Motion prediction is crucial for autonomous vehicles to operate safely in complex traffic environments. Extracting effective spatiotemporal relationships among traffic elements is key to accurate forecasting. Inspired by the successful practice of pretrained large language models, this paper presents SEPT, a modeling framework that leverages self-supervised learning to develop powerful spatiotemporal understanding for complex traffic scenes. Specifically, our approach involves three masking-reconstruction modeling tasks on scene inputs including agents' trajectories and road network, pretraining the scene encoder to capture kinematics within trajectory, spatial structure of road network, and interactions among roads and agents. The pretrained encoder is then finetuned on the downstream forecasting task. Extensive experiments demonstrate that SEPT, without elaborate architectural design or manual feature engineering, achieves state-of-the-art performance on the Argoverse 1 and Argoverse 2 motion forecasting benchmarks, outperforming previous methods on all main metrics by a large margin.
Applying diffusion models in reinforcement learning for long-term planning has gained much attention recently. Several diffusion-based methods have successfully leveraged the modeling capabilities of diffusion for arbitrary distributions. These methods generate subsequent trajectories for planning and have demonstrated significant improvement. However, these methods are limited by their plain base distributions and their overlooking of the diversity of samples, in which different states have different returns. They simply leverage diffusion to learn the distribution of offline dataset, generate the trajectories whose states share the same distribution with the offline dataset. As a result, the probability of these models reaching the high-return states is largely dependent on the dataset distribution. Even equipped with the guidance model, the performance is still suppressed. To address these limitations, in this paper, we propose a novel method called CDiffuser, which devises a return contrast mechanism to pull the states in generated trajectories towards high-return states while pushing them away from low-return states to improve the base distribution. Experiments on 14 commonly used D4RL benchmarks demonstrate the effectiveness of our proposed method.
Object location prior is critical for the standard 6D object pose estimation setting. The prior can be used to initialize the 3D object translation and facilitate 3D object rotation estimation. Unfortunately, the object detectors that are used for this purpose do not generalize to unseen objects. Therefore, existing 6D pose estimation methods for unseen objects either assume the ground-truth object location to be known or yield inaccurate results when it is unavailable. In this paper, we address this problem by developing a method, LocPoseNet, able to robustly learn location prior for unseen objects. Our method builds upon a template matching strategy, where we propose to distribute the reference kernels and convolve them with a query to efficiently compute multi-scale correlations. We then introduce a novel translation estimator, which decouples scale-aware and scale-robust features to predict different object location parameters. Our method outperforms existing works by a large margin on LINEMOD and GenMOP. We further construct a challenging synthetic dataset, which allows us to highlight the better robustness of our method to various noise sources. Our project website is at: //sailor-z.github.io/projects/3DV2024_LocPoseNet.html.
In response to the evolving challenges posed by small unmanned aerial vehicles (UAVs), which possess the potential to transport harmful payloads or independently cause damage, we introduce MMAUD: a comprehensive Multi-Modal Anti-UAV Dataset. MMAUD addresses a critical gap in contemporary threat detection methodologies by focusing on drone detection, UAV-type classification, and trajectory estimation. MMAUD stands out by combining diverse sensory inputs, including stereo vision, various Lidars, Radars, and audio arrays. It offers a unique overhead aerial detection vital for addressing real-world scenarios with higher fidelity than datasets captured on specific vantage points using thermal and RGB. Additionally, MMAUD provides accurate Leica-generated ground truth data, enhancing credibility and enabling confident refinement of algorithms and models, which has never been seen in other datasets. Most existing works do not disclose their datasets, making MMAUD an invaluable resource for developing accurate and efficient solutions. Our proposed modalities are cost-effective and highly adaptable, allowing users to experiment and implement new UAV threat detection tools. Our dataset closely simulates real-world scenarios by incorporating ambient heavy machinery sounds. This approach enhances the dataset's applicability, capturing the exact challenges faced during proximate vehicular operations. It is expected that MMAUD can play a pivotal role in advancing UAV threat detection, classification, trajectory estimation capabilities, and beyond. Our dataset, codes, and designs will be available in //github.com/ntu-aris/MMAUD.
Network traffic analysis increasingly uses complex machine learning models as the internet consolidates and traffic gets more encrypted. However, over high-bandwidth networks, flows can easily arrive faster than model inference rates. The temporal nature of network flows limits simple scale-out approaches leveraged in other high-traffic machine learning applications. Accordingly, this paper presents ServeFlow, a solution for machine-learning model serving aimed at network traffic analysis tasks, which carefully selects the number of packets to collect and the models to apply for individual flows to achieve a balance between minimal latency, high service rate, and high accuracy. We identify that on the same task, inference time across models can differ by 2.7x-136.3x, while the median inter-packet waiting time is often 6-8 orders of magnitude higher than the inference time! ServeFlow is able to make inferences on 76.3% flows in under 16ms, which is a speed-up of 40.5x on the median end-to-end serving latency while increasing the service rate and maintaining similar accuracy. Even with thousands of features per flow, it achieves a service rate of over 48.5k new flows per second on a 16-core CPU commodity server, which matches the order of magnitude of flow rates observed on city-level network backbones.
