收集和共享信息以及指揮和控制是所有軍事行動的重要組成部分。建立一個靈活的通信網絡,以適應每次行動的具體要求,是在當前和未來軍事行動中提供必要信息流的關鍵要求之一。目前正在開展一些活動,為固定網絡基礎設施提供靈活的聯盟網絡,并在一定程度上為半移動部署網絡提供靈活的聯盟網絡,例如聯邦任務網絡(FMN)。然而,對于如何部署高效、連接良好的異構戰術無線電網絡,目前還沒有明確的指導方針。這極大地阻礙了低級戰術層面的信息共享。本報告介紹了北約科技組織所做的研究,目的是加深對如何在戰術邊緣構建可互操作的異構移動無線電網絡的理解,并提出一些建議。目的是找到最有效利用不同聯盟伙伴為行動提供的移動網絡的方法。報告涵蓋三大主題:
描述一個場景并實施一個類似云的測試平臺環境,以評估與該場景相關的不同技術解決方案。該試驗臺是提高信息和通信技術國際研究合作效率的一個示例。場景和試驗臺的作用與技術合作示范(CDT)類似,都是對不同技術進行基于場景的合作分析,但成本比 CDT 低得多。利用仿真技術可以加快從早期研究成果到為標準化測試解決方案所需的時間。建立測試平臺環境的工具和腳本將公開提供。
描述和分析在不同移動網絡之間提供端到端連接的架構和機制。報告比較了不同的路由架構,并提出了一種混合架構。一個核心觀點是,網絡規劃者需要選擇不同的機制,以便為不同類型的操作提供必要的性能。為了確保不同機制之間的互操作性,我們確定了必要的信息交換接口,并對不同協議的可擴展性進行了研究。我們概述了不同的安全架構,討論了安全架構的選擇對路由架構效率的影響,并提出了一個目標安全架構。
對稀缺網絡資源進行最佳優先排序和利用的準則和機制。建議監測網絡健康的三種狀態(正常、減少、最后努力),以改善網絡的資源管理(RM)和服務質量(QoS)。不同的網絡狀態需要一套或多套機制。我們還建議選擇單一網絡層來實施 QoS 或 RM 機制,因為這樣可以降低不同層的機制不合作而降低性能的風險。要使 RM 和 QoS 運行良好,必須有一個信息價值(VoI)的概念。VoI 會隨時間發生變化,RM/QoS 需要適應這些變化。
更好地了解在戰術邊緣建立移動異構聯盟網絡時所面臨的挑戰,這將有助于北約國家發展/采購具有互操作性的網絡設備。成果非常及時。預計從螺旋 4 開始,FMN 將開始包括移動戰術網絡的不同方面。結果將成為相關 FMN 的重要投入。
圖 2 展示了依賴于這些網絡的軍事場景概覽。創建該場景是為了顯示行動期間的信息需求,并舉例說明在異構網絡中建立必要服務所面臨的挑戰。
該場景描述的是一個機械化營的連級特遣部隊和一個海軍特遣艦隊開展的行動。它們是由聯軍總部協調的軍事特遣隊 (MC) 的一部分。連隊通信和信息系統 (CIS) 與國家作戰廣域網相連,并可訪問聯軍系統。MC 總部在行動期間發揮后援作用,并應要求提供戰斗支援(CS)和戰勤支援(CSS)。根據行動背景,假定敵軍正準備從位于圖 2 右下角行動區內的村莊向聯軍基地發動復雜的攻擊。敵軍裝備精良,活動區域可能埋有地雷,因此有可能出現簡易爆炸裝置(IED)危險。己方部隊的任務是進入作戰區域,消滅叛亂分子并銷毀他們收集的武器裝備。避免村莊居民傷亡并使叛亂分子無法逃脫是非常重要的。這一任務中最重要的因素是由聯軍提供的獨聯體、后勤和醫療支持。因此,需要有運作良好的通信能力來幫助組織武裝部隊。
完成這項任務需要使用各種系統和通信網絡,如無線電通信系統(高頻、甚高頻、超高頻、衛星通信)、傳感器網絡和無人機系統。海軍管理系統也已到位,用于支持任務的偵察和監視,并提供數據、語音和視頻等服務。
為實施場景中的行動,確定了三個小故事。每個小故事的角色和參與者都相同。第一個小場景涉及戰場的情報準備工作。第二個小場景包括聯軍進入作戰區,包括在周邊沿海地區開展海上攔截行動。第三個小故事包括一次城市行動,結果是消滅了叛亂分子。第三個小故事還包括在解除簡易爆炸裝置后向軍艦進行的醫療后送。每個小故事都提出了行動者和 C4IS(指揮、控制、通信和計算機信息系統)設備之間預期交換的數據,強調了軍事異構網絡的連接性和網絡效率問題。
AuroraXR 是一個提供互操作性和數據同步功能的框架,可滿足陸軍和美國國防部其他網絡增強現實、混合現實和虛擬現實系統的使用要求。AuroraXR 提供了從現實世界中的傳感器和外部系統與虛擬環境中的用戶和系統建立雙向信息共享的機制。與游戲行業通常使用的網絡解決方案不同,AuroraXR 是專為戰術網絡架構設計的,在這種架構中,帶寬非常寶貴,連接性也無法保證。本報告將詳細介紹 AuroraXR 的目的、子系統和安全功能,以及部署該軟件的未來目標。
圖 1 不同的身臨其境技術在真實環境和全合成環境之間的位置描述
戰場物聯網(IoBT)的重點是利用傳感器、執行器和分析設備的互聯網絡提供戰場態勢感知。傳感器可以探測敵人的動向,然后將信息實時傳遞給分析人員,使他們能夠就定位、應避免的區域或誰正在穿越某一區域做出戰術決策。這種能力將有可能節省資源和士兵的生命,因此物聯網成為美國陸軍研究實驗室(ARL)網絡科學研究實驗室研究的重要課題。物聯網(IoT)的概念是與任何類型的設備(從汽車到冰箱)建立通信網絡。將這一概念轉換到戰場環境中,可以想象 IoBT 能帶來多大的可能性。陸軍對 IoBT 設備產生了濃厚的興趣,希望學習、開發并將這些理念從實驗室帶到戰場。
