隨著空對空導彈有效射程的增加,人類操作員越來越難以保持保證無人機安全所需的態勢感知能力。這項工作提出了一種決策支持工具,幫助無人機操作員在超視距(BVR)空戰場景中評估不同選項的風險,并據此做出決策。早期的工作側重于單枚導彈造成的威脅,而在這項工作中,將思路擴展到了多枚導彈的威脅。所提出的方法使用深度神經網絡(DNN)從高保真模擬中學習,為操作員提供一組不同策略的結果估計。研究結果表明,所提出的系統可以管理多枚來襲導彈,評估一系列選項,并推薦風險最小的行動方案。
圖 1:無人機面臨三枚來襲導彈的情況符號表示。導彈當前的確切位置未知,但可以估計發射的時間和位置。在圖 3-6 中,飛機圖標周圍的彩色區域用于顯示朝該方向進行規避機動的預測未擊中距離 (MD)。據此,操作員在決定選擇何種航線時,可以在任務目標和風險之間做出權衡。
自第一次世界大戰以來,空戰發生了翻天覆地的變化。傳感器、武器和通信技術的進步使飛行員能夠在越來越遠的距離上與敵機交戰。這些進步推動了從 “視距內 ”空戰向 “視距外 ”空戰的過渡。在 BVR 中,來襲導彈的飛行時間可能長達數分鐘,這使得無人機操作員很難評估所有來襲數據并選擇最佳行動方案。事實上,操作員往往會失去對某些來襲威脅的跟蹤。因此,需要一種能夠同時處理多個威脅并提供整體分析的支持工具。這種工具應支持操作員平衡風險與任務目標之間的關系,因為風險最低的選擇往往是完全忽略任務,而另一方面,忽略風險最終可能導致巨大損失。
由于雷達制導導彈的飛行時間可能很長,因此 BVR 空中格斗包含了一種可與星際爭霸等即時戰略游戲相媲美的元素。重大挑戰包括高度非線性動態、信息不確定性以及對手的未知戰略和目標。機載傳感器可以根據敵機類型、電子戰反制設備和天氣情況輸出對手位置的估計值。然而,雖然在面對敵方時并不總能獲得精確信息,但操作員通常知道敵方飛機和武器系統的能力,而本文提出的方法將利用這些信息。
在之前的工作中,研究了無人機面對一枚來襲導彈的情況。利用強化學習(RL),我們計算出了最佳規避機動和執行機動時的失誤距離(MD)。然而,這種方法無法用于同時面對多架敵機的情況。當考慮從不同角度射來的多枚導彈時,相對于一枚導彈的最佳規避機動與另一枚導彈不同,顯然不能同時執行兩種不同的機動。此外,針對一對來襲導彈威脅的最有效規避行動,可以通過離線求解特定問題并存儲結果來確定,但由于可能的威脅組合數量龐大,這種方法變得不切實際。
本文首先要指出的是,對于人類操作員來說,MD 估值是一種直觀的風險估計。因此,我們希望為操作員提供一系列選項,如圖 1 所示。圖中的黃色區域將根據風險程度進行著色。如果向南執行規避機動,MD 值為 2 千米,則會被染成綠色,而向西執行機動,MD 值為 0.05 千米,因此會被染成紅色。
在面臨上述多種威脅的情況下,要估算特定方向上特定機動的 MD,我們的步驟如下。首先,我們學習一組預定義的規避機動在不同羅盤方向上的單個威脅的 MD。然后,由于我們需要擔心的是最小的 MD,因此我們只需遍歷所有威脅,并保存每次機動的最小失誤距離。
通過這種方法,可以提供一種決策支持工具,為一系列選項提供風險估計,而不會丟失任何已檢測到的威脅。我們的方法還能讓操作員意識到何時沒有安全的撤離選擇,例如在近距離受到來自相反方向的威脅時。為更絕望的措施提供決策支持,如發射所有剩余武器然后失去無人機,或依賴模型無法捕捉的方法,如電子戰或箔條/照明彈系統。
因此,這項工作的主要貢獻是提供了一種方法,使無人機操作員能夠評估和處理任意數量的來襲威脅,從而擴展了先前考慮單一敵對導彈的工作。工作概述如下: 第二節回顧了相關工作。第三節介紹 ML 和導彈制導的背景,第四節正式定義問題。第五節介紹了建議的解決方案,第六節展示了仿真結果。最后,第八節將進行討論并得出結論。
