亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

本研究的重點是研究在一個場景中如何將武器分配給多個目標,特別是當防空系統面臨眾多目標(如低空火箭或無人機群)時。武器摧毀這些目標的準確性在很大程度上取決于發射器與目標的正確對準,而發射器的方位誤差會影響對準的準確性。因此,在解決武器-目標分配(WTA)問題時,考慮發射器方位角造成的航向誤差至關重要。為解決這一問題,使用旋轉策略使方位角與目標的接近方向保持一致,可以顯著提高對目標的殺傷概率(PK)。然而,其單一的實施方式存在局限性,如果沒有足夠的時間旋轉到所需的方位角,可能會導致交戰失誤。因此,作為一種補救措施,我們提出了一種新的 WTA 方法,該方法結合了旋轉和旋轉固定策略,改善了因旋轉時間和航向誤差而失去交戰機會的弱點。通過數值模擬評估了這種方法的有效性。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

隨著空對空導彈有效射程的增加,人類操作員越來越難以保持保證無人機安全所需的態勢感知能力。這項工作提出了一種決策支持工具,幫助無人機操作員在超視距(BVR)空戰場景中評估不同選項的風險,并據此做出決策。早期的工作側重于單枚導彈造成的威脅,而在這項工作中,將思路擴展到了多枚導彈的威脅。所提出的方法使用深度神經網絡(DNN)從高保真模擬中學習,為操作員提供一組不同策略的結果估計。研究結果表明,所提出的系統可以管理多枚來襲導彈,評估一系列選項,并推薦風險最小的行動方案。

圖 1:無人機面臨三枚來襲導彈的情況符號表示。導彈當前的確切位置未知,但可以估計發射的時間和位置。在圖 3-6 中,飛機圖標周圍的彩色區域用于顯示朝該方向進行規避機動的預測未擊中距離 (MD)。據此,操作員在決定選擇何種航線時,可以在任務目標和風險之間做出權衡。

自第一次世界大戰以來,空戰發生了翻天覆地的變化。傳感器、武器和通信技術的進步使飛行員能夠在越來越遠的距離上與敵機交戰。這些進步推動了從 “視距內 ”空戰向 “視距外 ”空戰的過渡。在 BVR 中,來襲導彈的飛行時間可能長達數分鐘,這使得無人機操作員很難評估所有來襲數據并選擇最佳行動方案。事實上,操作員往往會失去對某些來襲威脅的跟蹤。因此,需要一種能夠同時處理多個威脅并提供整體分析的支持工具。這種工具應支持操作員平衡風險與任務目標之間的關系,因為風險最低的選擇往往是完全忽略任務,而另一方面,忽略風險最終可能導致巨大損失。

由于雷達制導導彈的飛行時間可能很長,因此 BVR 空中格斗包含了一種可與星際爭霸等即時戰略游戲相媲美的元素。重大挑戰包括高度非線性動態、信息不確定性以及對手的未知戰略和目標。機載傳感器可以根據敵機類型、電子戰反制設備和天氣情況輸出對手位置的估計值。然而,雖然在面對敵方時并不總能獲得精確信息,但操作員通常知道敵方飛機和武器系統的能力,而本文提出的方法將利用這些信息。

在之前的工作中,研究了無人機面對一枚來襲導彈的情況。利用強化學習(RL),我們計算出了最佳規避機動和執行機動時的失誤距離(MD)。然而,這種方法無法用于同時面對多架敵機的情況。當考慮從不同角度射來的多枚導彈時,相對于一枚導彈的最佳規避機動與另一枚導彈不同,顯然不能同時執行兩種不同的機動。此外,針對一對來襲導彈威脅的最有效規避行動,可以通過離線求解特定問題并存儲結果來確定,但由于可能的威脅組合數量龐大,這種方法變得不切實際。

本文首先要指出的是,對于人類操作員來說,MD 估值是一種直觀的風險估計。因此,我們希望為操作員提供一系列選項,如圖 1 所示。圖中的黃色區域將根據風險程度進行著色。如果向南執行規避機動,MD 值為 2 千米,則會被染成綠色,而向西執行機動,MD 值為 0.05 千米,因此會被染成紅色。

在面臨上述多種威脅的情況下,要估算特定方向上特定機動的 MD,我們的步驟如下。首先,我們學習一組預定義的規避機動在不同羅盤方向上的單個威脅的 MD。然后,由于我們需要擔心的是最小的 MD,因此我們只需遍歷所有威脅,并保存每次機動的最小失誤距離。

