亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we consider an information update system where wireless sensor sends timely updates to the destination over a random blocking terahertz channel with the supply of harvested energy and reliable energy backup. The paper aims to find the optimal information updating policy that minimize the time-average weighted sum of the Age of information(AoI) and the reliable energy costs by formulating an infinite state Markov decision process(MDP). With the derivation of the monotonicity of value function on each component, the optimal information updating policy is proved to have a threshold structure. Based on this special structure, an algorithm for efficiently computing the optimal policy is proposed. Numerical results show that the optimal updating policy proposed outperforms baseline policies.

相關內容

In this paper, we investigate simultaneously transmitting and reflecting reconfigurable intelligent surfaces (STAR-RIS), which enables to communicate with users both sides by transmitting signals to users forward and reflecting signals to users backward simultaneously. We consider a communicatio system with a STAR-RIS, a base station (BS) and many users to maximize the minimum user energy efficiency (EE) by jointly optimizing the active beamforming, transmission and reflection coefficients with BS power consumption limited. To solve this optimization problem efficiently, we divide it into two sub-problems to optimize the transmitting beamforming matrix and phase shifts of STAR-RIS seperately. With the two subproblems fixed, an Alternating Optimization (AO) method is proposed to solve the maximize minmum user EE fair optimization problem. Numerical results can demonstrate that STAR-RIS behaves better than traditional reflecting-only RIS, and the algorithm we desigend can maximize the minum EE problem efficienty to ensure user fairness.

Reconfigurable intelligent surface (RIS) or intelligent reflecting surface (IRS) has recently been envisioned as one of the most promising technologies in the future sixth-generation (6G) communications. In this paper, we consider the joint optimization of the transmit beamforming at the base station (BS) and the phase shifts at the RIS for an RIS-aided wireless communication system with both hardware impairments and imperfect channel state information (CSI). Specifically, we assume both the BS-user channel and the BS-RIS-user channel are imperfect due to the channel estimation error, and we consider the channel estimation error under the statistical CSI error model. Then, the transmit power of the BS is minimized, subject to the outage probability constraint and the unit-modulus constraints on the reflecting elements. By using Bernstein-type inequality and semidefinite relaxation (SDR) to reformulate the constraints, we transform the optimization problem into a semidefinite programming (SDP) problem. Numerical results show that the proposed robust design algorithm can ensure communication quality of the user in the presence of both hardware impairments and imperfect CSI.

We address the generalized Nash equilibrium seeking problem in a partial-decision information scenario, where each agent can only exchange information with some neighbors, although its cost function possibly depends on the strategies of all agents. The few existing methods build on projected pseudo-gradient dynamics, and require either double-layer iterations or conservative conditions on the step sizes. To overcome both these flaws and improve efficiency, we design the first fully-distributed single-layer algorithms based on proximal best-response. Our schemes are fixed-step and allow for inexact updates, which is crucial for reducing the computational complexity. Under standard assumptions on the game primitives, we establish convergence to a variational equilibrium (with linear rate for games without coupling constraints) by recasting our algorithms as proximal-point methods, opportunely preconditioned to distribute the computation among the agents. Since our analysis hinges on a restricted monotonicity property, we also provide new general results that significantly extend the domain of applicability of proximal-point methods. Besides, the operator-theoretic approach favors the implementation of provably correct acceleration schemes that can further improve the convergence speed. Finally, the potential of our algorithms is demonstrated numerically, revealing much faster convergence with respect to projected pseudo-gradient methods and validating our theoretical findings.

We consider a general multi-connectivity framework, intended for ultra-reliable low-latency communications (URLLC) services, and propose a novel, preallocation-based combinatorial auction approach for the efficient allocation of channels. We compare the performance of the proposed method with several other state-of-the-art and alternative channel-allocation algorithms. The two proposed performance metrics are the capacity-based and the utility-based context. In the first case, every unit of additional capacity is regarded as beneficial for any tenant, independent of the already allocated quantity, and the main measure is the total throughput of the system. In the second case, we assume a minimal and maximal required capacity value for each tenant, and consider the implied utility values accordingly. In addition to the total system performance, we also analyze fairness and computational requirements in both contexts. We conclude that at the cost of higher but still plausible computational time, the fairness-enhanced version of the proposed preallocation based combinatorial auction algorithm outperforms every other considered method when one considers total system performance and fairness simultaneously, and performs especially well in the utility context. Therefore, the proposed algorithm may be regarded as candidate scheme for URLLC channel allocation problems, where minimal and maximal capacity requirements have to be considered.