該項目對利用無人載具(UVC)概念支持分布式海上行動(DMO)的操作和設計考慮因素進行評估。該評估為投資和開發與利用無人系統、潛在的 UVC 及其與有人艦隊的集成相關的操作概念提供信息。該項目開發了 DMO 的架構表征,包括相關系統的定義以及相關的操作活動。這些表征是仿真模型開發的基線,該模型研究了 UVC 可能對作戰可用性和持續性產生的影響。模擬分析分兩個階段進行。第一階段評估了 UVC 在 90 天代表性運行情況下的總體影響。分析表明,UVC 對運行可用性有積極影響。值得注意的是,這種影響在有機續航時間有限的無人系統中更為明顯。對于不同等級的無人系統,采用 UVC 后,運行可用性的提高幅度最低為 6%,最高為 31%。第二階段分析研究了 UVC 的設計特點,以確定 UVC 的關鍵性能驅動因素。分析發現,無人水面艦艇和無人水下艦艇發射和回收井甲板的數量比無人飛行器發射和回收站的數量影響更大。與對固定式 UVC 配置的評估類似,該分析表明,對于續航時間有限的無人系統而言,增加回收和維修站數量的影響更大,這表明 UVC 本身的適當設計與 UVC 所支持系統的設計特性有著內在的聯系。
本研究的重點是研究在一個場景中如何將武器分配給多個目標,特別是當防空系統面臨眾多目標(如低空火箭或無人機群)時。武器摧毀這些目標的準確性在很大程度上取決于發射器與目標的正確對準,而發射器的方位誤差會影響對準的準確性。因此,在解決武器-目標分配(WTA)問題時,考慮發射器方位角造成的航向誤差至關重要。為解決這一問題,使用旋轉策略使方位角與目標的接近方向保持一致,可以顯著提高對目標的殺傷概率(PK)。然而,其單一的實施方式存在局限性,如果沒有足夠的時間旋轉到所需的方位角,可能會導致交戰失誤。因此,作為一種補救措施,我們提出了一種新的 WTA 方法,該方法結合了旋轉和旋轉固定策略,改善了因旋轉時間和航向誤差而失去交戰機會的弱點。通過數值模擬評估了這種方法的有效性。
人類飛行員和無人駕駛飛行器在有人-無人團隊合作(MUM-T)中共同實現軍事目標。在飛機駕駛艙內,飛行員與無人系統之間的互動究竟是怎樣的,這仍然是一個未決問題。在大多數方法中,無人平臺由飛行員授權,飛行員負責監控衍生行動(Miller 等人,2005 年;Uhrmann 和 Schulte,2012 年;Doherty、Heintz 和 Kvarnstr?m,2013 年)。在現代空戰中,戰術形勢可能在幾分鐘甚至幾秒鐘內發生變化,需要飛行員調整計劃。當飛行員除了自己的飛機外,還要負責引導多架無人駕駛飛機時,計劃修正的時間壓力將非常大。當技術進步(如通過決策支持系統和自動任務執行)提高決策時間時,這種壓力將進一步加劇。
為了加快決策速度,可能會賦予自動化更多的權力,或者采用數據驅動的方法。然而,當權力轉移到自動化和決策轉移到無法解讀的算法中時,飛行員是否仍能進行有意義的控制尚不清楚(Lepri, Staiano, Sangokoya, Letouzé, & Oliver, 2017; Parasuraman, Sheridan, & Wickens, 2000)。
因此,本文討論在高度動態的軍事環境中對無人飛行器進行有意義控制的要求。將討論任務的制定作為人類與自動化之間達成共識的一種手段,以及對任務委托、無人飛行器處理方法和無人飛行器反饋的要求。
水下監視技術出現于冷戰時期。該技術解密后,學術界對其進行了深入研究,并取得了諸多進展。無人潛航器(UUV)的開發就是海洋領域的進步之一,它能夠增強作戰能力,同時降低人類生命危險。雖然這項技術已經商業化,但在海軍中的應用卻很有限。其有限的發展主要是由開發商和資助他們的政府推動的。然而,由于這項技術能為軍隊帶來諸多好處,因此需要盡快將其納入海軍。這實質上意味著,要想在海軍使用/應用中獲得更多認可,就必須將該技術融入海軍。反過來,這就需要回答許多問題,了解事實,以增強對該技術及其潛力的信心。因此,本文討論了其中一些有助于彌補知識差距的問題,以促進未來海軍對 UUV 技術的接受和應用。雖然本文試圖提供全面的答案,但這些答案并不完整,只能作為討論的起點。就目前而言,技術是存在的,但缺乏想象力卻阻礙了其使用。
圖 2 已詳細說明了 UUV 在軍事領域可發揮的廣泛作用,在此,將討論每種作用的可能任務概況。迄今為止,已知美國、俄羅斯和中國等國家運營著大量不同大小和形狀的軍用 UUV。圖 3 顯示了美國部分軍用 UUV 的范圍,圖 4 顯示了其他國家部分軍用 LDUUV 的范圍。
(a) 情報、監視和偵察。從海洋中收集關鍵的電磁和光電數據將有助于擴大被拒地區的信息范圍,特別是常規平臺無法進入的淺水區。UUV 可以輕松進入這些區域,提供所需的信息。
(b) 海洋學。為了在極端的海洋環境中實現更高的可操作性,必須收集實時情報數據并提供給操作人員,以便在進攻時更好地制定計劃。出于 "用戶舒適度和安全性 "的考慮,載人平臺收集此類數據的能力有限,因此無人平臺和固定平臺被認為是未來的一種可能(Agarwala,2020 年)。