通過這種方法,可以提供一種決策支持工具,為一系列選項提供風險估計,而不會丟失任何已檢測到的威脅。我們的方法還能讓操作員意識到何時沒有安全的撤離選擇,例如在近距離受到來自相反方向的威脅時。為更絕望的措施提供決策支持,如發射所有剩余武器然后失去無人機,或依賴模型無法捕捉的方法,如電子戰或箔條/照明彈系統。

因此,這項工作的主要貢獻是提供了一種方法,使無人機操作員能夠評估和處理任意數量的來襲威脅,從而擴展了先前考慮單一敵對導彈的工作。工作概述如下: 第二節回顧了相關工作。第三節介紹 ML 和導彈制導的背景,第四節正式定義問題。第五節介紹了建議的解決方案,第六節展示了仿真結果。最后,第八節將進行討論并得出結論。

付費5元查看完整內容

選擇要攻擊的威脅是戰場上最重要的決策之一。該決策問題表現為武器-目標分配問題(WTA)。在以往的研究中,動態編程、線性規劃、元啟發式和啟發式方法已被用于解決這一問題。然而,以往的研究因建模過于簡化、計算負擔重、缺乏對干擾事件的適應性以及問題規模變化時的重新計算等問題而受到限制。為了克服這些局限性,本研究旨在利用強化學習和圖神經網絡來解決 WTA 問題。所提出的方法反映了現實世界的決策框架--OODA-loop(觀察-定向-決策),具有很高的實用性。在各種環境中進行了實驗,并通過與現有的啟發式和元啟發式方法進行比較,證明了所提方法的有效性。所提出的方法為戰術指揮與控制中的智能決策引入了一種開創性的方法,傳統上被認為是人類專家的專屬方法。

本研究將強化學習與圖形神經網絡(GNN)相結合。強化學習與 GNN 的結合是最有前途的領域之一,因為 GNN 能有效地表示復雜的交互作用。為了應用強化學習,DWTA 被建模為 POMDP(部分可觀測馬爾可夫決策過程)。為了優化強化學習智能體的策略,采用了近端策略優化(PPO)。學習環境是一個仿真模型,反映了對真實世界的詳細描述。本研究的貢獻如下。

  • 本研究利用深度強化學習和圖神經網絡在各種情況下做出優化決策,為復雜性和不確定性主導的情況提供豐富的目標導向表征。

  • 圖神經網絡有助于提高我們方法的可擴展性,從而增強其實際用途。

  • 提出的方法通過人工智能技術的增強,為傳統上由人類專家主導的領域(如戰術指揮和控制)的決策制定帶來了創新。

  • 從整數編程中定義的問題出發,利用馬爾可夫狀態的理論基礎和圖建模技術系統地構建了 POMDP。與依靠直覺和經驗法則推導 POMDP 的傳統方法相比,這是一種更有條理的方法,更容易看出 POMDP 與所定義問題之間的聯系。

付費5元查看完整內容

人類飛行員和無人駕駛飛行器在有人-無人團隊合作(MUM-T)中共同實現軍事目標。在飛機駕駛艙內,飛行員與無人系統之間的互動究竟是怎樣的,這仍然是一個未決問題。在大多數方法中,無人平臺由飛行員授權,飛行員負責監控衍生行動(Miller 等人,2005 年;Uhrmann 和 Schulte,2012 年;Doherty、Heintz 和 Kvarnstr?m,2013 年)。在現代空戰中,戰術形勢可能在幾分鐘甚至幾秒鐘內發生變化,需要飛行員調整計劃。當飛行員除了自己的飛機外,還要負責引導多架無人駕駛飛機時,計劃修正的時間壓力將非常大。當技術進步(如通過決策支持系統和自動任務執行)提高決策時間時,這種壓力將進一步加劇。

為了加快決策速度,可能會賦予自動化更多的權力,或者采用數據驅動的方法。然而,當權力轉移到自動化和決策轉移到無法解讀的算法中時,飛行員是否仍能進行有意義的控制尚不清楚(Lepri, Staiano, Sangokoya, Letouzé, & Oliver, 2017; Parasuraman, Sheridan, & Wickens, 2000)。

