進一步研究的建議

根據研究結果,建議采取的下一步措施包括使用實際生活中的連續數據流,既包括圖形文件格式,也包括其他類型的識別數據,如使用同相和正交(I&Q)數據,其中數據已預先分配了預檢測和預解調信息。在通信系統中,大多數信號都被基帶調制成同相(I)和正交(Q)子分量。然后通過射頻(RF)頻譜進行傳輸。在另一端,接收器對信號的 I&Q 子分量進行解調,并利用預先訓練的數據對先前確定的戰斗進行識別,從而進一步提高探測的速度、準確性和效率。可以利用知識圖譜和圖形距離誤差測量方法,以一定的概率快速確定目標是敵是友。

付費5元查看完整內容

收集和共享信息以及指揮和控制是所有軍事行動的重要組成部分。建立一個靈活的通信網絡,以適應每次行動的具體要求,是在當前和未來軍事行動中提供必要信息流的關鍵要求之一。目前正在開展一些活動,為固定網絡基礎設施提供靈活的聯盟網絡,并在一定程度上為半移動部署網絡提供靈活的聯盟網絡,例如聯邦任務網絡(FMN)。然而,對于如何部署高效、連接良好的異構戰術無線電網絡,目前還沒有明確的指導方針。這極大地阻礙了低級戰術層面的信息共享。本報告介紹了北約科技組織所做的研究,目的是加深對如何在戰術邊緣構建可互操作的異構移動無線電網絡的理解,并提出一些建議。目的是找到最有效利用不同聯盟伙伴為行動提供的移動網絡的方法。報告涵蓋三大主題:

  1. 描述一個場景并實施一個類似云的測試平臺環境,以評估與該場景相關的不同技術解決方案。該試驗臺是提高信息和通信技術國際研究合作效率的一個示例。場景和試驗臺的作用與技術合作示范(CDT)類似,都是對不同技術進行基于場景的合作分析,但成本比 CDT 低得多。利用仿真技術可以加快從早期研究成果到為標準化測試解決方案所需的時間。建立測試平臺環境的工具和腳本將公開提供。

  2. 描述和分析在不同移動網絡之間提供端到端連接的架構和機制。報告比較了不同的路由架構,并提出了一種混合架構。一個核心觀點是,網絡規劃者需要選擇不同的機制,以便為不同類型的操作提供必要的性能。為了確保不同機制之間的互操作性,我們確定了必要的信息交換接口,并對不同協議的可擴展性進行了研究。我們概述了不同的安全架構,討論了安全架構的選擇對路由架構效率的影響,并提出了一個目標安全架構。

  3. 對稀缺網絡資源進行最佳優先排序和利用的準則和機制。建議監測網絡健康的三種狀態(正常、減少、最后努力),以改善網絡的資源管理(RM)和服務質量(QoS)。不同的網絡狀態需要一套或多套機制。我們還建議選擇單一網絡層來實施 QoS 或 RM 機制,因為這樣可以降低不同層的機制不合作而降低性能的風險。要使 RM 和 QoS 運行良好,必須有一個信息價值(VoI)的概念。VoI 會隨時間發生變化,RM/QoS 需要適應這些變化。

更好地了解在戰術邊緣建立移動異構聯盟網絡時所面臨的挑戰,這將有助于北約國家發展/采購具有互操作性的網絡設備。成果非常及時。預計從螺旋 4 開始,FMN 將開始包括移動戰術網絡的不同方面。結果將成為相關 FMN 的重要投入。

重點關注可部署和移動戰術領域的異構網絡

圖 2 展示了依賴于這些網絡的軍事場景概覽。創建該場景是為了顯示行動期間的信息需求,并舉例說明在異構網絡中建立必要服務所面臨的挑戰。

該場景描述的是一個機械化營的連級特遣部隊和一個海軍特遣艦隊開展的行動。它們是由聯軍總部協調的軍事特遣隊 (MC) 的一部分。連隊通信和信息系統 (CIS) 與國家作戰廣域網相連,并可訪問聯軍系統。MC 總部在行動期間發揮后援作用,并應要求提供戰斗支援(CS)和戰勤支援(CSS)。根據行動背景,假定敵軍正準備從位于圖 2 右下角行動區內的村莊向聯軍基地發動復雜的攻擊。敵軍裝備精良,活動區域可能埋有地雷,因此有可能出現簡易爆炸裝置(IED)危險。己方部隊的任務是進入作戰區域,消滅叛亂分子并銷毀他們收集的武器裝備。避免村莊居民傷亡并使叛亂分子無法逃脫是非常重要的。這一任務中最重要的因素是由聯軍提供的獨聯體、后勤和醫療支持。因此,需要有運作良好的通信能力來幫助組織武裝部隊。

完成這項任務需要使用各種系統和通信網絡,如無線電通信系統(高頻、甚高頻、超高頻、衛星通信)、傳感器網絡和無人機系統。海軍管理系統也已到位,用于支持任務的偵察和監視,并提供數據、語音和視頻等服務。

為實施場景中的行動,確定了三個小故事。每個小故事的角色和參與者都相同。第一個小場景涉及戰場的情報準備工作。第二個小場景包括聯軍進入作戰區,包括在周邊沿海地區開展海上攔截行動。第三個小故事包括一次城市行動,結果是消滅了叛亂分子。第三個小故事還包括在解除簡易爆炸裝置后向軍艦進行的醫療后送。每個小故事都提出了行動者和 C4IS(指揮、控制、通信和計算機信息系統)設備之間預期交換的數據,強調了軍事異構網絡的連接性和網絡效率問題。