(c) 通信/導航網絡節點(CN3)。通過在有人和無人平臺之間提供一個閉環網絡,CN3 系統有助于為水下平臺提供更強的連接性和控制性,否則這些平臺就必須浮出水面以刷新其全球定位系統進行導航。這樣的通信網絡可提高無人潛航器的安全性和控制能力,同時幫助它們在不被探測到的情況下輕松、長時間地開展 ISR 活動(Munafò 和 Ferri,2017 年)。
(d) 反水雷措施。為確保港口和航道可供軍艦安全作業,并確保敵方類似港口和航道無法使用,最簡單的進攻方式就是布設 "水雷"。為了在不危及人命的情況下做到這一點,UUV 得到了有效利用。在任何平臺上使用無人潛航器,都能提高在敵方水域布設水雷和在己方水域清除水雷的效率,從而無需依賴專門的掃雷艇。
(e) 反潛戰。為了 "遏制 "在狹窄水域、咽喉地帶或艦隊附近活動的潛艇,UUV 可以發揮巨大作用。在此過程中,UUV 可以為載人平臺提供必要的安全保障,同時限制敵方潛艇的行動。
(f) 檢查/識別。為了對船體、碼頭和停泊區及其周圍的密閉空間進行快速搜索,以排除反恐方面的顧慮,并確保在必要時進行爆炸物處理,UUV 可以得到廣泛而有效的使用。這些努力將確保港口、航道和泊位的安全。
(g) 有效載荷交付。由于無人潛航器難以被探測到,而且可以在淺水區輕松作業,因此可用于秘密投放有效載荷。這種有效載荷可以是敵后補給品,也可以是摧毀敵方資產的彈藥。
(h) 信息作戰。由于 UUV 體型小,在淺水區也能輕松運作,因此是收集信息的有力平臺。此外,它們還可用作誘餌和通信網絡干擾器。
(j) 關鍵時刻打擊。能夠及時精確地投放彈藥并最大限度地減少敵方的反應時間是一項關鍵活動。用無人潛航器投放彈藥時,可將其投放到離海岸較近的地方,確保縮短敵方的反應時間。這種行為還有助于避免暴露大型有人駕駛平臺的位置,以免遭報復性打擊。
這項工作研究了在任務式指揮設備中嵌入模擬器的實用性和有效性。其目標是僅使用戰區作戰計劃作為模擬輸入,向操作員隱藏所有模擬器細節,使其無需學習新工具。本文討論了一種原型功能,該功能可根據 SitaWare 中生成的作戰計劃以及嵌入式無頭 MTWS 和 OneSAF 模擬器的模擬結果,生成行動方案(COA)分析。在輸入作戰計劃后,指揮官選擇要執行的模擬運行次數,并按下按鈕啟動模擬,模擬在后臺的運行速度比實時運行更快。模擬運行完成后,指揮官可通過圖形和圖表查看結果,對多次運行進行比較。預計未來的能力將允許指揮官模擬任何梯隊和命令,用于訓練和兵棋推演。
由于近年來無人駕駛飛行器技術的蓬勃發展,這些飛行器正被用于許多涉及復雜任務的領域。其中一些任務對車輛駕駛員來說具有很高的風險,例如火災監控和救援任務,這使得無人機成為避免人類風險的最佳選擇。無人飛行器的任務規劃是對飛行器的位置和行動(裝載/投放載荷、拍攝視頻/照片、獲取信息)進行規劃的過程,通常在一段時間內進行。這些飛行器由地面控制站(GCS)控制,人類操作員在地面控制站使用最基本的系統。本文介紹了一種新的多目標遺傳算法,用于解決涉及一組無人飛行器和一組地面控制站的復雜任務規劃問題(MPP)。我們設計了一種混合擬合函數,使用約束滿足問題(CSP)來檢查解決方案是否有效,并使用基于帕累托的方法來尋找最佳解決方案。該算法已在多個數據集上進行了測試,優化了任務的不同變量,如時間跨度、燃料消耗、距離等。實驗結果表明,新算法能夠獲得良好的解決方案,但隨著問題變得越來越復雜,最佳解決方案也變得越來越難找到。
無人機技術的最新發展導致了無人駕駛飛行器(UAV)的廣泛使用。特別是,無人飛行器經常用于偵察,以探測大面積區域內的失蹤人員等物體。然而,傳統系統僅使用一架無人飛行器在大面積區域內搜尋失蹤人員。此外,由于探測需要較高的計算能力,因此需要在飛行后或手動進行物體探測。本文提出了一種使用多架無人機的無人機偵察系統。所提議的多無人機偵察系統在每個無人機上執行實時目標檢測。地面控制系統(GCS)接收每架無人機的實時目標檢測結果,并對圖像進行拼接。為了實現單個無人機的實時目標檢測,YOLOv5 模型采用了濾波器剪枝方法,與現有的基線模型相比,該模型使用的參數減少了 40%。輕量級 YOLOv5 模型在使用任務計算機的 Jetson Xaiver NX 上實現了約 11.73 FPS 的速度。此外,所提出的圖像拼接方法可利用無人機生成的附加信息有效匹配特征,從而實現圖像拼接。無人機飛行測試表明,擬議的偵察系統可以在大面積區域內實時監控和檢測目標。