為此,美國陸軍研究實驗室戰術網絡保障分部開發了一種在未知或潛在敵對環境中使用 IoBT 部署多個傳感器的方法。稱該系統為自主分類傳感器網絡。系統內的傳感器執行基本分類,根據生成的事件識別是盟友還是對手,并使用特設無線網絡相互通信。通過使用多個不同類型的傳感器,分類結果更加穩健,因為它們來自不同模式的多個傳感器數據源。此外,為確保較長的網絡壽命,傳感器采用了睡眠算法,節點進入低功耗模式,同時保持網絡活動。最后,這項工作的重點是開發一種應對拒絕服務(DoS)和分布式拒絕服務(DDoS)攻擊的對策,這些攻擊是能夠關閉網絡的普遍威脅。
圖 6 測試不同聚類方法的 Node-RED 流程
每個傳感器節點都與一個 XBee Series 2 模塊相連,作為通信的基礎層。之所以選擇 XBee,是因為它成本低廉,而且與其他常見的 WiFi 或藍牙設備相比,它與戰術無線無線電相似。我們的實施方案有兩種節點,一種是檢測器節點,另一種是分類器節點。檢測器用于檢測網絡一般區域內是否發生了事件。分類器收集的數據隨后用于將事件分類為盟友事件或敵方事件。我們的設想是,讓探測器節點感知是否有人進入現場,并將該信息轉發給附近的分類器節點,以喚醒它們并開始勘察環境。分類器節點將繼續感知,直到有人觸發事件或感知時間結束。然后,分類器的信息將直接或通過多跳發送到基站。
探測器節點配備了被動紅外(PIR)、超聲波或振動傳感器,分類器節點配備了射頻識別(RFID)、磁力計、麥克風或攝像頭傳感器。為了節約能源,我們在網絡中采用了睡眠算法,這樣檢測器節點就不會在每個時間點都處于空閑狀態。傳感器被連接到 Arduino UNO2 或 Raspberry Pi3 單板計算機上。除了攝像頭和麥克風需要 Raspberry Pi 提供額外的計算資源外,大部分傳感器都使用 Arduino UNO 設備。
分類傳感器收集到的數據會被發送到基站,并在那里匯總成一個數據項。這個匯總數據集代表了過去幾秒鐘內感應到的區域。然后通過聚類算法對數據進行分析,對觸發傳感器的個人進行分類,以預測是盟友還是對手觸發了事件。
無線傳感器網絡的一個重要方面是網絡壽命,它可以定義為最后一個節點停止工作(因故障或耗盡電力資源)所需的時間,也可以定義為網絡的覆蓋范圍或連接性達到某個連接性閾值所需的時間。如果網絡能維持更長時間的可用流量,就能減少在戰場上更換或維護網絡的需要,從而節省時間并降低士兵面臨的風險。由于增加每個節點的電池容量成本高昂,建議采用休眠算法來延長網絡的使用壽命。不主動掃描且對網絡連接不重要的節點可以進入睡眠狀態,以節省能量。然后,這些節點可以在稍后時間被激活,接替可用能量較少的節點的角色。在實施過程中,探索了三種不同的策略,同時測量了它們的壽命和覆蓋范圍。1)地理自適應保真度 (GAF) 算法、2)連接 k 鄰域 (CKN) 和能耗連接 k 鄰域 (EC-CKN)、3)分類網絡休眠算法
隨著可用數據的增加,有必要制定一種方法來解釋數據和推理信息。最初通過 Node-RED 通過合成輸入進行數據收集和分類。我們選擇了 R 編程語言來最終實現將傳感器數據分類為敵方或盟方事件。
任何無線網絡都會存在一些安全隱患,因此必須加以解決。第一個問題是,傳感器會不斷廣播它們掌握的所有信息。監聽網絡的敵人可以輕易地看到所有正在廣播的信息,甚至更糟糕的是,他們可以編造自己的數據來混淆聚類算法。另一個問題是,監聽網絡的對手可能會試圖用數據包淹沒網絡,阻止傳感器傳輸數據(DoS 或 DDoS)。
為了防止對手在 DoS/DDoS 攻擊中用無用數據淹沒網絡,檢查了畸形數據,并切換了 XBee 無線電的個人區域網絡 (PAN) ID。如果檢查發現網絡被數據淹沒,系統就會切換到另一個網絡。遺憾的是,這并不能完全解決問題,因為存在復制攻擊,這種攻擊會利用有效數據,在網絡中充斥大量數據副本。不過,這種攻擊可以通過在數據中加入一次性號碼來解決,這樣基站就能檢測到相同的數據是否被發送了多次。
在受到干擾器攻擊的戰術無線網絡中,頻譜感知是確保部署的軍事人員安全和高效的一個重要考慮因素。這些網絡的成員有必要了解頻譜中哪些信道受到破壞,哪些可安全用于數據傳輸。組成這些網絡的無線發射機可以通過感知不同信道的能量水平來確定這些信道上是否存在干擾器。然后,它們可以與同伴共享這一信息,以便協同識別和避開干擾器。目前有幾種基于強化學習的解決方案,允許無線發射機根據對干擾者活動的觀察制定傳輸策略,但當干擾者的行為是隨機的,從而使強化學習算法無法學習和預測其行為時,這些解決方案往往會失效。
在本論文中,首先討論協作頻譜感知以及認知無線電、干擾和反干擾背后的理論。接下來,詳細介紹了用于表示多智能體反干擾問題的系統模型。然后,介紹了一種協作式偽隨機信道選擇算法和一種基于超級決策向量的數據協作與融合方案,以提高對整個網絡頻譜利用率的認識。仿真結果表明,該方案可提高干擾器的檢測率,并增加未被干擾信道上的傳輸次數。