付費5元查看完整內容

軍事創新過程在戰時和平時具有不同的特點。戰時創新有戰場的直接反饋。和平時期的創新必須考慮到各種可能的未來,同時還要面對信息不完善所帶來的不確定性。軍事創新研究表明,實驗為克服這一挑戰提供了工具。現有的學術研究將實驗描述為一個迭代學習的過程,它能產生關于未來戰爭的新數據,并引用了美國航母戰和德國聯合武器演習等歷史實例。

本文認為,要理解實驗如何支持和平時期的創新,這種觀點并不全面。與其說實驗揭示了未來戰爭的本質,倒不如說實驗作為一種建立共識的工具最具價值。和平時期的軍事實驗是一個社會過程,在這一過程中,組織、團體和行動者影響著國防政策子系統內的意識形態競爭。社會過程包括構建知識,并就 "什么是真實的 "和 "什么是有效的 "達成共識。在戰爭期間,這一過程是通過戰場上的共同經驗實現的。在和平時期,這一過程發生在實驗過程中。軍事實驗需要高層領導的支持,但僅靠支持并不能在關鍵群體中達成足夠的共識。為了提高實驗向創新過程的實施階段過渡的可能性,國防政策制定者利用宣傳網絡(由國防政策制定者和政策影響者組成的松散聯盟)在整個國防政策子系統中建立共識。

本論文在三個案例研究中考察了這些論點:20 世紀 80 年代陸軍的摩托化概念實驗、20 世紀 90 年代陸軍的新路易斯安那演習和二十一世紀部隊實驗,以及 20 世紀 90 年代末和 21 世紀初聯合部隊司令部的聯合實驗。就國防政策而言,本文的研究結果表明,國防決策者應集中精力擴大宣傳網絡,將實驗與更廣泛的國防政策子系統聯系起來,以最大限度地發揮實驗的作用。此外,實驗還要求領導者在思想上與新理念保持一致,能夠傳達新理念的價值,擁有可靠的實戰經驗,并參與到宣傳網絡中,將實驗與關鍵群體聯系起來。最后,有效的實驗要求領導者在其職業生涯的早期經常接受必要的教育和體驗。

軍事創新過程

付費5元查看完整內容

美國的各種經濟、社會和公民活動都依賴于網絡計算機。然而,網絡空間也為潛在對手提供了克服美國常規軍事力量壓倒性優勢的途徑。網絡空間的引入模糊了戰場的邊緣,使對手可以使用易于采購的設備,從任何地方攻擊商業或政府目標。這給戰爭各個層面(戰略、戰役和戰術)的許多傳統軍事概念帶來了挑戰。

本論文針對其中三個挑戰進行研究并提出解決方案。

在戰略層面,美國國防部已宣布網絡空間為作戰領域。網絡空間的超高速、多變和無所不在的特性使其與傳統領域有著本質區別。在問題、創新和戰略方面,戰略思想家們固守著過去的意識形態傳統。因此,在將過去的信條和術語強加給新領域之前,需要對這些遺產進行研究,看看它們是否相關以及相關程度如何。本論文推翻了以往與網絡空間有關的意識形態模式,確保使用正確的術語和框架,讓國防部更好地了解網絡如何融入戰爭領域。

在戰役層面,美國國防部嚴重依賴網絡技術在全球范圍內高效執行任務。這種依賴性使國家面臨關鍵信息資源失去保密性、完整性和可用性的風險,降低了完成任務的能力。我將介紹在網絡空間建立態勢感知的行動框架。使用該框架將為國家領導層提供及時、準確的信息,以了解作戰網絡環境,從而幫助各級決策。國防部已經開始將這一框架整合到行動態勢感知工具中。

在戰術層面,在使用社交媒體方面,軍事用戶的個人需求與軍事行動安全之間的矛盾日益突出。與每個人一樣,軍人也會發布看似瑣碎的信息和圖片,而這些信息和圖片可能會被對手匯總和擴充,以確定可能的情報目標。我調查了國防部社交媒體政策的現狀,使用自動化方法確定美軍成員提供的公開信息量,通過內容分析對其進行分析,應用機器學習技術,最后對每個人的脆弱性進行排序。總共發現了 1168 個潛在情報目標,其中 223 個被確定為易受攻擊。最重要的是,證明了自動化方法可以有效地發現對手容易瞄準的人員。

圖 3.1: 各類信息的交叉點需要持續評估,以提供網絡態勢感知并促成關鍵行動和決策

付費5元查看完整內容

本論文研究了 20 世紀 50 年代和 60 年代為美國空軍設計和開發的指揮與控制系統中人類操作員所扮演的角色。從國防研究的角度來理解,指揮與控制涉及高效捕捉和管理戰場信息,以實現特定的軍事戰略。盡管數字計算機在當時仍然是軍事-工業-大學研究網絡的高度無常的對象,但卻被反復提議作為一項關鍵技術,以實現對戰場更大、更精確的控制。