隨著近年來無人機技術的發展,無人機現已被廣泛應用于各種領域,例如人類難以直接搜索和分析的大型危險區域的偵察系統。人工智能的進步極大地提高了物體探測技術,可以發現人或汽車。然而,由于大多數任務都是由單架無人機執行,因此作業范圍和時間都受到限制。此外,由于無人駕駛飛行器(UAV)的性能限制,很難實時探測物體,因此無法立即做出反應。這些限制激發了對使用多架無人機進行蜂群飛行的研究,通過劃分大面積區域來執行任務,并通過為無人機分配不同的任務來實現合作。
蜂群偵察系統需要一個能同時控制和管理多架無人機的蜂群操作系統。在該系統的基礎上,還需要一種圖像拼接算法,將無人機接收到的圖像進行同步處理,并合并成一張匹配的圖像。整合后的圖像可幫助用戶有效了解整體情況并做出決策。然后,需要一種實時物體檢測算法來檢測失蹤人員或入侵者。在物體檢測方面,已經使用了深度學習算法。然而,由于其計算成本較高,處理過程需要在無人機外部進行或作為后處理。
本文提出了一種基于數據分布服務的蜂群偵察無人機系統,如圖 1 所示,該系統使用安全的集成指令同時控制和操作多架無人機。所提出的系統接收來自每架無人機的獨立圖像,并對圖像進行拼接,同時實時檢測無人機內的物體。因此,地面控制系統(GCS)可實時提供全面的態勢感知。通過基于無人機獲取的拼接圖像的目標檢測測試,對所提出的系統進行了驗證。
本文的主要貢獻可歸納如下:
提出了一種基于無人機圖像的實時目標檢測方法。以每秒處理 10 幀(fps)為目標,設計了一個擬議的蜂群偵察無人機系統,用于執行實時目標檢測。為了在無人機使用的 Jetson Xavier NX 系統中達到 10 幀/秒的要求,提出了針對輕量級網絡的濾波器剪枝方法,以實現物體檢測性能。
為蜂群無人機系統提出了實時圖像拼接方法。提出的圖像拼接方法利用無人機產生的附加信息有效地匹配特征。
對無人機進行飛行實驗,以驗證所提方法的可行性。
本文其余部分的結構如下。第二節介紹了無人機群系統和無人機圖像目標檢測的相關研究。第三節介紹了擬議的具有空中圖像拼接和實時目標檢測功能的蜂群偵察無人機系統的總體結構。第四節簡要介紹了實驗裝置和結果。第五節討論本文的結論。
這項工作比較了有監督的機器學習方法,使用來自建設性模擬的可靠數據來估計空戰期間發射導彈的最有效時刻。我們采用了重采樣技術來改進預測模型,分析了準確性、精確性、召回率和f1-score。事實上,我們可以識別出基于決策樹的模型的顯著性能和其他算法對重采樣技術的顯著敏感性。具有最佳f1分數的模型在沒有重采樣技術和有重采樣技術的情況下,分別帶來了0.379和0.465的數值,這意味著增加了22.69%。因此,如果可取的話,重采樣技術可以提高模型的召回率和f1-score,而準確性和精確性則略有下降。因此,通過建設性模擬獲得的數據,有可能開發出基于機器學習模型的決策支持工具,這可能會改善BVR空戰中的飛行質量,提高攻擊性任務對特定目標的打擊效果。
具有高度自主性的軍事系統發展帶來了許多作戰優勢。這些系統通常是高度協作的,并允許優化對復雜問題的多效應對。人工智能,包括深度強化學習,有助于提高這些系統的效率。這項工作提出了一個與信任這些算法有關問題的綜合觀點,并提出了一些改善人機信任的準則。這項工作是在由歐盟資助的30個合作伙伴歐洲財團委托編寫的報告框架內完成的。
法國和英國在2010年啟動了一項計劃,評估和開發 "海上反水雷"(MMCM)能力,包括在與母艦安全距離外遠程操作的無人系統。通過持續化解靜態水下威脅,這些系統將提供戰略、行動和戰術上的機動自由,確保海上力量的安全投送,包括在海峽等高風險地區。
MMCM計劃的目標是提供一種新的敏捷的、可互操作的和強大的水雷戰能力。它將有助于在現有水雷戰艦退役時取代它們。這一雙邊計劃于2010年底根據法國和英國之間的《蘭開斯特宮條約》正式啟動。在2018年1月的法國/英國峰會上,法蘭西共和國總統和英國首相申明了他們打算迅速將該系統投入作戰服務[13]。
