亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Finite element-based high-order solvers of conservation laws offer large accuracy but face challenges near discontinuities due to the Gibbs phenomenon. Artificial viscosity is a popular and effective solution to this problem based on physical insight. In this work, we present a physics-informed machine learning algorithm to automate the discovery of artificial viscosity models in a non-supervised paradigm. The algorithm is inspired by reinforcement learning and trains a neural network acting cell-by-cell (the viscosity model) by minimizing a loss defined as the difference with respect to a reference solution thanks to automatic differentiation. This enables a dataset-free training procedure. We prove that the algorithm is effective by integrating it into a state-of-the-art Runge-Kutta discontinuous Galerkin solver. We showcase several numerical tests on scalar and vectorial problems, such as Burgers' and Euler's equations in one and two dimensions. Results demonstrate that the proposed approach trains a model that is able to outperform classical viscosity models. Moreover, we show that the learnt artificial viscosity model is able to generalize across different problems and parameters.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · INTERACT · 自編碼器 · 回合 · Integration ·
2024 年 9 月 30 日

Addressing multiagent decision problems in AI, especially those involving collaborative or competitive agents acting concurrently in a partially observable and stochastic environment, remains a formidable challenge. While Interactive Dynamic Influence Diagrams~(I-DIDs) have offered a promising decision framework for such problems, they encounter limitations when the subject agent encounters unknown behaviors exhibited by other agents that are not explicitly modeled within the I-DID. This can lead to sub-optimal responses from the subject agent. In this paper, we propose a novel data-driven approach that utilizes an encoder-decoder architecture, particularly a variational autoencoder, to enhance I-DID solutions. By integrating a perplexity-based tree loss function into the optimization algorithm of the variational autoencoder, coupled with the advantages of Zig-Zag One-Hot encoding and decoding, we generate potential behaviors of other agents within the I-DID that are more likely to contain their true behaviors, even from limited interactions. This new approach enables the subject agent to respond more appropriately to unknown behaviors, thus improving its decision quality. We empirically demonstrate the effectiveness of the proposed approach in two well-established problem domains, highlighting its potential for handling multi-agent decision problems with unknown behaviors. This work is the first time of using neural networks based approaches to deal with the I-DID challenge in agent planning and learning problems.

Hurricanes cause significant economic and human costs, requiring individuals to make critical evacuation decisions under uncertainty and stress. To enhance the understanding of this decision-making process, we propose using Bayesian Networks (BNs) to model evacuation decisions during hurricanes. We collected questionnaire data from two significant hurricane events: Hurricane Harvey and Hurricane Irma. We employed a data-driven approach by first conducting variable selection using mutual information, followed by BN structure learning with two constraint-based algorithms. The robustness of the learned structures was enhanced by model averaging based on bootstrap resampling. We examined and compared the learned structures of both hurricanes, revealing potential causal relationships among key predictors of evacuation, including risk perception, information received from media, suggestions from family and friends, and neighbors evacuating. Our findings highlight the significant role of social influence, providing valuable insights into the process of evacuation decision-making. Our results demonstrate the applicability and effectiveness of data-driven BN modeling in evacuation decision making.

Extensive experiments suggest that motor coordination among human participants may contribute to social affinity and emotional attachment, which has great potential in the clinical treatment of social disorders or schizophrenia. Mirror game provides an effective experimental paradigm for studying social motor coordination. Nevertheless, the lack of movement richness prevents the emergence of high-level coordination in the existing one-dimensional experiments. To tackle this problem, this work develops a two-dimensional experimental paradigm of mirror game by playing waggle dance between two participants. In particular, an online control architecture of customized virtual player is created to coordinate with human player. Therein, an iterative learning control algorithm is proposed by integrating position tracking and behavior imitation with prescribed kinematic feature. Moreover, convergence analysis of control algorithm is conducted to guarantee the online performance of virtual player. Finally, the proposed control strategy is validated by matching experimental data and compared with other control methods using a set of performance indexes.

Accurate identification and categorization of suicidal events can yield better suicide precautions, reducing operational burden, and improving care quality in high-acuity psychiatric settings. Pre-trained language models offer promise for identifying suicidality from unstructured clinical narratives. We evaluated the performance of four BERT-based models using two fine-tuning strategies (multiple single-label and single multi-label) for detecting coexisting suicidal events from 500 annotated psychiatric evaluation notes. The notes were labeled for suicidal ideation (SI), suicide attempts (SA), exposure to suicide (ES), and non-suicidal self-injury (NSSI). RoBERTa outperformed other models using binary relevance (acc=0.86, F1=0.78). MentalBERT (F1=0.74) also exceeded BioClinicalBERT (F1=0.72). RoBERTa fine-tuned with a single multi-label classifier further improved performance (acc=0.88, F1=0.81), highlighting that models pre-trained on domain-relevant data and the single multi-label classification strategy enhance efficiency and performance. Keywords: EHR-based Phynotyping; Natural Language Processing; Secondary Use of EHR Data; Suicide Classification; BERT-based Model; Psychiatry; Mental Health

In diverse professional environments, ranging from academic conferences to corporate earnings calls, the ability to anticipate audience questions stands paramount. Traditional methods, which rely on manual assessment of an audience's background, interests, and subject knowledge, often fall short - particularly when facing large or heterogeneous groups, leading to imprecision and inefficiency. While NLP has made strides in text-based question generation, its primary focus remains on academic settings, leaving the intricate challenges of professional domains, especially earnings call conferences, underserved. Addressing this gap, our paper pioneers the multi-question generation (MQG) task specifically designed for earnings call contexts. Our methodology involves an exhaustive collection of earnings call transcripts and a novel annotation technique to classify potential questions. Furthermore, we introduce a retriever-enhanced strategy to extract relevant information. With a core aim of generating a spectrum of potential questions that analysts might pose, we derive these directly from earnings call content. Empirical evaluations underscore our approach's edge, revealing notable excellence in the accuracy, consistency, and perplexity of the questions generated.