關鍵詞 協作頻譜感知、數據融合、干擾器檢測、戰術通信、Ad Hoc 網絡、無線通信
美空軍研究實驗室(AFRL)的使命是為空中、太空和網絡空間部隊領導作戰技術的發現、開發和交付。為完成這一使命,空軍研究實驗室需要獲得國內外的研發(R&D)和技術人才。美國空軍后勤部的國際組合和參與方法很好地利用了國際研發和人才,但僅靠這些方法可能不足以獲取越來越多的海外研究成果。為此,美國空軍后勤部委托進行了這項研究,以探討在美國空軍后勤部目前的海外辦事處(負責考察和資助研發工作)之外,在海外實驗室建立強大的實際存在的各種方案。根據這項研究獲得的信息,提出了四項主要建議: 2) 擴大、簡化和充分利用各種方法,將 AFRL 技術人員嵌入海外實驗室;3) 開展國際合作,應對駐地研發挑戰;以及 4) 不尋求影響國際科技資金的方法。
這項研究包括六項任務:
任務 1:確定在海外實驗室建立實體機構的目標
任務 2:記錄行業和大學在海外實驗室方面的經驗
任務 3:確定在海外實驗室建立實體機構的方法
任務 4:將行業/大學的經驗與建議的目標和方法進行比較
任務 5:評估功能要求
任務 6:建議
作為分布式海上作戰(DMO)的一個關鍵原則,盡管有人和無人、水面和空中、作戰人員和傳感器在物理時空上都有分布,但它們需要整合成為一支有凝聚力的網絡化兵力。本研究項目旨在了解如何為 DMO 實現有凝聚力的作戰人員-傳感器集成,并模擬和概述集成實施所需的系統能力和行為類型。作為一個多年期項目,本報告所述的第一項工作重點是建立一個適用于 DMO 建模、模擬和分析的計算環境,尤其側重于有人和無人飛機的情報、監視和偵察 (ISR) 任務。
在半個世紀的建模和仿真研究與實踐(例如,見 Forrester, 1961; Law & Kelton, 1991),特別是四分之一世紀的組織建模和仿真工作(例如,見 Carley & Prietula, 1994)的基礎上,獲得了代表當前技術水平的計算建模和仿真技術(即 VDT [虛擬設計團隊];見 Levitt 等人, 1999)。這種技術利用了人們熟知的組織微觀理論和通過基于代理的互動而產生的行為(例如,見 Jin & Levitt, 1996)。
通過這種技術開發的基于代理的組織模型在大約三十年的時間里也經過了數十次驗證,能夠忠實地反映對應的真實世界組織的結構、行為和績效(例如,參見 Levitt, 2004)。此外,幾年來,已將同樣的計算建模和仿真技術應用到軍事領域(例如,見 Nissen, 2007),以研究聯合特遣部隊、分布式作戰、計算機網絡行動和其他任務,這些任務反映了日益普遍的聯合和聯盟努力。
本報告中描述的研究項目旨在利用計算建模來了解如何為 DMO 實現有凝聚力的戰斗傳感器集成,并建模和概述集成實施所需的系統能力和行為類型。作為一個多年期項目,本報告所述的第一項工作重點是建立一個適用于 DMO 建模、模擬和分析的計算環境。在這第一項工作中,將對當今的海上行動進行建模、模擬和分析,重點是有人駕駛和無人駕駛飛機的情報、監視和偵察(ISR)任務。這為與執行 ISR 任務的一個或多個 DMO 組織進行比較確立了基線。這也為與其他任務(如打擊、防空、水面戰)進行比較建立了基線。第二階段接著對一個或多個備用 DMO 組織進行建模、模擬和分析。
在本技術報告的其余部分,首先概述了 POWer 計算實驗環境,并列舉了一個實例,以幫助界定 DMO 組織和現象的計算建模。依次總結了研究方法。最后,總結了沿著這些方向繼續開展研究的議程。這些成果將極大地提高理解和能力,使能夠為 DMO 實現戰斗員與傳感器的集成,并為集成實施所需的系統能力和行為建模和概述。
人工智能解決方案在陸軍野戰應用中的使用將在很大程度上依賴于機器學習(ML)算法。當前的ML算法需要大量與任務相關的訓練數據,以使其在目標和活動識別以及高級決策等任務中表現出色。戰場數據源可能是異構的,包含多種傳感模式。目前用于訓練ML方法的開源數據集在內容和傳感模式方面都不能充分反映陸軍感興趣的場景和情況。目前正在推動使用合成數據來彌補與未來軍事多域作戰相關的真實世界訓練數據的不足。然而,目前還沒有系統的合成數據生成方法,能夠在一定程度上保證在此類數據上訓練的ML技術能夠改善真實世界的性能。與人工生成人類認為逼真的語音或圖像相比,本文為ML生成有效合成數據提出了更深層次的問題。