特別是,在2020年測試了四種作戰方案,分別采用了:一個水面無人機及其探測聲納、一個拖曳聲納、兩個水下無人機和一個水下滅雷機器人。前兩種情況主要是隨著任務的進行對威脅進行探測、分類和定位,其次是通過與前一次任務的數據進行比較來改變探測結果,最后是重新定位和識別幾枚地雷并解除其中一枚地雷。
該計劃的核心是在水下環境中自主發展的能力。這種自主性是通過使用人工智能算法,特別是DRL來實現的,以便自主地將無人機從母艦上移開[14]。盡管水下無人機必須能夠自主行動,但仍有許多人機互動:任務準備、驗證地雷分類和實時任務監測、授權投擲炸藥。這種人機互動是由MMI(人機界面)實現的,比如你會發現下面這個界面。
有一些項目旨在優化這些關系并建立信任關系:例如,泰雷茲國防任務系統公司DxLab的AR{iA}NE項目,旨在顯示操作者和人工智能之間可以有真正的互動[14]。人工智能在這里由控制臺的下半部分代表。它的突出顯示取決于性能指數:這就是人工智能以非常直觀的方式與操作者交流的方式。這個演示設備是為工業展覽準備的。它的設計經過特別考慮,給人以未來主義的印象,讓客戶感覺到他正在與人工智能進行交流。該控制臺集成了一個軟件分析界面,為聲納數據的利用提供了實質內容,因此非常適用于研究人機互動,更確切地說,是人機互動。
國防公司,如泰利斯、空客和MBDA,正在開發項目,旨在提供反無人機(UAV:無人機)解決方案。商用無人機的擴散化和相當便宜的價格引發了安全和保障問題。例如,在無人機和飛機之間發生了一些事件,還有一些情況,如跨越邊界和在監獄中走私貨物(武器、毒品),或向目標運送爆炸物。這些公司提出了智能解決方案,可以檢測無人機,但也可以通過高度的自主性和人類的環形控制來消除它們。這些系統可以對敵方目標進行探測、識別、定位和消滅。反無人機問題被概念化,并通過以下步驟得到部分解決[16]:
最新項目的目標是創建和展示一個完整的反無人機系統,能夠解決上述六個步驟,并整合兩個主要部分,一個地面部分和一個空中部分。地面部分可由一個作為指揮和控制站的地面控制站和一些地面傳感器組成,其數量和在空間的分布可根據需要和保護空間的配置進行調整。空中部分可以由盟軍無人機隊組成,這些無人機可以是相同的,具有類似的能力(同質蜂群),也可以具有不同的能力,每個都有一套獨特的專長(異質蜂群)。擁有一個空中段提供了兩個優勢。首先,在傳感方面,它使系統具有盯住目標的能力,可能為人類操作員提供實時視覺反饋,但也能對敵方無人機及其有效載荷進行更詳細和有效的分類和識別。第二,在消滅方面,它應該允許防御者部署更多的外科手術式的反措施,特別是避免過多的附帶損害或不想要的副作用。許多國防公司正在為中和部分開發智能DRL解決方案[17],以便在盟軍無人機群中做出自主決定。DRL算法也可用于指揮和控制站,以監測整體作戰情況。
未來戰斗航空系統(FCAS)是一個 "系統簇",它涉及到新一代戰斗機(NGF)、遠程航母(RC)和一個將所有參與者連接在一起的戰斗云系統: NGF、RC群、衛星、戰艦、地面系統等。
遠程運載器是用來做什么的?設想的應用是非常多樣的:通過幾十架飛機的飽和來穿透敵人的防御,誘騙敵機,執行電子戰任務(干擾),為其他飛機指定目標,執行偵察任務,甚至發射導彈而不是作戰飛機。這些新型機組成員為未來幾十年的空中行動開辟了一個巨大的可能性領域:用無人機代替戰斗機發射導彈,這樣就不會有飛行員的生命危險,騷擾敵人的防線,執行偵察任務,等等。這些設備也可以假裝成駕駛飛機,吸引敵人的巡邏隊,為作戰飛機打開缺口。在遠程載具的核心,制造商正在開發人工智能算法,特別是DRL[18],以控制每架無人機,但也控制無人機群。DRL算法出色的適應性在這里被用來管理高層和自主決策。
"系統簇"的非常高的互連性也要求建立一個抗網絡攻擊的戰斗云。這些攻擊確實可以破譯通信以獲取情報,甚至干擾或破壞通信,或者更糟糕的是,向半自主系統發出錯誤指令。DRL算法可用于應對正在進行的網絡攻擊。這些攻擊確實可以快如閃電,而人類沒有能力做出足夠快的反應。因此,必須使用智能自動系統來抵御攻擊。DRL似乎再次成為快速、自主和適應性行動的良好解決方案[19]。
正如我們所說,在自主系統中使用人工智能有很多問題:倫理、法律、政治等等。這就是為什么有必要在這場技術革命的不同參與者之間建立一種信任關系,從研究人員到用戶和工程師。
