Depression has proven to be a significant public health issue, profoundly affecting the psychological well-being of individuals. If it remains undiagnosed, depression can lead to severe health issues, which can manifest physically and even lead to suicide. Generally, Diagnosing depression or any other mental disorder involves conducting semi-structured interviews alongside supplementary questionnaires, including variants of the Patient Health Questionnaire (PHQ) by Clinicians and mental health professionals. This approach places significant reliance on the experience and judgment of trained physicians, making the diagnosis susceptible to personal biases. Given that the underlying mechanisms causing depression are still being actively researched, physicians often face challenges in diagnosing and treating the condition, particularly in its early stages of clinical presentation. Recently, significant strides have been made in Artificial neural computing to solve problems involving text, image, and speech in various domains. Our analysis has aimed to leverage these state-of-the-art (SOTA) models in our experiments to achieve optimal outcomes leveraging multiple modalities. The experiments were performed on the Extended Distress Analysis Interview Corpus Wizard of Oz dataset (E-DAIC) corpus presented in the Audio/Visual Emotion Challenge (AVEC) 2019 Challenge. The proposed solutions demonstrate better results achieved by Proprietary and Open-source Large Language Models (LLMs), which achieved a Root Mean Square Error (RMSE) score of 3.98 on Textual Modality, beating the AVEC 2019 challenge baseline results and current SOTA regression analysis architectures. Additionally, the proposed solution achieved an accuracy of 71.43% in the classification task. The paper also includes a novel audio-visual multi-modal network that predicts PHQ-8 scores with an RMSE of 6.51.
Recent research has shown that smaller language models can acquire substantial reasoning abilities when fine-tuned with reasoning exemplars crafted by a significantly larger teacher model. We explore this paradigm for the financial domain, focusing on the challenge of answering questions that require multi-hop numerical reasoning over financial texts. We assess the performance of several smaller models that have been fine-tuned to generate programs that encode the required financial reasoning and calculations. Our findings demonstrate that these fine-tuned smaller models approach the performance of the teacher model. To provide a granular analysis of model performance, we propose an approach to investigate the specific student model capabilities that are enhanced by fine-tuning. Our empirical analysis indicates that fine-tuning refines the student models ability to express and apply the required financial concepts along with adapting the entity extraction for the specific data format. In addition, we hypothesize and demonstrate that comparable financial reasoning capability can be induced using relatively smaller datasets.
Learning from demonstrations has shown to be an effective approach to robotic manipulation, especially with the recently collected large-scale robot data with teleoperation systems. Building an efficient teleoperation system across diverse robot platforms has become more crucial than ever. However, there is a notable lack of cost-effective and user-friendly teleoperation systems for different end-effectors, e.g., anthropomorphic robot hands and grippers, that can operate across multiple platforms. To address this issue, we develop ACE, a cross-platform visual-exoskeleton system for low-cost dexterous teleoperation. Our system utilizes a hand-facing camera to capture 3D hand poses and an exoskeleton mounted on a portable base, enabling accurate real-time capture of both finger and wrist poses. Compared to previous systems, which often require hardware customization according to different robots, our single system can generalize to humanoid hands, arm-hands, arm-gripper, and quadruped-gripper systems with high-precision teleoperation. This enables imitation learning for complex manipulation tasks on diverse platforms.
The pedestrian stress level is shown to significantly influence human cognitive processes and, subsequently, decision-making, e.g., the decision to select a gap and cross a street. This paper systematically studies the stress experienced by a pedestrian when crossing a street under different experimental manipulations by monitoring the ElectroDermal Activity (EDA) using the Galvanic Skin Response (GSR) sensor. To fulfil the research objectives, a dynamic and immersive virtual reality (VR) platform was used, which is suitable for eliciting and capturing pedestrian's emotional responses in conjunction with monitoring their EDA. A total of 171 individuals participated in the experiment, tasked to cross a two-way street at mid-block with no signal control. Mixed effects models were employed to compare the influence of socio-demographics, social influence, vehicle technology, environment, road design, and traffic variables on the stress levels of the participants. The results indicated that having a street median in the middle of the road operates as a refuge and significantly reduced stress. Younger participants were (18-24 years) calmer than the relatively older participants (55-65 years). Arousal levels were higher when it came to the characteristics of the avatar (virtual pedestrian) in the simulation, especially for those avatars with adventurous traits. The pedestrian location influenced stress since the stress was higher on the street while crossing than waiting on the sidewalk. Significant causes of arousal were fear of accidents and an actual accident for pedestrians. The estimated random effects show a high degree of physical and mental learning by the participants while going through the scenarios.