The eigenvalue density of a matrix plays an important role in various types of scientific computing such as electronic-structure calculations. In this paper, we propose a quantum algorithm for computing the eigenvalue density in a given interval. Our quantum algorithm is based on a method that approximates the eigenvalue counts by applying the numerical contour integral and the stochastic trace estimator applied to a matrix involving resolvent matrices. As components of our algorithm, the HHL solver is applied to an augmented linear system of the resolvent matrices, and the quantum Fourier transform (QFT) is adopted to represent the operation of the numerical contour integral. To reduce the size of the augmented system, we exploit a certain symmetry of the numerical integration. We also introduce a permutation formed by CNOT gates to make the augmented system solution consistent with the QFT input. The eigenvalue count in a given interval is derived as the probability of observing a bit pattern in a fraction of the qubits of the output state.

Stochastic gradient descent with momentum (SGDM) is the dominant algorithm in many optimization scenarios, including convex optimization instances and non-convex neural network training. Yet, in the stochastic setting, momentum interferes with gradient noise, often leading to specific step size and momentum choices in order to guarantee convergence, set aside acceleration. Proximal point methods, on the other hand, have gained much attention due to their numerical stability and elasticity against imperfect tuning. Their stochastic accelerated variants though have received limited attention: how momentum interacts with the stability of (stochastic) proximal point methods remains largely unstudied. To address this, we focus on the convergence and stability of the stochastic proximal point algorithm with momentum (SPPAM), and show that SPPAM allows a faster linear convergence to a neighborhood compared to stochastic proximal point algorithm (SPPA) with a better contraction factor, under proper hyperparameter tuning. In terms of stability, we show that SPPAM depends on problem constants more favorably than SGDM, allowing a wider range of step size and momentum that lead to convergence.

Estimating free energy differences, an important problem in computational drug discovery and in a wide range of other application areas, commonly involves a computationally intensive process of sampling a family of high-dimensional probability distributions and a procedure for computing estimates based on those samples. The variance of the free energy estimate of interest typically depends strongly on how the total computational resources available for sampling are divided among the distributions, but determining an efficient allocation is difficult without sampling the distributions. Here we introduce the Times Square sampling algorithm, a novel on-the-fly estimation method that dynamically allocates resources in such a way as to significantly accelerate the estimation of free energies and other observables, while providing rigorous convergence guarantees for the estimators. We also show that it is possible, surprisingly, for on-the-fly free energy estimation to achieve lower asymptotic variance than the maximum-likelihood estimator MBAR, raising the prospect that on-the-fly estimation could reduce variance in a variety of other statistical applications.

A non-orthogonal multiple access (NOMA) empowered integrated sensing and communication (ISAC) framework is investigated. A dual-functional base station serves multiple communication users employing NOMA, while the superimposed NOMA communication signal is simultaneously exploited for target sensing. A beamforming design problem is formulated to maximize the weighted sum of the communication throughput and the effective sensing power. To solve this problem, an efficient double-layer penalty-based algorithm is proposed by invoking successive convex approximation (SCA). Numerical results show that the proposed NOMA-ISAC approaches the ideal ISAC system and outperforms the conventional ISAC in the underloaded regime experiencing high-correlated channels and in the overloaded regime.

This letter studies the average mutual information (AMI) of keyhole multiple-input multiple-output (MIMO) systems having finite input signals. At first, the AMI of single-stream transmission is investigated under two cases where the state information at the transmitter (CSIT) is available or not. Then, the derived results are further extended to the case of multi-stream transmission. For the sake of providing more system insights, asymptotic analyses are performed in the regime of high signal-to-noise ratio (SNR), which suggests that the high-SNR AMI converges to some constant with its rate of convergence determined by the diversity order. All the results are validated by numerical simulations and are in excellent agreement.

This paper studies the transmit beamforming in a downlink integrated sensing and communication (ISAC) system, where a base station (BS) equipped with a uniform linear array (ULA) sends combined information-bearing and dedicated radar signals to simultaneously perform downlink multiuser communication and radar target sensing. Under this setup, we maximize the radar sensing performance (in terms of minimizing the beampattern matching errors or maximizing the minimum beampattern gains), subject to the communication users' minimum signal-to-interference-plus-noise ratio (SINR) requirements and the BS's transmit power constraints. In particular, we consider two types of communication receivers, namely Type-I and Type-II receivers, which do not have and do have the capability of cancelling the interference from the {\emph{a-priori}} known dedicated radar signals, respectively. Under both Type-I and Type-II receivers, the beampattern matching and minimum beampattern gain maximization problems are globally optimally solved via applying the semidefinite relaxation (SDR) technique together with the rigorous proof of the tightness of SDR for both Type-I and Type-II receivers under the two design criteria. It is shown that at the optimality, dedicated radar signals are not required with Type-I receivers under some specific conditions, while dedicated radar signals are always needed to enhance the performance with Type-II receivers. Numerical results show that the minimum beampattern gain maximization leads to significantly higher beampattern gains at the worst-case sensing angles with a much lower computational complexity than the beampattern matching design. It is also shown that by exploiting the capability of canceling the interference caused by the radar signals, the case with Type-II receivers results in better sensing performance than that with Type-I receivers and other conventional designs.

北京阿比特科技有限公司