數學上的保證。為了確保我們提出的技術解決方案的可靠性,最好能在理論上和數學上保證算法的性能。然而,重要的是要記住,有關的保證在性質上是概率性的,因為大多數ML算法的性質是不確定的。因此,我們將試圖證明,例如,如果該算法有無限量的訓練數據可供支配,它就能夠完成提交給它的任務。或者,人們可能會試圖證明該算法收斂到一個解決方案,而且幾乎可以肯定它是以一個已知的和可控的速度收斂的。這種類型的結果保證存在于許多經典的ML算法中,用于解決某些簡單的問題,并受制于關于訓練和測試數據的某些假設。人工智能的整個研究領域都是關于知道什么是或不是可以通過ML學習的問題,以及什么精度:可能是近似正確的學習[20]。在RL方面還有很多工作要做,它仍然是一種年輕的技術,但理論上的保證越來越多[21]。然而,這些理論結果一般都是基于非常強的假設,這些假設往往是還原性的,并沒有考慮無人機在實踐中使用的非常真實的環境,這有時會使它們不那么相關。
可解釋人工智能。第二個軸心是要建立對人工智能所支配的自主系統的信任,即其行動的可解釋性。當我們可以理解導致人工智能獲得結果的原因時,一個算法被認為是可解釋的。一般來說,目前可解釋的ML算法(XAIs)能夠報告相對簡單的決定,例如指出圖像的哪些區域被用來確定它是一個蘋果。關于RL,為算法的可解釋性設想了幾條途徑。
讓我們細化前面的觀點,像一些作者那樣考慮人工智能算法的區別,這些算法不僅是可解釋的,而且是可解釋的。事實上,為了解釋它們的推理,已經建立了一些后驗算法,但它們并不能幫助理解初始算法的 "黑匣子"。出于這個原因,人們正在對可解釋的人工智能方面進行研究,這樣就可以說明導致輸出的不同推理步驟[24]。即使DRL算法的參數數量非常大,仍然是廣泛實施這種方法的技術障礙,但可以預期在這個領域會有明顯的進展。
對受DRL支配的自主系統有信心的第二個論據是測試期間的性能測量。事實上,即使目前關于人工智能可解釋性的知識狀況不允許完美地理解算法是如何達到其輸出的,但實踐中的結果是好的,表明有非常大的發展潛力。
對其他問題進行歸納的能力。首先,用戶對人工智能技術的信心可以建立在算法解決其他問題的良好能力上,或多或少有些類似。例如,眾所周知,Deepmind的AlphaFold 2 DRL算法在預測蛋白質結構方面特別出色[25]。這種優秀的聲譽源于該算法的大量已發表的測試研究,這讓該領域的大多數科學家對其給予了極大的肯定。雖然蛋白質結構預測與自主無人機的使用無關,但將蛋白質中單個原子的放置與無人機在協作作戰任務中的放置相提并論是很容易和有意義的。在前一種情況下使用DRL,以及所獲得的結果,也有可能使最終用戶對DRL應用于另一個領域的潛力充滿信心。
算法驗證。然而,與經典的ML算法不同,不可能在RL中實現我們在第一部分討論的驗證測試。這是因為所涉及的數據是隨時間變化的,而且所提出的問題也是不同的。要限定所識別的對象是否被正確預測是很容易的(是的,它是一個蘋果,或者不是,它是一個梨子)。另一方面,量化無人機和飛機之間合作的成功要微妙得多:許多標準必須被評估(無人機的定位、它們的速度、它們不同行動的時間)。因此,RL算法的性能測量是通過建立針對要解決的任務的指標來完成的。例如,對于負責訪問一個空間區域的無人機來說,比較正確識別目標的比例、任務完成時間或其他更精確的指標是相關的,這取決于情況和要解決的具體問題。
爭取在RL中實現更好的可重復性。最近還強調了RL算法的一個臭名昭著的問題,即當一些研究人員想要復制他們同事的結果時,一些算法的不穩定性[26]。實驗的可重復性是科學中的一個基本問題,因為它構成了被測試定律(例如,萬有引力定律)的有效性證明。在這里,算法性能的證明之一是可以讓它多次承受相同的情況,并在不同的迭代中獲得非常相似的結果。為了克服缺乏可重復性的問題,新的算法開發框架、新的測試程序和明確的指導方針已經到位,使科學和開發團隊對他們的結果有了更大的信心。
優化人機互動
人機協作是現代(協作)戰爭的核心,但人類和智能機器之間的成功協作主要取決于信任。然而,安全與新興技術中心對自主性和人工智能相關的研究[27]發現,在美國軍方的科技項目投資中,789個自主性相關項目中只有18個,287個人工智能相關項目中只有11個提到 "信任 "一詞。研究人員沒有直接研究信任,而是將開發更透明、可解釋和可靠的人工智能作為優先事項。這些努力對于培養人機團隊的信任是必要的,但技術驅動的解決方案并不總是考慮這個等式中的人類因素。