因此,本文討論在高度動態的軍事環境中對無人飛行器進行有意義控制的要求。將討論任務的制定作為人類與自動化之間達成共識的一種手段,以及對任務委托、無人飛行器處理方法和無人飛行器反饋的要求。

付費5元查看完整內容

在這篇文章中,作者試圖描述在設計防空系統的地面雷達部分(被動雷達和主動雷達)時需要考慮的主要因素--機動性--的特點,以使它們能夠在現代戰場上運行。就反輻射導彈的使用與無源雷達和有源雷達的機動性之間的關系提出了最新的理論觀點,認為無源雷達和有源雷達的機動性是抵御此類武器的關鍵能力。作者特別強調,反輻射導彈是當今有效防空系統的最大威脅,而當今防空系統的特點是高度復雜。他還強調,有必要將無源雷達和有源雷達合并為一個系統,以簡化其工作參數,從而確保其使用的復雜性。這些能力的獲得將確保有效地確定空中監視雷達區域的參數。

圖:反輻射導彈 - 參數。

付費5元查看完整內容

本研究為基于人工智能的復雜作戰系統的運行和開發建立了 MUM-T 概念和分類系統。分析了該系統的核心方面:自主性、互操作性和程序級別。人工智能 MUM-T 可提高有人駕駛系統的生存能力、擴大其作戰范圍并提高戰斗力。利用美國和英國正在建造的人工智能 MUM-T 綜合作戰系統的數據,分析了技術挑戰和項目水平。目前,MUM-T 處于有人駕駛平臺和無人駕駛飛行器平臺復合運行的水平。從中長期來看,無人地面飛行器、無人水面飛行器和無人水下飛行器等異構平臺之間的互操作通信是可能的。根據人工智能 MUM-T 系統之間互操作性的通用架構和標準協議的發展水平,MUM-T 可以從 "1 到 N "的概念發展到從 "N 到 N "的各種操作概念組合。本研究與現有研究的不同之處在于,MUM-T 系統中體現了第四次工業革命的核心技術,如人工智能、自動駕駛和數據互操作性。此外,通過在現有的無人系統分類法中體現人工智能和自主性,建立了人工智能支持的自主 MUM-T 操作和設施分類系統,并在此基礎上對級別和程序進行了分析。

本研究確立了有人無人協同作戰(MUM-T)的概念,目的是操作、開發和利用智能聯合作戰系統。此外,它還分析了互操作性、自主性、挑戰和計劃水平。人工智能支持的自主無人 MUM-T 提高了有人系統的生存能力,擴大了作戰范圍,并顯著提高了作戰效率。與以往不同的是,MUM-T 的概念正隨著人工智能的發展而不斷擴展,互操作性和自主性也在相應提高。美國和北大西洋公約組織(NATO)國家提出了未來防御領域的挑戰,并在無人系統(UMS)和 MUMT 層面開展了解決這些挑戰的計劃。本研究分析了自主 MUM-T 聯合作戰系統的運行和使用所面臨的技術挑戰和計劃水平,并介紹了基本要素技術。研究方法基于現有定義和第四次工業革命建立了 MUM-T 概念。并利用北約、美國和英國的數據分析了互操作性、自主性、挑戰以及技術和利用方面的計劃水平。

圖 2 基于 NIST 和北約分類標準的人工智能自主 MUM-T 系統分析

美國防部(DoD)對 MUM-T 的定義各不相同。美國 陸軍無人機系統卓越中心(UAUCE)將有人駕駛平臺和無人機視為單一系統。有人系統和無人系統(如機器人、傳感器、無人飛行器和作戰人員)的集成增強了態勢感知、殺傷力和生存能力[1]。國防部將這種關系視為執行共同任務的綜合團隊,美國陸軍航空卓越中心(UAACE)將其定義為同時操作士兵、無人機和無人地面飛行器(UGV),以提高對態勢的了解和生存能力[2]。它采用了標準化的系統架構和通信協議,使來自傳感器的精確圖像數據能夠在整個部隊中共享。目前,它在國防領域的應用最為廣泛。陸軍航空動力局(AFDD 2015)將其定義為:為每個系統提供特殊功能,使現有有人平臺和無人資產能夠合作完成同一任務。這是一種規避風險的方法,通過從空中、陸地和海上無人系統向有人資產傳輸實時信息,提高單兵作戰人員的態勢感知能力[3]。圖 1 是戰場上 MUM-T 系統的層次示意圖。