人工智能(AI)是美國國防現代化的優先事項。美國國防部的人工智能戰略指示該部門加快采用人工智能并創建一支適合時代的部隊。因此,它自然也是陸軍現代化的優先事項。從陸軍多域作戰(MDO)的角度來看,人工智能是解決問題的重要因素,而MDO是建立在與對手交戰的分層對峙基礎上的。雖然人工智能本身沒有一個簡明和普遍接受的定義,但國防部人工智能戰略文件將其稱為 "機器執行通常需要人類智能的任務的能力--例如,識別模式、從經驗中學習、得出結論、進行預測或采取行動--無論是以數字方式還是作為自主物理系統背后的智能軟件"。這句話的意思是,當機器在沒有人類幫助的情況下獨立完成這些任務時,它就表現出了智能。過去十年中出現的人工智能解決方案的一個重要方面是,它們絕大多數都符合模式識別模式;在大多數情況下,它們根據經過訓練的人工神經網絡(ANN)對相同輸入數據的輸出結果,將輸入數據分配到數據類別中。具體來說,深度學習神經網絡(DNN)由多層人工神經元和連接權重組成,最初在已知類別的大量數據上進行訓練以確定權重,然后用于對應用中的實際輸入數據進行分類。因此,機器學習(ML),即自動機(這里指DNN)在訓練階段學習模式的過程,一直是一個主導主題。事實上,DNN在計算機視覺領域的成功是商業和政府部門加大對人工智能關注和投資的原因。訓練算法和軟件開發工具(如tensorflow)的進步、圖形處理器(GPU)等計算能力的可用性,以及通過社交媒體等途徑獲取大量數據,使得深度學習模型在許多應用中得到了快速探索。
在監督學習中,人類專家創建一組樣本來訓練ML算法,訓練數據與實際應用數據的接近程度對人工智能方法的性能起著重要作用。將ML模型應用于軍事問題的主要瓶頸是缺乏足夠數量的代表性數據來訓練這些模型。有人提出使用合成數據作為一種變通辦法。合成數據集具有某些優勢:
然而,最關鍵的問題是在合成數據或混合合成和真實數據上訓練ML模型是否能使這些模型在真實數據上表現良好。美國陸軍作戰能力發展司令部陸軍研究實驗室的研究人員和合作者使用合成生成的人類視頻進行機器人手勢識別所獲得的初步結果表明,在合成數據和真實數據混合的基礎上進行訓練可以提高ML手勢識別器的性能。然而,并沒有普遍或分類的結果表明,當全部或部分使用合成數據進行訓練時,真實世界的ML性能會得到一致的提高。因此,有必要進行系統調查,以確定使用合成數據訓練ML方法的可信度。我們有理由假設,合成數據在提高ML性能方面的有效性將受到實際應用領域、合成數據與真實數據的保真度、訓練機制以及ML方法本身等因素的影響。合成數據與真實數據的保真度反過來又取決于數據合成方法,并提出了通過適當指標評估保真度的問題。以圖像為例,合成數據訓練的ML方法的性能與人類視覺感知的真實場景的保真度是否成正比并不清楚。有可能數據的一些關鍵特征對于ML的性能比那些影響人類感知的特征更為重要。組織這次陸軍科學規劃和戰略會議(ASPSM)的一個主要目的是讓合成數據生成、人工智能和機器學習(AI & ML)以及人類感知方面的頂尖學術界和國防部專家討論這些問題。會議的技術重點主要是圖像和視頻數據,反映了組織者在計算機視覺和場景感知方面的任務領域。
根據上一節提出的問題,會議圍繞三個主題展開:
1.人類的學習和概括: 人類可以從最小的抽象和描述概括到復雜的對象。例如,在許多情況下,觀察一個物體的卡通圖像或線描,就足以讓人類在真實場景中識別出實際的三維物體,盡管后者比卡通圖像或線描具有更復雜的屬性。 這遠遠超出了當前人工智能和ML系統的能力。如果能夠開發出這種能力,將大大減輕數據合成機器的負擔,確保真實數據的所有屬性都嚴格保真。這個例子也說明了一個事實,即用于訓練ML模型的合成數據生成研究與提高ML模型本身的能力密切相關。因此,這項研究的重點是探索人類和動物的學習,以啟發ML和數據合成的新方法。
2.數據合成方法和驗證: 大多數應用ML方法的領域都有針對其領域的數據合成技術和工具。游戲平臺提供了一個流行的視頻合成商業范例。問題是如何評估特定領域中不同合成方法的性能。顯然,我們必須確定執行此類評估的指標或標準。通常情況下,合成工具的作者也會就工具的性能或功效發表聲明。驗證將是評估此類聲明的過程。本研究的目的是探討指導合成和驗證過程的原則。合成技術的例子包括基于計算機圖形的渲染器(如電影中使用的)、基于物理的模擬(如紅外圖像)和生成模型(目前傾向于基于神經網絡)。
3.領域適應挑戰: ML中的領域適應是指使用一個領域(稱為源領域)的數據訓練ML模型,然后將ML應用于不同但相關領域(稱為目標領域)的數據。例如,使用主要為民用車輛的源圖像數據集訓練識別車輛的ML算法,然后使用訓練好的算法識別主要為軍用車輛的目標數據集中的車輛。在使用合成數據進行訓練時,它們通常構成源域,而實際應用數據則是目標域。本次會議的重點是確定和討論有效領域適應中的關鍵問題和挑戰。
ASPSM的審議分四次會議進行。第一天的兩場會議討論了前兩個主題。第二天的第一場會議討論第三個主題,第二場會議在三個主題下進行分組討論。ASPSM兩天的日程安排分別如圖1和圖2所示。從圖中可以看出,每個主題會議首先由該領域的學術專家進行40分鐘的主講,然后由大學專家進行兩個20分鐘的講座。隨后由來自學術界和國防部的專家組成的小組進行討論。最后一個環節是分組討論,與會者可以討論與主題相關的各個方面。
麻省理工學院電子工程與計算機科學系的Antonio Torralba教授在第一分會場發表了關于人類學習與泛化的主題演講。他的演講題目是 "從視覺、觸覺和聽覺中學習",深入探討了深度學習方法如何在不使用大量標注訓練數據的情況下發現有意義的場景表征。舉例說明了他們的DNN如何在視覺場景和環境中的聲音之間建立聯系。讀者可參閱Aytar等人關于這一主題的代表性文章。
