亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The large-matrix limit laws of the rescaled largest eigenvalue of the orthogonal, unitary and symplectic $n$-dimensional Gaussian ensembles -- and of the corresponding Laguerre ensembles (Wishart distributions) for various regimes of the parameter $\alpha$ (degrees of freedom $p$) -- are known to be the Tracy-Widom distributions $F_\beta$ ($\beta=1,2,4$). We will establish (paying particular attention to large, or small, ratios $p/n$) that, with careful choices of the rescaling constants and the expansion parameter $h$, the limit laws embed into asymptotic expansions in powers of $h$, where $h \asymp n^{-2/3}$ resp. $h \asymp (n\,\wedge\,p)^{-2/3}$. We find explicit analytic expressions of the first few expansions terms as linear combinations, with rational polynomial coefficients, of higher order derivatives of the limit law $F_\beta$. With a proper parametrization, the expansions in the Gaussian cases can be understood, for given $n$, as the limit $p\to\infty$ of the Laguerre cases. Whereas the results for $\beta=2$ are presented with proof, the discussion of the cases $\beta=1,4$ is based on some hypotheses, focussing on the algebraic aspects of actually computing the polynomial coefficients. For the purposes of illustration and validation, the various results are checked against simulation data with large sample sizes.

相關內容

CASES:International Conference on Compilers, Architectures, and Synthesis for Embedded Systems。 Explanation:嵌入式系統編譯器、體系結構和綜合國際會議。 Publisher:ACM。 SIT:

We prove that the constructive and intuitionistic variants of the modal logic $\mathsf{KB}$ coincide. This result contrasts with a recent result by Das and Marin, who showed that the constructive and intuitionistic variants of $\mathsf{K}$ do not prove the same diamond-free formulas.

Sheaves are mathematical objects consisting of a base which constitutes a topological space and the data associated with each open set thereof, e.g. continuous functions defined on the open sets. Sheaves have originally been used in algebraic topology and logic. Recently, they have also modelled events such as physical experiments and natural language disambiguation processes. We extend the latter models from lexical ambiguities to discourse ambiguities arising from anaphora. To begin, we calculated a new measure of contextuality for a dataset of basic anaphoric discourses, resulting in a higher proportion of contextual models-82.9%-compared to previous work which only yielded 3.17% contextual models. Then, we show how an extension of the natural language processing challenge, known as the Winograd Schema, which involves anaphoric ambiguities can be modelled on the Bell-CHSH scenario with a contextual fraction of 0.096.

Prior work has offered evidence for functional localization in the brain; different anatomical regions preferentially activate for certain types of visual input. For example, the fusiform face area preferentially activates for visual stimuli that include a face. However, the spectrum of visual semantics is extensive, and only a few semantically-tuned patches of cortex have so far been identified in the human brain. Using a multimodal (natural language and image) neural network architecture (CLIP) we train a highly accurate contrastive model that maps brain responses during naturalistic image viewing to CLIP embeddings. We then use a novel adaptation of the DBSCAN clustering algorithm to cluster the parameters of these participant-specific contrastive models. This reveals what we call Shared Decodable Concepts (SDCs): clusters in CLIP space that are decodable from common sets of voxels across multiple participants. Examining the images most and least associated with each SDC cluster gives us additional insight into the semantic properties of each SDC. We note SDCs for previously reported visual features (e.g. orientation tuning in early visual cortex) as well as visual semantic concepts such as faces, places and bodies. In cases where our method finds multiple clusters for a visuo-semantic concept, the least associated images allow us to dissociate between confounding factors. For example, we discovered two clusters of food images, one driven by color, the other by shape. We also uncover previously unreported areas such as regions of extrastriate body area (EBA) tuned for legs/hands and sensitivity to numerosity in right intraparietal sulcus, and more. Thus, our contrastive-learning methodology better characterizes new and existing visuo-semantic representations in the brain by leveraging multimodal neural network representations and a novel adaptation of clustering algorithms.

We introduce the concept of an imprecise Markov semigroup $\mathbf{Q}$. It is a tool that allows to represent ambiguity around both the initial and the transition probabilities of a Markov process via a compact collection of plausible Markov semigroups, each associated with a (different, plausible) Markov process. We use techniques from geometry, functional analysis, and (high dimensional) probability to study the ergodic behavior of $\mathbf{Q}$. We show that, if the initial distribution of the Markov processes associated with the elements of $\mathbf{Q}$ is known and invariant, under some conditions that also involve the geometry of the state space, eventually the ambiguity around their transition probability fades. We call this property ergodicity of the imprecise Markov semigroup, and we relate it to the classical notion of ergodicity. We prove ergodicity both when the state space is Euclidean or a Riemannian manifold, and when it is an arbitrary measurable space. The importance of our findings for the fields of machine learning and computer vision is also discussed.