在世界經濟論壇(WEF)議程的第四次工業革命(Fourth IR)之后,數字化(I2D2)作為一項核心技術被提出。這些技術在未來科學中具有自主、分析、通信和邊緣計算的特點。該技術的特征組合構成了自主系統和智能體(智能+分布式)、擴展領域(互聯+分布式)、作戰網絡(互聯+數字化)、精確作戰領域(智能+數字化)。智能人工智能將改變戰爭的格局,而數字數據的可用性將使分布式和互聯(自主)系統能夠進行分析、適應和響應。這些變化反過來又可能通過預測分析支持更好的決策。

北約(2020 年)以第四次工業革命的核心技術特征及其組合為導向,構建復雜的作戰系統[4-6]。美國國防發展機構(ADD 2018)認為,MUM-T 復雜系統是一種無人作戰系統,可以補充或替代作戰人員的能力,以最大限度地提高作戰效率,最大限度地減少戰場情況下的人員傷亡。它被定義為以一種復雜的方式操作包括戰斗人員在內的有人作戰系統的作戰系統[7]。考慮到美國國防部(2010)、北約(2020)和 ADD(2018)的定義,人工智能支持的自主 MUM-T 復雜作戰系統(以下簡稱 "自主 MUM-T")和 OODA 循環如表 1 所示[1,5,7]。本研究所指的 MUM-T 復合作戰系統通過聯合指揮與控制,在空中、地面、海上、太空、網絡和戰爭等所有領域提供觀察、分析和控制,可通過整合/連接所有軍事力量的有人和無人系統進行操作。它被定義為 "根據決策和行動執行聯合行動的作戰系統"。

圖 3 北約 STANAG LOI 5 和自主邊緣計算 MUM-T 互操作水平設計

付費5元查看完整內容

本文探討了在實際戰場場景中增強態勢感知的聯合通信和傳感技術。特別是,提出了一種空中可重構智能表面(ARIS)輔助綜合傳感與通信(ISAC)系統,該系統由單個接入點(AP)、ARIS、多個用戶和一個傳感目標組成。通過深度強化學習(DRL),在信號干擾比(SINR)約束條件下聯合優化了接入點的發射波束成形、RIS 相移和 ARIS 的軌跡。數值結果表明,通過抑制自干擾和雜波回波信號或優化 RIS 相移,所提出的技術優于傳統的基準方案。

隨著設備種類的增加,戰場環境變得更加復雜多變,對先進無線傳感與通信技術的需求也在不斷增加。最近,綜合傳感與通信(ISAC)被認為是未來使用毫米波(mmWave)等高頻段無線網絡的一項有前途的技術[1]。特別是,由于雷達傳感和無線通信共享相同的頻譜和硬件設施,ISAC 有可能提高戰場上的整體作戰效率[2]。

ISAC 下行鏈路系統的整體流程一般是由接入點(AP)向用戶發射 ISAC 信號,并處理目標反射的回波信號。然而,由于鏈路的主要視距(LoS)信道特性,軍事場景中的 ISAC 無法避免被各種障礙物(如山脈)阻擋的問題,并隨著通信距離的增加而造成嚴重的路徑損耗[3]。為了克服 LoS 信道的物理限制,可重構智能表面(RIS)作為一種關鍵技術應運而生,它通過調整相移來重新配置信號傳播,從而擴大目標探測和通信范圍[4],[5]。作者在文獻[5]中提出了 RIS 輔助單目標多用戶 ISAC 系統中的聯合發射和接收波束成形技術。然而,在接入點和地面節點之間部署地面 RIS 在動態戰場環境中提供足夠的服務質量(QoS)方面存在局限性。另一方面,將 RIS 安裝在無人飛行器(UAV)上的空中 RIS(ARIS)可利用移動性在動態戰場環境中提供更有效的感知和通信性能[6]。文獻[7]考慮了由 ARIS 輔助的 ISAC 系統,以重新配置傳播環境,靈活對抗惡意干擾。

之前的研究[6]、[7]中針對傳感或通信網絡的 ARIS 系統的解決方案大多是通過凸優化提供的,無法快速應用于戰場場景。深度強化學習(DRL)方法因其在通過深度神經網絡與環境交互的同時制定策略的優勢,已被積極采用,作為傳統優化方法的替代方案。在 DRL 算法中,眾所周知,深度確定性策略梯度(DDPG)在連續行動空間(如 ARIS 軌跡)中收斂和運行良好[8]。文獻[9]的作者提出了一種基于 DRL 的 ARIS 軌跡設計,用于與車輛進行通信和定位。然而,從實際角度來看,當 AP 工作在全雙工模式時,自干擾問題 [10] 不可忽視,而且還需要一種抑制雜波回波信號的方法 [3]。