同樣來自麻省理工學院的James DiCarlo博士的下一個演講題目是 "視覺智能逆向工程"。他將 "逆向工程 "定義為根據對行為的觀察和對輸入的反應推斷大腦的內部過程,將 "正向工程 "定義為創建ANN模型,以便在相同輸入的情況下產生相應的行為。他的研究小組的一個目標是建立神經認知任務的性能基準,人類或其他靈長類動物以及ML模型可以同時達到這些基準。他的演講展示了大腦處理模型如何適應ANN實現的初步結果,并提出了ANN通過結合這些適應密切模擬人類行為,進而準確描述大腦功能的理由。
第一場會議的第三場講座由加州大學伯克利分校的Jitendra Malik教授主講,題為 "圖靈的嬰兒"。這個題目也許是指最早的電子存儲程序計算機之一,綽號 "寶貝",其創造者之一受到了阿蘭-圖靈的啟發。馬利克教授首先引用了圖靈的觀點:與其創建一個模擬成人思維的程序,不如從模擬兒童思維開始。從本質上講,這意味著創造一種人工智能,通過與環境互動以及向其他人工智能和人類學習來學習和成長。這被稱為具身機器智能。馬利克教授認為,監督學習本質上是處理靜態數據集,因此顯示了在精心策劃的時間點上運行的非實體智能。具體而言,他認為監督訓練方法不適合創建能夠提供人類水平的世界理解,特別是人類行為理解的人工智能。Malik教授介紹了 "Habitat",這是一個由他和他的合作者開發的平臺,用于嵌入式人工智能的研究。在隨后的小組討論中,與會人員討論了演講者所涉及的主題,以及與機器人學習和當前兒童智力發展模型相關的主題。
第二部分“數據合成:方法和驗證”以一個題為“學習生成還是生成學習?”,作者是斯坦福大學的Leonidas gu教授。在研究用于訓練ML的合成數據生成的動機中,他指出可以減輕大量人工注釋訓練數據的負擔。他的前提是,無論合成數據是用于訓練ML還是供人類使用,其生成效率和真實性都非常重要。不過,他表示其他質量指標還沒有得到很好的定義,需要進一步研究。他舉例說明了在混合合成數據和真實數據上訓練ML時,ML的物體識別性能有所提高,但他也承認很難得出可推廣的結論。
卡內基梅隆大學的Jessica Hodgins博士發表了第二場會議的第二個演講,題為 "生成和使用合成數據進行訓練"。演講展示了她的研究小組生成的精細合成場景。利用從真實場景到合成場景的風格轉移過程,她的研究小組創造了一些實例,說明在混合了大量風格適應的合成數據和一些真實數據的基礎上進行訓練的ML方法的性能優于僅在真實數據集或僅在合成數據集上進行訓練的方法。性能提高的原因在于風格轉移克服了合成數據集與真實數據集之間的 "分布差距"。
第二場會議的最后一場講座由加州大學伯克利分校的Trevor Darrell教授主講。他的演講題為 "生成、增強和調整復雜場景",分為三個部分。第一部分詳細介紹了演講者及其核心研究人員開發的一種名為 "語義瓶頸場景生成 "的技術,用于根據地面實況標簽合成場景。該技術可進一步與通過生成過程生成此類地面標簽的模型相結合。Azadi等人對該技術進行了詳細描述。 第二部分涉及增強和自我監督學習。發言人提出,當前的對比學習方法在合成增強數據時建立了不變量,而這些不變量可能是有益的,也可能是無益的。例如,建立旋轉不變性可能有利于識別場景中的花朵,但可能會阻礙對特定方向物體的有效識別。演講者介紹了他的研究小組考慮具有特定不變性的多種學習路徑的方法,并展示了與現有技術相比性能有所提高的結果。 第三部分介紹了一種名為 "Tent"(測試熵)的技術。其前提是DNN應用過程中遇到的數據分布可能與訓練數據不同,從而導致性能下降。因此,需要對DNN參數進行實時或測試時調整,以防止性能下降。Tent技術通過調整權重使DNN輸出的測量熵最小化來實現這一目標。演講者隨后用常用數據集展示了該技術相對于先前方法的改進性能。隨后的小組討論涉及合成方面的挑戰,尤其是紅外圖像方面的挑戰。
第二天的第三場會議以 "領域轉移的挑戰 "開始。約翰霍普金斯大學布隆伯格特聘教授Rama Chellappa博士發表了題為 "解決美國防部實際問題的綜合數據期望與最大化"的演講。演講首先回顧了過去二十年來國防部處理合成圖像的多個項目的歷史。他提出了一個重要論斷,即如果在合成過程中考慮到真實數據的物理特性,那么真實數據和合成數據之間的領域轉換就會減少。Chellappa教授還就領域自適應表示法提供了快速教程,涵蓋了正規數學方法以及較新的生成對抗網絡(GANs)。演講者及其核心研究人員開發的基于GAN的方法可以修改合成數據的分布,使之與目標分布相匹配。講座舉例說明了這種方法優于之前的非GAN方法。
佐治亞理工學院的Judy Hoffman教授發表了題為 "從多個數據源進行泛化的挑戰 "的演講。她考慮的問題是在模擬中學習模型,然后將模型應用于現實世界。她指出了四個挑戰: 生成、列舉、泛化和適應。發言人介紹了應對這些挑戰的幾種不同方法。具體來說,用于泛化的特定領域掩碼(DMG)方法通過平衡特定領域和領域不變特征表征來生成一個能夠提供有效領域泛化的單一模型,從而解決多源領域學習問題。