We consider a class of conditional forward-backward diffusion models for conditional generative modeling, that is, generating new data given a covariate (or control variable). To formally study the theoretical properties of these conditional generative models, we adopt a statistical framework of distribution regression to characterize the large sample properties of the conditional distribution estimators induced by these conditional forward-backward diffusion models. Here, the conditional distribution of data is assumed to smoothly change over the covariate. In particular, our derived convergence rate is minimax-optimal under the total variation metric within the regimes covered by the existing literature. Additionally, we extend our theory by allowing both the data and the covariate variable to potentially admit a low-dimensional manifold structure. In this scenario, we demonstrate that the conditional forward-backward diffusion model can adapt to both manifold structures, meaning that the derived estimation error bound (under the Wasserstein metric) depends only on the intrinsic dimensionalities of the data and the covariate.

Order-invariant first-order logic is an extension of first-order logic (FO) where formulae can make use of a linear order on the structures, under the proviso that they are order-invariant, i.e. that their truth value is the same for all linear orders. We continue the study of the two-variable fragment of order-invariant first-order logic initiated by Zeume and Harwath, and study its complexity and expressive power. We first establish coNExpTime-completeness for the problem of deciding if a given two-variable formula is order-invariant, which tightens and significantly simplifies the coN2ExpTime proof by Zeume and Harwath. Second, we address the question of whether every property expressible in order-invariant two-variable logic is also expressible in first-order logic without the use of a linear order. While we were not able to provide a satisfactory answer to the question, we suspect that the answer is ``no''. To justify our claim, we present a class of finite tree-like structures (of unbounded degree) in which a relaxed variant of order-invariant two-variable FO expresses properties that are not definable in plain FO. On the other hand, we show that if one restricts their attention to classes of structures of bounded degree, then the expressive power of order-invariant two-variable FO is contained within FO.

In response to an object presentation, supervised learning schemes generally respond with a parsimonious label. Upon a similar presentation we humans respond again with a label, but are flooded, in addition, by a myriad of associations. A significant portion of these consist of the presented object attributes. Contrastive learning is a semi-supervised learning scheme based on the application of identity preserving transformations on the object input representations. It is conjectured in this work that these same applied transformations preserve, in addition to the identity of the presented object, also the identity of its semantically meaningful attributes. The corollary of this is that the output representations of such a contrastive learning scheme contain valuable information not only for the classification of the presented object, but also for the presence or absence decision of any attribute of interest. Simulation results which demonstrate this idea and the feasibility of this conjecture are presented.

Existing Curry-Howard interpretations of call-by-value evaluation for the $\lambda$-calculus involve classical logic or linear logic, despite the fact that call-by-value was introduced in an intuitionistic setting without linear features. This paper shows that the most basic sequent calculus for minimal intuitionistic logic -- dubbed here vanilla -- can naturally be seen as a logical interpretation of call-by-value evaluation. This is obtained by establishing mutual simulations with a well-known formalism for call-by-value evaluation.

In a large cyber-physical system, a temporal inconsistency of an output value can arise if there is a non-negligible delay between the instant when a sensor value is acquired from the environment and the instant when a setpoint, based on this sensor value, is used in the environment. Such a temporal inconsistency can be the cause of a critical malfunction of the cyber-physical system. This paper presents a solution of this temporal consistency problem that can best be implemented in a time-triggered architecture (TTA). In a TTA, the instants of sensor value acquisition, setpoint calculation, and actuation on the environment are statically configured, and the cyber-physical system implements software and hardware mechanisms to execute the respective actions tightly at these configured instants.

We consider the problem of solving a large-scale system of linear equations in a distributed or federated manner by a taskmaster and a set of machines, each possessing a subset of the equations. We provide a comprehensive comparison of two well-known classes of algorithms used to solve this problem: projection-based methods and optimization-based methods. First, we introduce a novel geometric notion of data heterogeneity called angular heterogeneity and discuss its generality. Using this notion, we characterize the optimal convergence rates of the most prominent algorithms from each class, capturing the effects of the number of machines, the number of equations, and that of both cross-machine and local data heterogeneity on these rates. Our analysis establishes the superiority of Accelerated Projected Consensus in realistic scenarios with significant data heterogeneity and offers several insights into how angular heterogeneity affects the efficiency of the methods studied. Additionally, we develop distributed algorithms for the efficient computation of the proposed angular heterogeneity metrics. Our extensive numerical analyses validate and complement our theoretical results.

北京阿比特科技有限公司