本文了通過對兩套指揮與控制系統的分析,探討了人類操作員所占據的話語領地,之所以選擇這兩套系統,是因為它們在使用數字計算機將以往手工操作的軍事實踐自動化方面具有重要意義。首先,研究了 20 世紀 50 年代末部署的 SAGE 系統為空軍機組人員制定的操作原則,并在蘭德公司(RAND Corporation)心理學家領導的一系列壓力心理研究中對這些原則進行了詳細闡述。在蘇聯沒有實際入侵的情況下,SAGE 機組人員進行了模擬空戰,同時對其集體表現的有效性進行了系統量化。第二個案例研究是美國空軍的 "反滲透 "計劃,該計劃針對北越陸軍向南越運送物資的車隊路線進行轟炸。將重點放在照片譯員和系統分析員在收集和核實用于確認所謂 "車輛活動 "和 "卡車擊斃 "的數據方面所扮演的角色。

在冷戰技術政治史中,這兩個案例研究經常被作為定量計算理性應用于軍事戰略規劃和實施的典范。然而,盡管這些文獻廣泛討論了數字計算機在這些系統的部分自動化中發揮的核心作用,但人類操作員在這些系統的日常運作中顯然仍發揮著重要作用,盡管看似次要。

本文對這些案例研究的討論是基于對 "灰色媒體"--美國軍方及其國防研究承包商等官僚機構內部產生的技術和行政文書--的細致文本分析。強調了灰色媒體對特定作戰實踐的結構化和標準化所產生的影響,以及它是如何劃分人類操作員和機器在戰場信息生產中所扮演的角色的。

根據福柯對權力的理解,本文認為人類操作員在對計算機生成的信息進行編碼和認證方面發揮了重要作用。這包括以機器可讀的形式對數據進行定期重組,以及對系統的戰略效果進行量化的長期任務。這些計算機化系統不僅提高了信息處理的效率,而且還被卷入了一個龐大而矛盾的 "實踐體系 "中,在這個體系中,手工作業大量增加。本文認為,為了充分理解數字化、網絡化技術如何重塑了戰爭的可能性領域,強調人類操作者所扮演的灰色、隱性角色至關重要。

付費5元查看完整內容

隨著大數據的興起,信息的傳播速度也在不斷加快。速度將影響基于信息的決策。問題是,信息速度、連續性和真實性的提高是否有助于提高組織中決策者的決策質量。這種決策質量可以通過解決智能體在決策過程中對速度和準確性的權衡來解決。為了了解信息速度對決策質量的影響,本研究探討了速度對速度-準確性權衡的影響。本研究在決策過程中分析了這種權衡的背景。

現有工作

關于大數據的興起及其對組織決策過程的影響,目前已有相關研究。這些研究從所有四個方面對大數據進行了描述:數量、速度、種類和真實性;不過,有關速度對這些過程的具體影響的研究尚未問世。本研究有助于理解信息速度的概念以及這種速度對決策過程的影響。我們將通過描述信息速度對速度和準確性之間權衡的影響來探討這一問題。有關速度、速度-準確性權衡和決策過程的現有文獻為本研究提供了方向。

研究方法

為了探討信息對速度和準確性之間權衡的影響,本研究采用了基礎理論方法,在現有文獻和收集的數據之間反復推敲,以構建有關信息速度對速度-準確性權衡影響的理論。

我們在 Da Silveira 和 Slack(2001 年)的模型基礎上建立了一個模型,以解決速度對如何在速度和準確性之間進行權衡的影響問題。該模型經過調整,適用于智能體的行為影響過程中的權衡的情況。通過使用該模型,可以確定流程中的下一個因素:必要條件、一個目標給另一個目標帶來的變化、能力的有效性以及智能體如何平衡權衡的選擇。為了確定這些因素,采用了實證研究來解決這一問題,因為智能體的選擇是可以觀察和質疑的。實證研究是在一個案例研究中進行的:荷蘭國防部組織內的一個情報流程。實證研究采用了兩種方法:人種學觀察和訪談。訪談用于了解智能體所感知到的取舍,并深入了解導致這些取舍的因素。在人種學研究過程中,發現智能體在速度和準確性之間的實際權衡。數據收集過程的結果被整合到一個模型中,以解決信息速度對速度和準確性之間權衡的影響。

結論

通過實證研究方法收集的數據,我們構建了一個關于速度和準確性之間權衡影響的模型,如圖 S.1 所示。

圖 S.1: 信息速度對速度-準確性權衡的影響模型

該模型是通過分析在進行實證研究的背景下收集的數據構建的。這種環境受到以下背景因素的影響:所有接收到的信息都應進行分析的規則、交付結果的明確截止日期、流程中特定智能體的特定任務以及主要通過報告共享信息。

信息速度的影響既有消極影響,也有積極影響。積極影響包括信息可用性的提高,盡管這種影響只有在沒有信息進行分析過程時才會顯現。負面影響包括信息的可理解性降低,從而降低分析能力、速度和準確性。另外,當最后期限固定時,高信息速度導致的工作量增加要求智能體具有更高的速度水平。這種效應會導致結果的準確性降低,而在決策可能對人的生命造成高風險的情況下,這種結果往往是不可取的。

雖然速度提高后信息流動速度會加快,但如果不對當前決策過程的組織結構進行調整,決策過程的速度就不可能提高。而且,在特定情況下,當信息速度提高時,決策所依據的信息的準確性也可能降低。速度可以通過提高信息可用性為決策過程帶來機遇,但為了應對速度帶來的負面影響,應改變決策過程的組織結構。