第三場會議的第三位也是最后一位演講者是波士頓大學的Kate Saenko教授,他的演講題目是 "圖像分類和分割的Sim2Real領域轉移的最新進展和挑戰"。Saenko教授延續了前兩場講座的主題,介紹了視覺領域適應的歷史,并探討了領域和數據集偏差問題。在糾正數據集偏差的不同方法中,講座詳細討論了領域適應。特別重要的是,Saenko教授及其合作者開發的技術能夠顯示合成到真實的適應性,就像從游戲引擎到真實數據一樣。隨后的小組討論提出了幾個有趣的問題,包括訓練域和測試域的不同,不是感興趣的對象不同,而是對象所處的環境不同,例如訓練時軍用車輛在沙漠環境中,而測試時則在熱帶植被背景中。
三個主題的分組討論同時進行。在 "人類學習與泛化 "分組討論中,首先討論了 "人類如何學習?"、"ML模型如何模仿人類過程?"以及 "合成數據如何實現這些過程?"等問題。從童年到青春期和成年期,學習和成長之間的關系成為關鍵點。其他被認為有助于人類學習的因素包括人類心理、情感、同時參與多維活動、記憶以及解除學習的能力。
關于 "數據綜合: 方法與驗證 "分論壇確定了數據合成的幾個問題,特別是圖像和視頻。主要問題涉及結合物理學的有用性、視覺外觀保真度與成本之間的權衡、保真度的衡量標準、保真度本身的重要性以及當前技術(包括GANs技術)的局限性。據觀察,合成圖像和視頻生成至少已有幾十年的歷史,但大多數產品要么是為視覺效果而設計,要么是為再現物理測量而設計(例如,紅外模擬中的輻射剖面)。它們并不適合用于ML培訓。提出的另一個問題是,合成的二維圖像必須與物體和環境的底層三維幾何圖形保持一致。還有人提出,能夠在特定的感興趣的環境中生成大量合成數據,可以作為第一道工序測試新的人工智能和ML方法,而不管這些方法是否能夠在真實數據中很好地工作。
專題3 "領域轉移挑戰 "的分組討論確定了MDO所需的關鍵人工智能能力,即從孤立學習到機器與人類之間的聯合或協作學習。會議還討論了在多種數據模式下同時訓練ML的聯合學習。人們認識到,這些領域的工作才剛剛開始。分組討論的牽頭人強調,需要向士兵明確說明基于人工智能的系統在特定情況下將會做什么。這引發了對系統魯棒性的討論。分組組長向ASPSM聽眾提供了討論摘要。
根據本次ASPSM的討論,我們確定了以下值得陸軍進一步進行科技投資的領域:
1.支持多模式互動學習的合成技術和數據集。與當前流行的捕捉 "時間瞬間 "的靜態數據集(如農村環境中的車輛圖像)相比,有必要開發更能代表支持持續學習的體現性體驗的模擬器,就像我們在人類身上看到的那樣,并實現對世界更豐富的表征。混合方法(如增強現實)也可將人類監督的優勢與合成環境的靈活性結合起來。
2.學習和合成因果關系和層次關系的算法和架構。最近的一些方法,如基于圖的卷積神經網絡,已經在學習空間和時間的層次關系(如物體-部件和因果關系)方面顯示出前景。鑒于在現實世界中收集和注釋此類數據的復雜性,合成數據的生成可能特別有用。識別層次關系是一般國防部和戰場情報分析的關鍵要素。
3.支持持續、增量、多模態學習的算法和架構。深度強化學習方法被成功地用于訓練虛擬或機器人代理的相關行動策略,如捕食者與獵物之間的相互作用。基于模仿的方法承認學習的社會性,通常讓代理與(通常是人類)教師合作學習新策略。這些類型的交互式持續學習可進一步與多模態學習(即融合來自多個傳感器的數據)相結合,以實現更豐富的世界表征,使其更穩健、更具通用性。同樣,在這一領域難以獲得大量經過整理的數據,這也為探索合成引擎提供了動力。
4.學習物理或具備相關物理領域知識的算法和架構。在許多領域(例如紅外光下的物體感知),從圖像感知和合成圖像需要了解世界的基本物理特性,例如光與材料之間的相互作用。然而,當前的深度學習模型缺乏這種物理知識。開發賦予ML物理領域知識的技術對這些系統的性能至關重要。
5.具有豐富中間表征的領域適應技術。為了縮小真實數據和合成數據之間的領域差距,必須進一步推動當前建立領域不變中間表征的趨勢,特別是使用語義詞典和生成式對抗網絡。能夠理解數據底層結構(如光照、旋轉、顏色)的表征更有可能成功抽象出合成數據中不重要的細節。
6.深入了解ML模型內部表征的方法,以及合成表征與真實表征的比較。網絡剖析技術 "打開 "了深度學習模型的隱藏層,允許解釋網絡中的每個階段正在學習哪些特定概念或其更細的方面。這些技術揭示了具有真實輸入和合成輸入的DNN的內部表征,有助于識別所學內容的關鍵差異,從而找到克服這些差異的解決方案。
為期兩天的虛擬ASPSM吸引了眾多美國防部科學家和工程師、頂尖學術專家以及科技項目管理人員的熱情參與。多學科的討論強化了這樣一種觀點,即開發用于訓練ML方法的生成合成數據的改進方法與理解和改進ML方法本身是分不開的。一個特別重要的需求是了解ML方法,尤其是當前的學習架構,是如何創建場景的內部表示的。另外兩個重要領域是:1)理解人類學習與ML世界中可能存在的學習之間的異同;2)多模態數據--從合成和ML的角度。我們預計近期國防部和學術研究人員將在本報告確定的領域加強合作。