對高性能技術的不充分信任會導致人工智能系統的使用不足或廢棄,而對有限的或未經測試的系統的過度信任會導致對人工智能的過度依賴。這兩種情況在軍事背景下都有獨特的風險,包括事故、友軍交火、對平民的意外傷害和附帶損害。為了讓士兵對自主系統有信心,他們必須知道系統在遇到障礙物時將會做什么。從系統工程的角度來看,這意味著要指定和實施一些能力,如通過假設查詢和信息交流進行信息檢索,以便系統能夠以人類操作者容易理解的方式解釋其推理和行為。換句話說,"在系統中建立信任 "是一種以技術為中心的方法,通過改善與信任密切相關的系統特性和能力,如透明度、可解釋性和可靠性,來建立人機團隊的信任。
DARPA的Squad X計劃[28]將美國陸軍和海軍陸戰隊的步兵小隊與配備先進傳感設備的無人地面和空中飛行器配對,以提高敵對環境中作戰人員的態勢感知和決策。X小隊在2019年初進行的一系列實驗[29]的主要收獲之一是,將人工智能納入任務的規劃和演練階段非常重要。這樣做,士兵可以 "在如何信任人工智能方面進行搏斗"。最終,目標是讓人類作戰人員更好地了解這些自主系統在戰場上的表現,并對它們作為未來任務中的伙伴更有信心。
要怎樣才能讓人們信任技術?在使用先進系統時,一些個人或群體是否更有可能感到自信,而另一些人則更不情愿?人機團隊的部署環境如何影響信任?認知科學、神經科學、心理學、通信、社會科學以及其他研究人類對技術的態度和經驗的相關領域的見解為這些問題提供了寶貴的啟示[30]。
解決道德問題
"殺手機器人 "一直引起人們對潛在自主能力的恐懼[31]。法國國防倫理委員會在2021年批準在武器系統中引入一定程度的自主能力[32]。在法國,沒有辦法授權 "殺手機器人"。這一表述指的是LAWS(致命性自主武器系統)。這只是證實了法國幾年來在這個問題上的立場。但事情很復雜,倫理委員會認為不反對引入一定程度的自主權,因此不反對使用PAWLS(部分自主武器致命系統)。將LAWS與PAWLS區分開來的是 "性質上的差異,這與人類在某些關鍵功能中的地位有關"。致命武器系統的設計是為了演化出自己的操作規則,并自行重新定義其任務。它們不需要指揮部對情況的評估。PAWLS可以自主地被賦予某些任務的責任和執行,但只是暫時的,而且只用于識別、分類、攔截或接觸任務。道德委員會明確表示,它不能在沒有人類控制的情況下采取致命的舉措。即使在這個限制性框架內,也必須制定技術和組織保障措施,以防止任何過度行為。委員會認為,應繼續在與國防有關的人工智能和武器系統自動化領域進行研究。其目的是避免任何 "科學和技術上的放棄",防止對手開發致命性自主武器,并在對手使用這種武器時進行防御。
自主系統不應
G1. 為自主軍事系統上嵌入式人工智能的操作使用案例制定并提供一個法律框架。
G2. 確保在所有情況下都有人類的監督,有人類在環形系統。
G3. 保證在發生事故時的責任追溯。這種責任必須始終由人承擔,而不是由機器承擔。
G4. 開發符合人體工程學的人機界面,允許人與機器之間的對話和理解。
G5. 開發穩健、安全、準確、可重復和可靠的算法,以及評估這些標準的方法。
G6. 為與人工智能互動的軍事人員建立培訓計劃,讓他們了解這些算法的機制、能力和局限性。
G7. 通過對算法、數據和設計過程的評估,確保責任、問責和可審計性。
G8. 制定技術評估程序,以評估對上述準則的遵守情況。
G9. 加快歐洲在人工智能技術方面的培訓工作,特別是針對學術和工業環境的DRL。
G10. 加快歐洲在整合人工智能的國防系統方面的立法工作,以保持歐洲在這一法律方面的領先地位,并確認其在這一領域的領先形象。
G11. 發展國際合作,在自主系統領域進行立法。
G12. 促進研究人員、哲學家、律師、政治家和業務人員之間關于自主系統的對話。
G13. 在有關國防人工智能的研究和應用項目中始終包括信任的概念。
G14. 對協同作戰的未來利害關系有一個明確而具體的看法,以便將人和他們的利益置于系統的中心。