下一步工作

在這項研究中,我們發現了信息速度對速度-準確性權衡的影響。這項研究是在特定背景下進行的,研究人員的主觀性影響了所構建的結果。為驗證研究結果,應在不同組織內,由多名研究人員和受訪者通過訪談和人種學研究開展更多實證研究。此外,基于 Da Silveira 和 Slack 模型開發的模型也應得到驗證,以適合解決智能體如何在目標之間進行權衡的問題。

付費5元查看完整內容

人工智能解決方案在陸軍野戰應用中的使用將在很大程度上依賴于機器學習(ML)算法。當前的ML算法需要大量與任務相關的訓練數據,以使其在目標和活動識別以及高級決策等任務中表現出色。戰場數據源可能是異構的,包含多種傳感模式。目前用于訓練ML方法的開源數據集在內容和傳感模式方面都不能充分反映陸軍感興趣的場景和情況。目前正在推動使用合成數據來彌補與未來軍事多域作戰相關的真實世界訓練數據的不足。然而,目前還沒有系統的合成數據生成方法,能夠在一定程度上保證在此類數據上訓練的ML技術能夠改善真實世界的性能。與人工生成人類認為逼真的語音或圖像相比,本文為ML生成有效合成數據提出了更深層次的問題。

1 引言

人工智能(AI)是美國國防現代化的優先事項。美國國防部的人工智能戰略指示該部門加快采用人工智能并創建一支適合時代的部隊。因此,它自然也是陸軍現代化的優先事項。從陸軍多域作戰(MDO)的角度來看,人工智能是解決問題的重要因素,而MDO是建立在與對手交戰的分層對峙基礎上的。雖然人工智能本身沒有一個簡明和普遍接受的定義,但國防部人工智能戰略文件將其稱為 "機器執行通常需要人類智能的任務的能力--例如,識別模式、從經驗中學習、得出結論、進行預測或采取行動--無論是以數字方式還是作為自主物理系統背后的智能軟件"。這句話的意思是,當機器在沒有人類幫助的情況下獨立完成這些任務時,它就表現出了智能。過去十年中出現的人工智能解決方案的一個重要方面是,它們絕大多數都符合模式識別模式;在大多數情況下,它們根據經過訓練的人工神經網絡(ANN)對相同輸入數據的輸出結果,將輸入數據分配到數據類別中。具體來說,深度學習神經網絡(DNN)由多層人工神經元和連接權重組成,最初在已知類別的大量數據上進行訓練以確定權重,然后用于對應用中的實際輸入數據進行分類。因此,機器學習(ML),即自動機(這里指DNN)在訓練階段學習模式的過程,一直是一個主導主題。事實上,DNN在計算機視覺領域的成功是商業和政府部門加大對人工智能關注和投資的原因。訓練算法和軟件開發工具(如tensorflow)的進步、圖形處理器(GPU)等計算能力的可用性,以及通過社交媒體等途徑獲取大量數據,使得深度學習模型在許多應用中得到了快速探索。

在監督學習中,人類專家創建一組樣本來訓練ML算法,訓練數據與實際應用數據的接近程度對人工智能方法的性能起著重要作用。將ML模型應用于軍事問題的主要瓶頸是缺乏足夠數量的代表性數據來訓練這些模型。有人提出使用合成數據作為一種變通辦法。合成數據集具有某些優勢:

  • 它們帶有準確的地面實況。
  • 使用現成的模擬產品可輕松生成大量各種類型的數據。
  • 它們在程序上的障礙較少,例如,生物識別數據需要獲得機構審查委員會的許可。

然而,最關鍵的問題是在合成數據或混合合成和真實數據上訓練ML模型是否能使這些模型在真實數據上表現良好。美國陸軍作戰能力發展司令部陸軍研究實驗室的研究人員和合作者使用合成生成的人類視頻進行機器人手勢識別所獲得的初步結果表明,在合成數據和真實數據混合的基礎上進行訓練可以提高ML手勢識別器的性能。然而,并沒有普遍或分類的結果表明,當全部或部分使用合成數據進行訓練時,真實世界的ML性能會得到一致的提高。因此,有必要進行系統調查,以確定使用合成數據訓練ML方法的可信度。我們有理由假設,合成數據在提高ML性能方面的有效性將受到實際應用領域、合成數據與真實數據的保真度、訓練機制以及ML方法本身等因素的影響。合成數據與真實數據的保真度反過來又取決于數據合成方法,并提出了通過適當指標評估保真度的問題。以圖像為例,合成數據訓練的ML方法的性能與人類視覺感知的真實場景的保真度是否成正比并不清楚。有可能數據的一些關鍵特征對于ML的性能比那些影響人類感知的特征更為重要。組織這次陸軍科學規劃和戰略會議(ASPSM)的一個主要目的是讓合成數據生成、人工智能和機器學習(AI & ML)以及人類感知方面的頂尖學術界和國防部專家討論這些問題。會議的技術重點主要是圖像和視頻數據,反映了組織者在計算機視覺和場景感知方面的任務領域。

2 組織

根據上一節提出的問題,會議圍繞三個主題展開:

1.人類的學習和概括: 人類可以從最小的抽象和描述概括到復雜的對象。例如,在許多情況下,觀察一個物體的卡通圖像或線描,就足以讓人類在真實場景中識別出實際的三維物體,盡管后者比卡通圖像或線描具有更復雜的屬性。 這遠遠超出了當前人工智能和ML系統的能力。如果能夠開發出這種能力,將大大減輕數據合成機器的負擔,確保真實數據的所有屬性都嚴格保真。這個例子也說明了一個事實,即用于訓練ML模型的合成數據生成研究與提高ML模型本身的能力密切相關。因此,這項研究的重點是探索人類和動物的學習,以啟發ML和數據合成的新方法。

2.數據合成方法和驗證: 大多數應用ML方法的領域都有針對其領域的數據合成技術和工具。游戲平臺提供了一個流行的視頻合成商業范例。問題是如何評估特定領域中不同合成方法的性能。顯然,我們必須確定執行此類評估的指標或標準。通常情況下,合成工具的作者也會就工具的性能或功效發表聲明。驗證將是評估此類聲明的過程。本研究的目的是探討指導合成和驗證過程的原則。合成技術的例子包括基于計算機圖形的渲染器(如電影中使用的)、基于物理的模擬(如紅外圖像)和生成模型(目前傾向于基于神經網絡)。

3.領域適應挑戰: ML中的領域適應是指使用一個領域(稱為源領域)的數據訓練ML模型,然后將ML應用于不同但相關領域(稱為目標領域)的數據。例如,使用主要為民用車輛的源圖像數據集訓練識別車輛的ML算法,然后使用訓練好的算法識別主要為軍用車輛的目標數據集中的車輛。在使用合成數據進行訓練時,它們通常構成源域,而實際應用數據則是目標域。本次會議的重點是確定和討論有效領域適應中的關鍵問題和挑戰。

ASPSM的審議分四次會議進行。第一天的兩場會議討論了前兩個主題。第二天的第一場會議討論第三個主題,第二場會議在三個主題下進行分組討論。ASPSM兩天的日程安排分別如圖1和圖2所示。從圖中可以看出,每個主題會議首先由該領域的學術專家進行40分鐘的主講,然后由大學專家進行兩個20分鐘的講座。隨后由來自學術界和國防部的專家組成的小組進行討論。最后一個環節是分組討論,與會者可以討論與主題相關的各個方面。

3 口頭報告和小組討論

麻省理工學院電子工程與計算機科學系的Antonio Torralba教授在第一分會場發表了關于人類學習與泛化的主題演講。他的演講題目是 "從視覺、觸覺和聽覺中學習",深入探討了深度學習方法如何在不使用大量標注訓練數據的情況下發現有意義的場景表征。舉例說明了他們的DNN如何在視覺場景和環境中的聲音之間建立聯系。讀者可參閱Aytar等人關于這一主題的代表性文章。

同樣來自麻省理工學院的James DiCarlo博士的下一個演講題目是 "視覺智能逆向工程"。他將 "逆向工程 "定義為根據對行為的觀察和對輸入的反應推斷大腦的內部過程,將 "正向工程 "定義為創建ANN模型,以便在相同輸入的情況下產生相應的行為。他的研究小組的一個目標是建立神經認知任務的性能基準,人類或其他靈長類動物以及ML模型可以同時達到這些基準。他的演講展示了大腦處理模型如何適應ANN實現的初步結果,并提出了ANN通過結合這些適應密切模擬人類行為,進而準確描述大腦功能的理由。

第一場會議的第三場講座由加州大學伯克利分校的Jitendra Malik教授主講,題為 "圖靈的嬰兒"。這個題目也許是指最早的電子存儲程序計算機之一,綽號 "寶貝",其創造者之一受到了阿蘭-圖靈的啟發。馬利克教授首先引用了圖靈的觀點:與其創建一個模擬成人思維的程序,不如從模擬兒童思維開始。從本質上講,這意味著創造一種人工智能,通過與環境互動以及向其他人工智能和人類學習來學習和成長。這被稱為具身機器智能。馬利克教授認為,監督學習本質上是處理靜態數據集,因此顯示了在精心策劃的時間點上運行的非實體智能。具體而言,他認為監督訓練方法不適合創建能夠提供人類水平的世界理解,特別是人類行為理解的人工智能。Malik教授介紹了 "Habitat",這是一個由他和他的合作者開發的平臺,用于嵌入式人工智能的研究。在隨后的小組討論中,與會人員討論了演講者所涉及的主題,以及與機器人學習和當前兒童智力發展模型相關的主題。

第二部分“數據合成:方法和驗證”以一個題為“學習生成還是生成學習?”,作者是斯坦福大學的Leonidas gu教授。在研究用于訓練ML的合成數據生成的動機中,他指出可以減輕大量人工注釋訓練數據的負擔。他的前提是,無論合成數據是用于訓練ML還是供人類使用,其生成效率和真實性都非常重要。不過,他表示其他質量指標還沒有得到很好的定義,需要進一步研究。他舉例說明了在混合合成數據和真實數據上訓練ML時,ML的物體識別性能有所提高,但他也承認很難得出可推廣的結論。

卡內基梅隆大學的Jessica Hodgins博士發表了第二場會議的第二個演講,題為 "生成和使用合成數據進行訓練"。演講展示了她的研究小組生成的精細合成場景。利用從真實場景到合成場景的風格轉移過程,她的研究小組創造了一些實例,說明在混合了大量風格適應的合成數據和一些真實數據的基礎上進行訓練的ML方法的性能優于僅在真實數據集或僅在合成數據集上進行訓練的方法。性能提高的原因在于風格轉移克服了合成數據集與真實數據集之間的 "分布差距"。