美國國防部長辦公室(OSD)和各軍種已經做出了廣泛的工作,將無人系統納入其現有的組織結構,顯示了無人系統考慮因素所代表的整體重要性。整個美國防部仍有改進合作的空間。將正在進行的工作標準化,盡可能地進行合作,并整合基礎政策和技術,將使無縫的團隊合作成為未來國防行動的亮點--無論這些團隊是有人的、無人的,還是聯合的。
無人系統技術的進步強調了將重點從特定領域過渡到不分領域的必要性。任何領域的進步都有利于所有領域的發展。未來的行動將在很大程度上依賴于多領域的能力,這些能力必須與聯合部隊的結構無縫對接和整合。
美國國防部、工業界和學術界擁有先進的技術、戰略和標準,對無人系統的發展及其與國防部任務的整合構成挑戰。這些主要的進步、挑戰和趨勢可以整合成四個關鍵主題,它們涉及到將繼續加速無人系統進入未來的基礎性利益領域:
互操作性 - 互操作性在歷史上一直是,并將繼續是無人系統集成和操作的一個主要推力。載人和無人系統已經越來越多地協同他們的能力,專注于使用開放和通用架構的關鍵需求。一個強大的可互操作的基礎提供了一個結構,將使未來的作戰取得進展。
自主性 - 自主性和機器人技術的進步有可能徹底改變作戰概念,成為一個重要的力量倍增器。自主性將大大提高載人和無人系統的效率和效力,為國防部提供戰略優勢。
網絡安全--無人系統的運作通常依賴于網絡連接和有效的頻譜訪問。必須解決網絡的漏洞,以防止破壞或操縱。
支持政策、需求和采購環境必須繼續發展和進步,以跟上所有系統的快速技術和能力進步的步伐。為了確保我們的軍事優勢,應該把重點放在無人駕駛技術的發展、可用性和使用上。美國防部在無人駕駛系統方面的舉措的調整將影響美國軍隊的未來構成
一個持久的、精確的和適應性強的安全應用是有效的部隊保護條件(FPCON)的必要組成部分,因為美國的軍事設施已經成為恐怖主義和暴力行為的常見目標。目前的軍事安全應用需要一種更加自動化的方法,因為它們嚴重依賴有限的人力和有限的資源。目前的研究開發了一個由嵌入式硬件組成的離網部署的聯合微調網絡,并評估了嵌入式硬件系統和模型性能。聯合微調采用集中預訓練的模型,并在一個聯邦學習架構中對選定的模型層進行微調。聯合微調模型的CPU負載平均減少65.95%,電流平均減少56.18%。MobileNetV2模型在網絡上傳輸的全局模型參數減少了81.59%。集中預訓練的MNIST模型開始訓練時,比隨機初始化的模型的初始準確率提高了53.94%。集中預訓練的MobileNetV2模型在第0輪訓練時表現出90.75%的初始平均準確率,在75輪聯合訓練后,整體性能提高了3.14%。目前的研究結果表明,聯合微調可以提高系統性能和模型精度,同時提供更強的隱私性和安全性,以抵御聯邦學習攻擊。
在決策或推理網絡中進行適當的推理,需要指揮官(融合中心)對每個下屬的輸入賦予相對權重。最近的工作解決了在復雜網絡中估計智能體行為的問題,其中社會網絡是一個突出的例子。這些工作在各種指揮和控制領域具有相當大的實際意義。然而,這些工作可能受限于理想化假設:指揮官(融合中心)擁有所有下屬歷史全部信息,并且可以假設這些歷史信息之間具有條件統計獨立性。在擬議的項目中,我們打算探索更普遍的情況:依賴性傳感器、(可能的)依賴性的未知結構、缺失的數據和下屬身份被掩蓋/摻雜/完全缺失。對于這樣的動態融合推理問題,我們建議在一些方向上擴展成果:探索數據源之間的依賴性(物理接近或 "群體思維"),在推理任務和量化不一定匹配的情況下,采用有用的通信策略,甚至在每個測量源的身份未知的情況下,采用無標簽的方式--這是數據關聯問題的一種形式。
我們還認識到,對動態情況的推斷是關鍵目標所在。考慮到一個涉及測量和物理 "目標 "的傳統框架,這是一個熟悉的跟蹤問題。但是,來自目標跟蹤和多傳感器數據關聯的技術能否應用于提取非物理狀態(物理狀態如雷達觀察到的飛機)?一個例子可能是恐怖主義威脅或作戰計劃--這些都是通過情報報告和遙測等測量手段從多個來源觀察到的,甚至可能被認為包含了新聞或金融交易等民用來源。這些都不是標準數據,這里所關注的動態系統也不是通常的運動學系統。盡管如此,我們注意到與傳統的目標追蹤有很多共同點(因此也有機會應用成熟的和新興的工具):可能有多個 "目標",有雜波,有可以通過統計學建模的行為。對于這種動態系統的融合推理,我們的目標是提取不尋常的動態模式,這些模式正在演變,值得密切關注。我們特別建議通過將雜波建模為類似活動的豐富集合,并將現代多傳感器數據關聯技術應用于這項任務,來提取特征(身份)信息。
研究的重點是在具有融合觀測的動態系統中進行可靠推理。
1.決策人身份不明。在作戰情況下,融合中心(指揮官)很可能從下屬那里收到無序的傳感器報告:他們的身份可能是混合的,甚至完全沒有。這種情況在 "大數據 "應用中可能是一個問題,在這種情況下,數據血統可能會丟失或由于存儲的原因被丟棄。前一種情況對任務1提出了一個有趣的轉折:身份信息有很強的先驗性,但必須推斷出身份錯誤的位置;建議使用EM算法。然而,這可能會使所有的身份信息都丟。在這種情況下,提出了類型的方法來完成對局部(無標簽)信念水平和正在進行的最佳決策的聯合推斷。