Current speech-based LLMs are predominantly trained on extensive ASR and TTS datasets, excelling in tasks related to these domains. However, their ability to handle direct speech-to-speech conversations remains notably constrained. These models often rely on an ASR-to-TTS chain-of-thought pipeline, converting speech into text for processing before generating audio responses, which introduces latency and loses audio features. We propose a method that implicitly internalizes ASR chain of thought into a speech LLM, enhancing its native speech understanding capabilities. Our approach reduces latency and improves the model's native understanding of speech, paving the way for more efficient and natural real-time audio interactions. We also release a large-scale synthetic conversational dataset to facilitate further research.

Background: We extend recently proposed design-based capture-recapture methods for prevalence estimation among registry participants, in order to support causal inference among a trial-eligible target population. The proposed design for CRC analysis integrates an observational study cohort with a randomized trial involving a small representative study sample, and enhances the generalizability and transportability of the findings. Methods: We develop a novel CRC-type estimator derived via multinomial distribution-based maximum-likelihood that exploits the design to deliver benefits in terms of validity and efficiency for comparing the effects of two treatments on a binary outcome. Additionally, the design enables a direct standardization-type estimator for efficient estimation of general means (e.g., of biomarker levels) under a specific treatment, and for their comparison across treatments. For inference, we propose a tailored Bayesian credible interval approach to improve coverage properties in conjunction with the proposed CRC estimator for binary outcomes, along with a bootstrap percentile interval approach for use in the case of continuous outcomes. Results: Simulations demonstrate the proposed estimators derived from the CRC design. The multinomial-based maximum-likelihood estimator shows benefits in terms of validity and efficiency in treatment effect comparisons, while the direct standardization-type estimator allows comprehensive comparison of treatment effects within the target population. Conclusion: The extended CRC methods provide a useful framework for causal inference in a trial-eligible target population by integrating observational and randomized trial data. The novel estimators enhance the generalizability and transportability of findings, offering efficient and valid tools for treatment effect comparisons on both binary and continuous outcomes.

Autonomous driving system aims for safe and social-consistent driving through the behavioral integration among interactive agents. However, challenges remain due to multi-agent scene uncertainty and heterogeneous interaction. Current dense and sparse behavioral representations struggle with inefficiency and inconsistency in multi-agent modeling, leading to instability of collective behavioral patterns when integrating prediction and planning (IPP). To address this, we initiate a topological formation that serves as a compliant behavioral foreground to guide downstream trajectory generations. Specifically, we introduce Behavioral Topology (BeTop), a pivotal topological formulation that explicitly represents the consensual behavioral pattern among multi-agent future. BeTop is derived from braid theory to distill compliant interactive topology from multi-agent future trajectories. A synergistic learning framework (BeTopNet) supervised by BeTop facilitates the consistency of behavior prediction and planning within the predicted topology priors. Through imitative contingency learning, BeTop also effectively manages behavioral uncertainty for prediction and planning. Extensive verification on large-scale real-world datasets, including nuPlan and WOMD, demonstrates that BeTop achieves state-of-the-art performance in both prediction and planning tasks. Further validations on the proposed interactive scenario benchmark showcase planning compliance in interactive cases.

Scene text recognition in low-resource languages frequently faces challenges due to the limited availability of training datasets derived from real-world scenes. This study proposes a novel approach that generates text images in low-resource languages by emulating the style of real text images from high-resource languages. Our approach utilizes a diffusion model that is conditioned on binary states: ``synthetic'' and ``real.'' The training of this model involves dual translation tasks, where it transforms plain text images into either synthetic or real text images, based on the binary states. This approach not only effectively differentiates between the two domains but also facilitates the model's explicit recognition of characters in the target language. Furthermore, to enhance the accuracy and variety of generated text images, we introduce two guidance techniques: Fidelity-Diversity Balancing Guidance and Fidelity Enhancement Guidance. Our experimental results demonstrate that the text images generated by our proposed framework can significantly improve the performance of scene text recognition models for low-resource languages.

In speech deepfake detection, one of the critical aspects is developing detectors able to generalize on unseen data and distinguish fake signals across different datasets. Common approaches to this challenge involve incorporating diverse data into the training process or fine-tuning models on unseen datasets. However, these solutions can be computationally demanding and may lead to the loss of knowledge acquired from previously learned data. Continual learning techniques offer a potential solution to this problem, allowing the models to learn from unseen data without losing what they have already learned. Still, the optimal way to apply these algorithms for speech deepfake detection remains unclear, and we do not know which is the best way to apply these algorithms to the developed models. In this paper we address this aspect and investigate whether, when retraining a speech deepfake detector, it is more effective to apply continual learning across the entire model or to update only some of its layers while freezing others. Our findings, validated across multiple models, indicate that the most effective approach among the analyzed ones is to update only the weights of the initial layers, which are responsible for processing the input features of the detector.

北京阿比特科技有限公司