第二場會議的最后一場講座由加州大學伯克利分校的Trevor Darrell教授主講。他的演講題為 "生成、增強和調整復雜場景",分為三個部分。第一部分詳細介紹了演講者及其核心研究人員開發的一種名為 "語義瓶頸場景生成 "的技術,用于根據地面實況標簽合成場景。該技術可進一步與通過生成過程生成此類地面標簽的模型相結合。Azadi等人對該技術進行了詳細描述。 第二部分涉及增強和自我監督學習。發言人提出,當前的對比學習方法在合成增強數據時建立了不變量,而這些不變量可能是有益的,也可能是無益的。例如,建立旋轉不變性可能有利于識別場景中的花朵,但可能會阻礙對特定方向物體的有效識別。演講者介紹了他的研究小組考慮具有特定不變性的多種學習路徑的方法,并展示了與現有技術相比性能有所提高的結果。 第三部分介紹了一種名為 "Tent"(測試熵)的技術。其前提是DNN應用過程中遇到的數據分布可能與訓練數據不同,從而導致性能下降。因此,需要對DNN參數進行實時或測試時調整,以防止性能下降。Tent技術通過調整權重使DNN輸出的測量熵最小化來實現這一目標。演講者隨后用常用數據集展示了該技術相對于先前方法的改進性能。隨后的小組討論涉及合成方面的挑戰,尤其是紅外圖像方面的挑戰。

第二天的第三場會議以 "領域轉移的挑戰 "開始。約翰霍普金斯大學布隆伯格特聘教授Rama Chellappa博士發表了題為 "解決美國防部實際問題的綜合數據期望與最大化"的演講。演講首先回顧了過去二十年來國防部處理合成圖像的多個項目的歷史。他提出了一個重要論斷,即如果在合成過程中考慮到真實數據的物理特性,那么真實數據和合成數據之間的領域轉換就會減少。Chellappa教授還就領域自適應表示法提供了快速教程,涵蓋了正規數學方法以及較新的生成對抗網絡(GANs)。演講者及其核心研究人員開發的基于GAN的方法可以修改合成數據的分布,使之與目標分布相匹配。講座舉例說明了這種方法優于之前的非GAN方法。

佐治亞理工學院的Judy Hoffman教授發表了題為 "從多個數據源進行泛化的挑戰 "的演講。她考慮的問題是在模擬中學習模型,然后將模型應用于現實世界。她指出了四個挑戰: 生成、列舉、泛化和適應。發言人介紹了應對這些挑戰的幾種不同方法。具體來說,用于泛化的特定領域掩碼(DMG)方法通過平衡特定領域和領域不變特征表征來生成一個能夠提供有效領域泛化的單一模型,從而解決多源領域學習問題。

第三場會議的第三位也是最后一位演講者是波士頓大學的Kate Saenko教授,他的演講題目是 "圖像分類和分割的Sim2Real領域轉移的最新進展和挑戰"。Saenko教授延續了前兩場講座的主題,介紹了視覺領域適應的歷史,并探討了領域和數據集偏差問題。在糾正數據集偏差的不同方法中,講座詳細討論了領域適應。特別重要的是,Saenko教授及其合作者開發的技術能夠顯示合成到真實的適應性,就像從游戲引擎到真實數據一樣。隨后的小組討論提出了幾個有趣的問題,包括訓練域和測試域的不同,不是感興趣的對象不同,而是對象所處的環境不同,例如訓練時軍用車輛在沙漠環境中,而測試時則在熱帶植被背景中。

4 分組討論

三個主題的分組討論同時進行。在 "人類學習與泛化 "分組討論中,首先討論了 "人類如何學習?"、"ML模型如何模仿人類過程?"以及 "合成數據如何實現這些過程?"等問題。從童年到青春期和成年期,學習和成長之間的關系成為關鍵點。其他被認為有助于人類學習的因素包括人類心理、情感、同時參與多維活動、記憶以及解除學習的能力。

關于 "數據綜合: 方法與驗證 "分論壇確定了數據合成的幾個問題,特別是圖像和視頻。主要問題涉及結合物理學的有用性、視覺外觀保真度與成本之間的權衡、保真度的衡量標準、保真度本身的重要性以及當前技術(包括GANs技術)的局限性。據觀察,合成圖像和視頻生成至少已有幾十年的歷史,但大多數產品要么是為視覺效果而設計,要么是為再現物理測量而設計(例如,紅外模擬中的輻射剖面)。它們并不適合用于ML培訓。提出的另一個問題是,合成的二維圖像必須與物體和環境的底層三維幾何圖形保持一致。還有人提出,能夠在特定的感興趣的環境中生成大量合成數據,可以作為第一道工序測試新的人工智能和ML方法,而不管這些方法是否能夠在真實數據中很好地工作。

專題3 "領域轉移挑戰 "的分組討論確定了MDO所需的關鍵人工智能能力,即從孤立學習到機器與人類之間的聯合或協作學習。會議還討論了在多種數據模式下同時訓練ML的聯合學習。人們認識到,這些領域的工作才剛剛開始。分組討論的牽頭人強調,需要向士兵明確說明基于人工智能的系統在特定情況下將會做什么。這引發了對系統魯棒性的討論。分組組長向ASPSM聽眾提供了討論摘要。