這項工作的重點是軍事場景中基于 DRL 的 ARIS 輔助 ISAC 系統,其中多天線 AP 為地面用戶提供服務并探測目標。我們的目標是通過聯合優化發射波束成形、RIS 相移和 ARIS 軌跡,使目標定位的 Cramer-Rao 約束(CRB)[11] 最小化。此外,為了應對自干擾和雜波回波信號帶來的挑戰,我們采用了一種基于無效空間投影(NSP)的接收波束成形方案[12]來抑制這些信號。為了應對所提問題的非凸性,我們提出了一種基于 DDPG 的算法,在與環境交互的同時尋找最優策略。通過模擬驗證,所提出的方法優于其他基準方法,如固定 RIS 相移或不應用基于 NSP 的接收波束成形方案。

本文的其余部分安排如下: 第二節介紹系統模型,包括 ARIS 輔助 ISAC 系統的信道、通信和雷達傳感模型。第三節介紹了所提出的基于 DRL 的算法,該算法旨在最小化整個系統的 CRB。第四節展示了數值結果,第五節為本文的結論。

付費5元查看完整內容

這項工作研究了在任務式指揮設備中嵌入模擬器的實用性和有效性。其目標是僅使用戰區作戰計劃作為模擬輸入,向操作員隱藏所有模擬器細節,使其無需學習新工具。本文討論了一種原型功能,該功能可根據 SitaWare 中生成的作戰計劃以及嵌入式無頭 MTWS 和 OneSAF 模擬器的模擬結果,生成行動方案(COA)分析。在輸入作戰計劃后,指揮官選擇要執行的模擬運行次數,并按下按鈕啟動模擬,模擬在后臺的運行速度比實時運行更快。模擬運行完成后,指揮官可通過圖形和圖表查看結果,對多次運行進行比較。預計未來的能力將允許指揮官模擬任何梯隊和命令,用于訓練和兵棋推演。

付費5元查看完整內容

在作出魚雷裝載決定時,規劃者必須考慮不同反潛戰(ASW)單位的能力和實力、有限的預算和不同的對手潛艇艦隊。目前,Mk-54輕型魚雷的裝填決定是人工做出的,而且沒有一個系統的方法來處理威脅的不確定性。這項研究試圖通過使用隨機優化來確定美國水面艦艇、固定翼飛機和直升機上裝載魚雷的類型和數量,從而為這些決策提供參考,以面對不確定的潛艇威脅,達到預期的殺傷概率。開發了兩種魚雷分配隨機優化模型(TASOM)的配方: TASOM-1,最小化錯過的潛艇數量;TASOM-2,最小化殺傷概率閾值以下的偏差。為了顯示隨機編程方法比典型的確定性規劃的價值,提出了一個概念性案例,旨在代表一個行動,即反潛部隊在一個區域內巡邏對手的潛艇。隨機生成100個威脅場景,其中部署在該地區的潛艇的數量和級別各不相同。TASOM-2的裝載量明顯優于確定性的平均裝載量。所提出的模型與可訪問的用戶界面相結合,為規劃者提供了一個決策輔助工具,以進行敏感性分析,指導不確定情況下的魚雷分配和預算決策。

反潛戰(ASW)被定義為 "為了不讓敵人有效使用潛艇而進行的行動"(參謀長聯席會議2021年,第IV-10頁)。這些行動包括定位、跟蹤和消滅敵人的潛艇。這項研究的重點是最后一項任務。隨著對手繼續現代化和增長他們的潛艇艦隊,尋求以最佳方式為美國海軍的反潛平臺配備能夠有效瞄準這些潛艇的武器。

A. 背景情況

ASW主要由海上巡邏機、水面作戰艦艇及其搭載的直升機和潛艇執行。通信限制和水域管理要求通常使潛艇無法與其他類型的平臺協同作戰。假設友好的潛艇將在不與水面和空中資產重疊的區域進行反潛作戰。本報告將不進一步討論潛艇行動。