2.動態系統融合推理的操作點。在以前的支持下,我們已經探索了動態事件的提取:我們已經開發了一個合理的隱馬爾科夫模型,學會了提取(身份)特征,有一個多伯努利過濾器啟發的提取方法 - 甚至提供了一些理論分析。作為擬議工作的一部分,將以兩種方式進行擴展。首先,打算將測量結果作為一個融合的數據流,這些數據來自必須被估計的未知可信度的來源。第二,每個這樣的信息源必須被假定為雜亂無章的 "環境 "事件(如一個家庭去度假的財務和旅行足跡),這些事件雖然是良性的,可能也不復雜,但卻是動態的,在某種意義上與所尋求的威脅類似。這些必須被建模(從數據中)和抑制(由多目標追蹤器)。
3.數據融合中的身份不確定性。當數據要從多個來源融合時,當這些數據指的是多個真相對象時,一個關鍵的問題是要確定一個傳感器的哪些數據與另一個傳感器的哪些數據相匹配:"數據關聯 "問題。實際上,這種融合的手段--甚至關聯過程的好方法--都是相當知名的。缺少的是對所做關聯的質量的理解。我們試圖提供這一點,并且我們打算探索傳感器偏差和定位的影響。
4.具有極端通信約束的傳感器網絡。考慮由位置未知、位置受漂移和擴散影響的傳感器網絡進行推理--一個泊松場。此外,假設在這樣的網絡中,傳感器雖然知道自己的身份和其他相關的數據,但為了保護帶寬,選擇不向融合中心傳輸這些數據。可以做什么?又會失去什么?我們研究這些問題,以及評估身份與觀察的作用(在信息論意義上)。也就是說,假設對兩個帶寬相等的網絡進行比較;一個有n個傳感器,只傳輸觀察;另一個有n/2個傳感器,同時傳輸數據和身份。哪一個更合適,什么時候更合適?
5.追蹤COVID-19的流行病狀況。誠然,流行病學并不在擬議研究的直接范圍內,但考慮到所代表的技能以及在目前的健康緊急情況下對這些技能的迫切需要,投機取巧似乎是合理的。通過美國和意大利研究人員組成的聯合小組,我們已經證明,我們可以從當局提供的每日--可能是不確定的--公開信息中可靠地估計和預測感染的演變,例如,每日感染者和康復者的數量。當應用于意大利倫巴第地區和美國的真實數據時,所提出的方法能夠估計感染和恢復參數,并能很準確地跟蹤和預測流行病學曲線。我們目前正在將我們的方法擴展到數據分割、變化檢測(如感染人數的增加/減少)和區域聚類。
將分布式仿真和工具集成到可互操作的系統聯盟中是一項復雜而耗時的任務,需要對單個組件、接口和綜合解決方案進行廣泛測試。為了支持這項任務,北約依靠標準和協議以及它們的一致應用。在整合解決方案以支持北約和國家仿真和訓練時,提高建模和仿真(M&S)的互操作性、重用性和成本效益,是一個長期的目標,有幾個挑戰。需要采取漸進和迭代的方法來協調分布式仿真聯盟協議,以應對與遺留系統、多種架構、信息技術(IT)和軟件技術的新進展、行業標準的采用、新的商業模式以及開發開放標準的過程有關的問題。
標準、聯盟協議、符合性測試和認證是重要的工具,可以減少集成時間,降低風險,增加現有系統的重復使用,并支持采購新的可互操作的仿真組件。新的和更新的仿真互操作性標準,如高級架構(HLA),要求北約仿真認證服務持續維護和更新,以使用適用標準的最新版本管理更復雜的測試案例。仿真組件的認證需要在核心HLA服務接口之外進行額外的測試,還應該包括符合聯盟協議的測試。
在M&S界,人們普遍認為系統之間的技術互操作性不再是一個基本問題。然而,高水平的互操作性仍然被認為是建立可靠和可信的分布式仿真聯盟的一個主要挑戰。所需的互操作性程度不僅取決于仿真系統的目的和目標,而且還取決于聯盟設計和具體系統組件的互操作能力。早期識別互操作性問題可以降低風險,以及減少與互操作性系統組件相關的成本。高度的互操作性允許更靈活的聯合設計,以及仿真系統的可組合性,而不會大大增加與測試和集成有關的風險和成本。
根據參與的仿真組件之間的互操作性程度,將聯合體集成到復雜的聯合體中可能是一項耗時且雄心勃勃的任務。支持早期檢測互操作性問題的工具、流程和服務將大大減少集成時間和成本。符合標準和接口的驗證不僅與支持認證有關,而且對系統集成商和仿真系統開發商也有價值。
對系統組件進行符合互操作性標準和協議的測試是驗證互操作性的基礎。測試和驗證仿真組件的互操作能力是實現異構分布式仿真系統快速設計和集成的基礎。隨時可用的、最新的、可信賴的工具是支持合規性測試的關鍵。
認證服務可以根據一套基于一致性聲明的互操作性要求(IR),對被測系統(SuT)提供無偏見的符合性測試。證書由授權的認證機構(CE)提供,是符合互操作性要求的標志。根據STANAG 4603的規定,仿真組件必須擁有或獲得證書才能成為采購或驗收測試的候選者。
MSG-134的任務是根據現有的標準和使用以前的工具和認證程序的經驗,建立一個北約仿真互操作性測試和認證服務。MSG-134項目的重點和優先事項是提供基于HLA和北約教育和培訓網絡(NETN)聯邦架構和FOM設計(FAFD)的認證服務工具。該服務由工具、流程和組織組成,管理和提供仿真組件的測試、驗證和認證,以實現高效集成。
2016年,MSG-134建立了認證服務,并在CWIX 2017實驗中首次使用,證明了其功能能力。