5 差距和建議

根據本次ASPSM的討論,我們確定了以下值得陸軍進一步進行科技投資的領域:

1.支持多模式互動學習的合成技術和數據集。與當前流行的捕捉 "時間瞬間 "的靜態數據集(如農村環境中的車輛圖像)相比,有必要開發更能代表支持持續學習的體現性體驗的模擬器,就像我們在人類身上看到的那樣,并實現對世界更豐富的表征。混合方法(如增強現實)也可將人類監督的優勢與合成環境的靈活性結合起來。

2.學習和合成因果關系和層次關系的算法和架構。最近的一些方法,如基于圖的卷積神經網絡,已經在學習空間和時間的層次關系(如物體-部件和因果關系)方面顯示出前景。鑒于在現實世界中收集和注釋此類數據的復雜性,合成數據的生成可能特別有用。識別層次關系是一般國防部和戰場情報分析的關鍵要素。

3.支持持續、增量、多模態學習的算法和架構。深度強化學習方法被成功地用于訓練虛擬或機器人代理的相關行動策略,如捕食者與獵物之間的相互作用。基于模仿的方法承認學習的社會性,通常讓代理與(通常是人類)教師合作學習新策略。這些類型的交互式持續學習可進一步與多模態學習(即融合來自多個傳感器的數據)相結合,以實現更豐富的世界表征,使其更穩健、更具通用性。同樣,在這一領域難以獲得大量經過整理的數據,這也為探索合成引擎提供了動力。

4.學習物理或具備相關物理領域知識的算法和架構。在許多領域(例如紅外光下的物體感知),從圖像感知和合成圖像需要了解世界的基本物理特性,例如光與材料之間的相互作用。然而,當前的深度學習模型缺乏這種物理知識。開發賦予ML物理領域知識的技術對這些系統的性能至關重要。

5.具有豐富中間表征的領域適應技術。為了縮小真實數據和合成數據之間的領域差距,必須進一步推動當前建立領域不變中間表征的趨勢,特別是使用語義詞典和生成式對抗網絡。能夠理解數據底層結構(如光照、旋轉、顏色)的表征更有可能成功抽象出合成數據中不重要的細節。

6.深入了解ML模型內部表征的方法,以及合成表征與真實表征的比較。網絡剖析技術 "打開 "了深度學習模型的隱藏層,允許解釋網絡中的每個階段正在學習哪些特定概念或其更細的方面。這些技術揭示了具有真實輸入和合成輸入的DNN的內部表征,有助于識別所學內容的關鍵差異,從而找到克服這些差異的解決方案。

6 結論

為期兩天的虛擬ASPSM吸引了眾多美國防部科學家和工程師、頂尖學術專家以及科技項目管理人員的熱情參與。多學科的討論強化了這樣一種觀點,即開發用于訓練ML方法的生成合成數據的改進方法與理解和改進ML方法本身是分不開的。一個特別重要的需求是了解ML方法,尤其是當前的學習架構,是如何創建場景的內部表示的。另外兩個重要領域是:1)理解人類學習與ML世界中可能存在的學習之間的異同;2)多模態數據--從合成和ML的角度。我們預計近期國防部和學術研究人員將在本報告確定的領域加強合作。

付費5元查看完整內容

長期目標

在決策或推理網絡中進行適當的推理,需要指揮官(融合中心)對每個下屬的輸入賦予相對權重。最近的工作解決了在復雜網絡中估計智能體行為的問題,其中社會網絡是一個突出的例子。這些工作在各種指揮和控制領域具有相當大的實際意義。然而,這些工作可能受限于理想化假設:指揮官(融合中心)擁有所有下屬歷史全部信息,并且可以假設這些歷史信息之間具有條件統計獨立性。在擬議的項目中,我們打算探索更普遍的情況:依賴性傳感器、(可能的)依賴性的未知結構、缺失的數據和下屬身份被掩蓋/摻雜/完全缺失。對于這樣的動態融合推理問題,我們建議在一些方向上擴展成果:探索數據源之間的依賴性(物理接近或 "群體思維"),在推理任務和量化不一定匹配的情況下,采用有用的通信策略,甚至在每個測量源的身份未知的情況下,采用無標簽的方式--這是數據關聯問題的一種形式。

我們還認識到,對動態情況的推斷是關鍵目標所在。考慮到一個涉及測量和物理 "目標 "的傳統框架,這是一個熟悉的跟蹤問題。但是,來自目標跟蹤和多傳感器數據關聯的技術能否應用于提取非物理狀態(物理狀態如雷達觀察到的飛機)?一個例子可能是恐怖主義威脅或作戰計劃--這些都是通過情報報告和遙測等測量手段從多個來源觀察到的,甚至可能被認為包含了新聞或金融交易等民用來源。這些都不是標準數據,這里所關注的動態系統也不是通常的運動學系統。盡管如此,我們注意到與傳統的目標追蹤有很多共同點(因此也有機會應用成熟的和新興的工具):可能有多個 "目標",有雜波,有可以通過統計學建模的行為。對于這種動態系統的融合推理,我們的目標是提取不尋常的動態模式,這些模式正在演變,值得密切關注。我們特別建議通過將雜波建模為類似活動的豐富集合,并將現代多傳感器數據關聯技術應用于這項任務,來提取特征(身份)信息。