這項工作提出了一個在歐盟項目FOLDOUT中開發的融合和跟蹤系統,旨在通過融合不同的傳感器信息和提出對監視區域內檢測到的目標自動跟蹤來促進邊防工作。FOLDOUT的重點是歐盟內部和外部地區的穿透式樹葉檢測。融合多個傳感器信號可以提高檢測的有效性,特別是在森林和其他被樹葉遮擋的地區。我們使用加權地圖(也稱為熱圖)來結合多傳感器信息;對所產生的融合目標進行跟蹤;根據對融合檢測的時間關聯的成本計算來創建或更新跟蹤。我們比較了來自單個傳感器的跟蹤結果和來自融合目標的跟蹤結果,這些數據是在模擬邊界收集的,代表了保加利亞的實際歐盟邊界。結果表明,如果根據融合后的數據而不是單個傳感器的信息進行追蹤,追蹤效果會得到加強。
邊防軍的主要興趣是在全球地圖上對監視區域內檢測到的人員進行定位和跟蹤。為了實現這一目標,首先要將不同傳感器系統觀察到的單個人的探測結果進行融合。當檢測結果相互關聯并保持一致時,就可以在一個共同的地圖上對單獨的目標進行跟蹤。
圖2:指導動作(紅線),扮演一個非法越境的場景:1.一個人通過步行越過邊境。2.該人沿著邊境小路向大路走去。3.此人停下腳步,在路上停留很長時間(可能是在等待汽車中的走私者)。4.在某一時刻離開道路,躲進樹叢中。5. 在樹葉中,該人再次回到路上(可能再次尋找汽車)
RGB和熱像儀中的人員檢測
基于深度學習的綜合物體檢測被應用于相機圖像上。深度學習方法已被證明優于以前的最先進的機器學習技術。深度神經網絡(DNNs)模仿了大腦感知和處理信息的方式。與以前的方法相比,DNNs學習了諸如人物檢測等任務所需的特征。近年來,DNN在物體檢測和分類任務上表現出突出的性能[9, 10]。在這項工作中,物體檢測是基于一個著名的DNN實現,即YOLO檢測器[11]。
PIR傳感器中的人員檢測
探測器經過調整,使被動紅外傳感器在PIR周圍7.5米的半徑內觸發人的存在。
在這項工作中,我們使用加權地圖來提供傳感器數據的層次(也稱為HeatMaps),并以邏輯和數學的方式組合它們。它的動態是完全使用不同傳感器模式的傳感器檢測假設的事件驅動。這些傳感器假設包括位置(WGS84基準)、時間戳(Unix時間戳)和權重(例如,從傳感器檢測中獲取的信心)。為了實現這一點,有兩個組件是必不可少的:加權分布圖(HeatMaps);線性意見庫。圖3顯示了這種方法的基本概念。
圖3:融合方法的基本概念(左),作為使用兩個加權分布圖(熱力圖)的例子。應用不同的衰減函數(右)來建立加權分布圖的時間動態行為。
加權分布圖(熱圖)
加權分布圖是我們數據融合方法的兩個基本組成部分中的第一個。加權地圖的基本思想是,保持和更新關于不同傳感器探測假設的時空信息。加權地圖來自于概率占用網格,但以加權的形式解釋傳入的數據。此外,還采用了時間上的衰減來模擬傳感器數據的及時行為。權重被存儲在一個可選擇分辨率的數組中,代表WGS84坐標中感興趣的矩形區域。圖3展示了用于模擬加權分布圖動態行為的可能衰減函數。
通常,加權分布圖對應于任何一種傳感器數據或傳感器模式(例如,從攝像機圖像中檢測人的邊界框)的時空。傳感器數據被攝取到一個專門的加權圖中,這導致加權圖的值根據傳入的傳感器假設的權重而增加(替換)。相對而言,衰減將及時應用到加權分布圖的值矩陣中。每次傳感器假設被攝入分布圖,它將通過重新計算加權分布圖的權重和衰減以前狀態的值來更新。
最后,線性意見庫允許我們結合多個加權分布圖,從而結合多傳感器模式,目的是減少傳感器系統的整體錯誤發現率。
線性意見庫(LOP)
我們融合方法的第二個重要組成部分是線性意見庫[8]。
每當一個加權分布圖的狀態由于新的傳感器檢測假設而被更新時,就會應用LOP。在評估了LOP之后,閾值處理使我們能夠產生警報。為了確定警報的位置,在組合值矩陣中超過閾值的區域使用分割算法(blob檢測)。這些警報是由多個傳感器假設產生的,用于為跟蹤提供必要的輸入數據,這將在下一節中描述。
為了跟蹤越境進入禁區或敏感區域的入侵者的行動,我們開發了一種基于空間和時間上關聯目標檢測的成本計算的定制算法。該跟蹤系統的工作原理是完全基于目標的位置和時間戳建立一個模型。
在第一次檢測目標時,該模型以該檢測的位置和時間戳進行初始化。軌跡模型是用以下元組定義的:???? = (????,????,????)。
如果幾個目標檢測同時發生,那么創建的模型模板數量與同時收到的檢測數量相同。后續的檢測被添加到一個給定的軌道模型中,這取決于將檢測添加到軌道中的成本。該成本被定義為傳入的檢測和軌跡候選者之間的距離。
在有多個傳入的檢測和多個軌跡候選者的情況下,已經實施了匈牙利算法[12],使檢測和軌跡之間的關聯產生最小的成本。