巡洋艦和驅逐艦都可以從其水面艦艇魚雷發射管(SVTT)和垂直發射反潛火箭(ASROC)系統中發射輕型魚雷。

P-8 "海神 "是一種多任務海上巡邏機。在進行反潛作戰時,它可以配備輕型魚雷,用來對付對手的潛艇。與水面平臺相比,P-8在搜索潛艇時可以覆蓋更大的區域,并且可以在沒有敵人魚雷的威脅下進行交戰。一個P-8中隊由六或七架飛機組成,一個分隊由四或五架飛機組成。中隊和分隊可以在世界各地的美國、盟國和合作伙伴的空軍基地進行部署和行動。

MH-60R海鷹直升機與P-8一樣具有水面平臺的優勢,但可以攜帶較少的魚雷,作戰范圍也短得多。MH-60R分隊可以搭載在Flight IIA阿利-伯克導彈驅逐艦、提康德羅加導彈巡洋艦、獨立和自由級瀕海戰斗艦以及航空母艦上。驅逐艦、巡洋艦和瀕海戰斗艦最多可以搭載兩架MH-60R。

美國海軍必須準備好面對一個非常多樣化的威脅。根據Janes(Janes 2021a)的說法,俄羅斯海軍有27種。

俄羅斯等潛艇艦隊組成的分歧給國防規劃帶來了復雜的挑戰。

Mk-54輕型魚雷可從水面艦艇上的SVTT和ASROC系統發射。在進行反潛作戰時,它也可以被裝載到MH-60R和P-8上。考慮分配由0型、1型和2型變體組成的魚雷庫存。

B. 技術現狀和動機

在這項研究中開發的模型是具有追索性的兩階段隨機模型。具體來說,在第一階段(武器分配)將魚雷分配給反艦導彈部隊,在第二階段(武器目標分配,WTA)將魚雷分配給潛艇。武器分配決定往往是在不完全了解威脅的情況下做出的,這就促使了隨機優化和模擬。

自從Manne(1958)提出WTA問題以來,在武器分配和WTA方面已經做了大量工作。佩奇(1991)開發了一個混合整數編程模型,以獲得火炮系統和彈藥的最佳組合。Jarek(1994)利用模擬得到空戰所需的艦載防空導彈的數量。Tutton(2003)開發了一個使用隨機優化的傳感器分配模型,在不確定的敵方作戰順序下將搜索包分配給目標。Avital(2004)開發了一個兩期的隨機供應鏈模型,以確定在不確定的目標需求下,應該采購多少反艦巡航導彈以及如何分配這些導彈。Uryasev和Pardalos(2004)表明,與隨機對應的決定性武器分配決策相比,缺乏穩健性。Buss和Ahner(2006)開發了一個戰斗模擬,稱為DFAS,用于評估軍隊的未來戰斗系統(Havens 2002)。DFAS是一個離散事件模擬,代表實體運動、探測和武器效果事件。它還包括定期優化,以修訂WTAs。Hattaway(2008)通過考慮雷達和電子傳感器以及海軍軍械,將DFAS調整為海戰應用。Laird(2016)考慮了混合武器,以分配對抗來自空中、地面和地下的蜂群威脅。Cai(2018)使用基于代理的時間階梯式模擬,為城市環境中的進攻行動找到精確和區域火炮彈藥的有效組合。Brown和Kline(2021年)考慮了任務覆蓋范圍而不是目標交戰,以確定VLS艦的最佳武器裝載。不同類型的導彈,每一種都用于不同的任務(打擊、防空或反潛戰),可以被容納在VLS單元中。Adamah等人(2021)建立了一個非線性優化模型,用于確定分配給進行反潛作戰的潛艇的Mk-48重量級魚雷的類型和數量。Templin(2021)考慮了以啟發式方法解決的WTA問題的衍生物,其簡化的假設是只有一個目標要參與。研究的重點是為發射政策提供信息,特別是對威脅使用的導彈的數量和類型。

在上述文獻中的武器分配模型中,與本研究有關的是,注意到Page(1991)和Avital(2004)都使用了指揮官指定的期望成功的閾值;然而,他們在模型中著重于最小化武器成本,并將目標視為總需求。Jarek(1994)和Cai(2018)的模擬為所需的總導彈或彈藥組成提供了一般建議,但沒有提供可作為可操作的裝載計劃的閉合式解決方案。Tutton(2003)的模型將傳感器分配給單位,這與魚雷分配不同,傳感器不在目標上消耗(使用后)。Brown和Kline(2021)考慮的是任務覆蓋范圍,而不是目標,這對問題來說不是一個合適的方法,因為魚雷的使用只是為了與對手的潛艇交戰(或反擊對手的潛艇魚雷)。只有Adamah等人(2021年)涉及魚雷作為武器類型;然而,他們的模型是非線性的,也沒有推薦一個考慮到多個目標的魚雷裝載計劃。