目標

研究的重點是在具有融合觀測的動態系統中進行可靠推理。

方法

1.決策人身份不明。在作戰情況下,融合中心(指揮官)很可能從下屬那里收到無序的傳感器報告:他們的身份可能是混合的,甚至完全沒有。這種情況在 "大數據 "應用中可能是一個問題,在這種情況下,數據血統可能會丟失或由于存儲的原因被丟棄。前一種情況對任務1提出了一個有趣的轉折:身份信息有很強的先驗性,但必須推斷出身份錯誤的位置;建議使用EM算法。然而,這可能會使所有的身份信息都丟。在這種情況下,提出了類型的方法來完成對局部(無標簽)信念水平和正在進行的最佳決策的聯合推斷。

2.動態系統融合推理的操作點。在以前的支持下,我們已經探索了動態事件的提取:我們已經開發了一個合理的隱馬爾科夫模型,學會了提取(身份)特征,有一個多伯努利過濾器啟發的提取方法 - 甚至提供了一些理論分析。作為擬議工作的一部分,將以兩種方式進行擴展。首先,打算將測量結果作為一個融合的數據流,這些數據來自必須被估計的未知可信度的來源。第二,每個這樣的信息源必須被假定為雜亂無章的 "環境 "事件(如一個家庭去度假的財務和旅行足跡),這些事件雖然是良性的,可能也不復雜,但卻是動態的,在某種意義上與所尋求的威脅類似。這些必須被建模(從數據中)和抑制(由多目標追蹤器)。

3.數據融合中的身份不確定性。當數據要從多個來源融合時,當這些數據指的是多個真相對象時,一個關鍵的問題是要確定一個傳感器的哪些數據與另一個傳感器的哪些數據相匹配:"數據關聯 "問題。實際上,這種融合的手段--甚至關聯過程的好方法--都是相當知名的。缺少的是對所做關聯的質量的理解。我們試圖提供這一點,并且我們打算探索傳感器偏差和定位的影響。

4.具有極端通信約束的傳感器網絡。考慮由位置未知、位置受漂移和擴散影響的傳感器網絡進行推理--一個泊松場。此外,假設在這樣的網絡中,傳感器雖然知道自己的身份和其他相關的數據,但為了保護帶寬,選擇不向融合中心傳輸這些數據。可以做什么?又會失去什么?我們研究這些問題,以及評估身份與觀察的作用(在信息論意義上)。也就是說,假設對兩個帶寬相等的網絡進行比較;一個有n個傳感器,只傳輸觀察;另一個有n/2個傳感器,同時傳輸數據和身份。哪一個更合適,什么時候更合適?

5.追蹤COVID-19的流行病狀況。誠然,流行病學并不在擬議研究的直接范圍內,但考慮到所代表的技能以及在目前的健康緊急情況下對這些技能的迫切需要,投機取巧似乎是合理的。通過美國和意大利研究人員組成的聯合小組,我們已經證明,我們可以從當局提供的每日--可能是不確定的--公開信息中可靠地估計和預測感染的演變,例如,每日感染者和康復者的數量。當應用于意大利倫巴第地區和美國的真實數據時,所提出的方法能夠估計感染和恢復參數,并能很準確地跟蹤和預測流行病學曲線。我們目前正在將我們的方法擴展到數據分割、變化檢測(如感染人數的增加/減少)和區域聚類。

付費5元查看完整內容

信息技術的進步和后現代主義哲學在混亂中茁壯成長,創造了這樣的條件:到目前為止,敘述的競爭是實現政治和軍事目標的主要方法。在未來的沖突中,更多具有行動和戰略意義的行動將發生在 "信息環境 "中,而不是其他地方。物理領域的事件將變得越來越具有戰術性,而以敘事形式描述這些事件將成為作戰藝術的主導形式。目前的多域作戰(MDO)和大規模作戰(LSCO)的概念過度強調了未來戰爭內在的戰術方面,而沒有涉及暫時占主導地位的作戰藝術形式,這種形式通過敘事的力量利用信息技術和后現代主義。美國軍方必須認識到互聯網和社交媒體所帶來的社會變革的意義,以及它對戰爭性質的影響。正如啟蒙運動帶來了 "大規模征兵",工業革命帶來了 "工業戰爭 "一樣,這場新的 "信息革命 "正在改變戰爭的特征,并將信息戰置于最重要地位。在當代戰爭中,信息不僅僅是一種能力,它是戰略和作戰藝術的本質。因此,指揮官和規劃者必須將 "信息 "本身視為任務,而不僅僅是戰術和作戰層面任務的推動者。

付費5元查看完整內容

人工智能的一個基本任務是學習。深度神經網絡已經被證明可以完美地處理所有的學習范式,即有監督學習、無監督學習和強化學習。然而,傳統的深度學習方法利用云計算設施,不能很好地擴展到計算資源低的自治代理。即使在云計算中,它們也受到計算和內存的限制,不能用來為假設有數十億神經元的網絡的代理建立適當的大型物理世界模型。這些問題在過去幾年中通過可擴展深度學習的新興主題得到了解決,該主題在訓練之前和整個過程中利用了神經網絡中的靜態和自適應稀疏連接。本教程將分兩部分介紹這些研究方向,重點是理論進展、實際應用和實踐經驗。

//sites.google.com/view/ijcai2020-sparse-training/home

付費5元查看完整內容
北京阿比特科技有限公司