Graph generation has been dominated by autoregressive models due to their simplicity and effectiveness, despite their sensitivity to ordering. Yet diffusion models have garnered increasing attention, as they offer comparable performance while being permutation-invariant. Current graph diffusion models generate graphs in a one-shot fashion, but they require extra features and thousands of denoising steps to achieve optimal performance. We introduce PARD, a Permutation-invariant Auto Regressive Diffusion model that integrates diffusion models with autoregressive methods. PARD harnesses the effectiveness and efficiency of the autoregressive model while maintaining permutation invariance without ordering sensitivity. Specifically, we show that contrary to sets, elements in a graph are not entirely unordered and there is a unique partial order for nodes and edges. With this partial order, PARD generates a graph in a block-by-block, autoregressive fashion, where each block's probability is conditionally modeled by a shared diffusion model with an equivariant network. To ensure efficiency while being expressive, we further propose a higher-order graph transformer, which integrates transformer with PPGN. Like GPT, we extend the higher-order graph transformer to support parallel training of all blocks. Without any extra features, PARD achieves state-of-the-art performance on molecular and non-molecular datasets, and scales to large datasets like MOSES containing 1.9M molecules.
Our work introduces a module for assessing the trajectory safety of autonomous vehicles in dynamic environments marked by high uncertainty. We focus on occluded areas and occluded traffic participants with limited information about surrounding obstacles. To address this problem, we propose a software module that handles blind spots (BS) created by static and dynamic obstacles in urban environments. We identify potential occluded traffic participants, predict their movement, and assess the ego vehicle's trajectory using various criticality metrics. The method offers a straightforward and modular integration into motion planner algorithms. We present critical real-world scenarios to evaluate our module and apply our approach to a publicly available trajectory planning algorithm. Our results demonstrate that safe yet efficient driving with occluded road users can be achieved by incorporating safety assessments into the planning process. The code used in this research is publicly available as open-source software and can be accessed at the following link: //github.com/TUM-AVS/Frenetix-Occlusion.
When pre-trained models become rapidly larger, the cost of fine-tuning on downstream tasks steadily increases, too. To economically fine-tune these models, parameter-efficient transfer learning (PETL) is proposed, which only tunes a tiny subset of trainable parameters to efficiently learn quality representations. However, current PETL methods are facing the dilemma that during training the GPU memory footprint is not effectively reduced as trainable parameters. PETL will likely fail, too, if the full fine-tuning encounters the out-of-GPU-memory issue. This phenomenon happens because trainable parameters from these methods are generally entangled with the backbone, such that a lot of intermediate states have to be stored in GPU memory for gradient propagation. To alleviate this problem, we introduce Disentangled Transfer Learning (DTL), which disentangles the trainable parameters from the backbone using a lightweight Compact Side Network (CSN). By progressively extracting task-specific information with a few low-rank linear mappings and appropriately adding the information back to the backbone, CSN effectively realizes knowledge transfer in various downstream tasks. We conducted extensive experiments to validate the effectiveness of our method. The proposed method not only reduces a large amount of GPU memory usage and trainable parameters, but also outperforms existing PETL methods by a significant margin in accuracy, achieving new state-of-the-art on several standard benchmarks. The code is available at //github.com/heekhero/DTL.
Traffic forecasting is an important factor for the success of intelligent transportation systems. Deep learning models including convolution neural networks and recurrent neural networks have been applied in traffic forecasting problems to model the spatial and temporal dependencies. In recent years, to model the graph structures in the transportation systems as well as the contextual information, graph neural networks (GNNs) are introduced as new tools and have achieved the state-of-the-art performance in a series of traffic forecasting problems. In this survey, we review the rapidly growing body of recent research using different GNNs, e.g., graph convolutional and graph attention networks, in various traffic forecasting problems, e.g., road traffic flow and speed forecasting, passenger flow forecasting in urban rail transit systems, demand forecasting in ride-hailing platforms, etc. We also present a collection of open data and source resources for each problem, as well as future research directions. To the best of our knowledge, this paper is the first comprehensive survey that explores the application of graph neural networks for traffic forecasting problems. We have also created a public Github repository to update the latest papers, open data and source resources.
With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.
Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.