另外,除了DAFS,上面審查的WTA模型只考慮一個射手。雖然希望對不確定的威脅進行計劃,在一個場景中出現不同類型和數量的目標,但Uryasey和Paradalos(2004)對一個場景進行計劃,但對武器的殺傷概率不確定。和其他的模擬工作一樣,DAFS(Havens 2002;Buss和Ahner 2006;Hattaway 2008)并沒有提供一個關于武器應該如何分配給目標或分配給單位的閉合式解決方案。Laird(2016)和Templin(2021)都是為給定的威脅做計劃,并沒有考慮到威脅情況下的任何不確定性。

盡管在武器分配和指派模型方面有大量的文獻,但注意到大多數模型沒有使用隨機優化。此外,目前,魚雷的裝載決定是由人工做出的。這項研究的目標是利用正式的數學優化來幫助魚雷分配決策。具體來說,隨機優化將使決策者能夠對不確定的威脅進行規劃。對威脅構成的不確定性進行規劃是現實的,因為通常情況下,必須在發現敵方潛艇或甚至部署反潛部隊之前作出裝載決定。

付費5元查看完整內容

本文提出了一種方法,旨在優化穿越敵人高射炮火力范圍的飛行路徑。這適用于在完全或部分由高射炮控制的空域中移動的各種飛機、導彈和無人機。為此,使用了Q-learning--一種強化(機器)學習--試圖通過反復的半隨機飛行路徑試驗,找到避開高射炮的最佳策略。Q-learning可以在不直接模擬高射炮的情況下產生一條穿過敵人火力的最佳飛行路徑。仍然需要對手的反應,但這可以來自于黑盒模擬、用戶輸入、真實數據或任何其他來源。在這里,使用一個內部工具來生成防空炮火。這個工具模擬了一個由火控雷達和卡爾曼飛行路徑預測濾波器引導的近距離武器系統(CIWS)。Q-learning也可以用神經網絡來補充--所謂的深度Q-learning(DQN)--以處理更復雜的問題。在這項工作中,展示了使用經典Q-learning(無神經網絡)對一個穿越高射炮位置的亞音速飛行路線的優化結果。

付費5元查看完整內容

本研究的目的是設計一個用于電子戰應用的認知雷達(CRr)目標識別系統的現場可編程門陣列(FPGA)實現。這篇論文對稱為加權能量概率(PWE)的閉環自適應匹配波形傳輸技術進行了擴展。這項工作還研究了在功能性數字硬件實現中應用PWE技術的可行性。最初,在Verilog硬件描述語言中開發了一個PWE蒙特卡洛仿真模型,在Xilinx Vivado環境中進行仿真。然后,在蒙特卡羅模型中開發的Verilog模塊組件被整合到利用賽靈思VCU118評估板的CRr目標識別系統實驗中。VCU118具有Virtex UltraScale+高性能FPGA,可完成CRr自適應波形生成和傳輸、數字信號處理要求和目標分類。羅德與施瓦茨公司的SMW200A矢量信號發生器和FSW信號與頻譜分析儀分別作為雷達系統的發射器和接收器,而FPGA實現了CRr使用的封閉反饋回路。

目錄

  • 1 引言 1
    • 1.1 論文目的 2
    • 1.2 論文組織
  • 2 認知雷達的目標識別 3
    • 2.1 認知雷達概述 3
    • 2.2 加權能量概率理論 4
  • 3 Verilog建模和設計仿真 9
    • 3.1 Verilog模型概述 9
    • 3.2 Verilog模型設計說明 9
    • 3.3 Verilog模型結果 36
    • 3.4 本章總結 42
  • 4 硬件設計和射頻實現 43
    • 4.1 硬件實現概述 43
    • 4.2 閉環雷達配置 43
    • 4.3 功能設計說明和演示 57
    • 4.4 硬件實現觀察 68
    • 4.5 本章總結 69
  • 5 總結和結論 71
    • 5.1 對未來工作的建議 73

付費5元查看完整內容
北京阿比特科技有限公司