The use of Artificial Intelligence (AI) in healthcare, including in caring for cancer survivors, has gained significant interest. However, gaps remain in our understanding of how such AI systems can provide care, especially for ethnic and racial minority groups who continue to face care disparities. Through interviews with six cancer survivors, we identify critical gaps in current healthcare systems such as a lack of personalized care and insufficient cultural and linguistic accommodation. AI, when applied to care, was seen as a way to address these issues by enabling real-time, culturally aligned, and linguistically appropriate interactions. We also uncovered concerns about the implications of AI-driven personalization, such as data privacy, loss of human touch in caregiving, and the risk of echo chambers that limit exposure to diverse information. We conclude by discussing the trade-offs between AI-enhanced personalization and the need for structural changes in healthcare that go beyond technological solutions, leading us to argue that we should begin by asking, ``Why personalization?''
Counterfactual estimation from observations represents a critical endeavor in numerous application fields, such as healthcare and finance, with the primary challenge being the mitigation of treatment bias. The balancing strategy aimed at reducing covariate disparities between different treatment groups serves as a universal solution. However, when it comes to the time series data, the effectiveness of balancing strategies remains an open question, with a thorough analysis of the robustness and applicability of balancing strategies still lacking. This paper revisits counterfactual estimation in the temporal setting and provides a brief overview of recent advancements in balancing strategies. More importantly, we conduct a critical empirical examination for the effectiveness of the balancing strategies within the realm of temporal counterfactual estimation in various settings on multiple datasets. Our findings could be of significant interest to researchers and practitioners and call for a reexamination of the balancing strategy in time series settings.
In this article, we aim to provide a general and complete understanding of semi-supervised (SS) causal inference for treatment effects. Specifically, we consider two such estimands: (a) the average treatment effect and (b) the quantile treatment effect, as prototype cases, in an SS setting, characterized by two available data sets: (i) a labeled data set of size $n$, providing observations for a response and a set of high dimensional covariates, as well as a binary treatment indicator; and (ii) an unlabeled data set of size $N$, much larger than $n$, but without the response observed. Using these two data sets, we develop a family of SS estimators which are ensured to be: (1) more robust and (2) more efficient than their supervised counterparts based on the labeled data set only. Beyond the 'standard' double robustness results (in terms of consistency) that can be achieved by supervised methods as well, we further establish root-n consistency and asymptotic normality of our SS estimators whenever the propensity score in the model is correctly specified, without requiring specific forms of the nuisance functions involved. Such an improvement of robustness arises from the use of the massive unlabeled data, so it is generally not attainable in a purely supervised setting. In addition, our estimators are shown to be semi-parametrically efficient as long as all the nuisance functions are correctly specified. Moreover, as an illustration of the nuisance estimators, we consider inverse-probability-weighting type kernel smoothing estimators involving unknown covariate transformation mechanisms, and establish in high dimensional scenarios novel results on their uniform convergence rates, which should be of independent interest. Numerical results on both simulated and real data validate the advantage of our methods over their supervised counterparts with respect to both robustness and efficiency.
Difference-in-differences (DiD) is the most popular observational causal inference method in health policy, employed to evaluate the real-world impact of policies and programs. To estimate treatment effects, DiD relies on the "parallel trends assumption", that on average treatment and comparison groups would have had parallel trajectories in the absence of an intervention. Historically, DiD has been considered broadly applicable and straightforward to implement, but recent years have seen rapid advancements in DiD methods. This paper reviews and synthesizes these innovations for medical and health policy researchers. We focus on four topics: (1) assessing the parallel trends assumption in health policy contexts; (2) relaxing the parallel trends assumption when appropriate; (3) employing estimators to account for staggered treatment timing; and (4) conducting robust inference for analyses in which normal-based clustered standard errors are inappropriate. For each, we explain challenges and common pitfalls in traditional DiD and modern methods available to address these issues.
Mental health has attracted substantial attention in recent years and LLM can be an effective technology for alleviating this problem owing to its capability in text understanding and dialogue. However, existing research in this domain often suffers from limitations, such as training on datasets lacking crucial prior knowledge and evidence, and the absence of comprehensive evaluation methods. In this paper, we propose a specialized psychological large language model (LLM), named PsycoLLM, trained on a proposed high-quality psychological dataset, including single-turn QA, multi-turn dialogues and knowledge-based QA. Specifically, we construct multi-turn dialogues through a three-step pipeline comprising generation, evidence judgment, and refinement. We augment this process with real-world psychological case backgrounds extracted from online platforms, enhancing the relevance and applicability of the generated data. Additionally, to compare the performance of PsycoLLM with other LLMs, we develop a comprehensive psychological benchmark based on authoritative psychological counseling examinations in China, which includes assessments of professional ethics, theoretical proficiency, and case analysis. The experimental results on the benchmark illustrates the effectiveness of PsycoLLM, which demonstrates superior performance compared to other LLMs.
Finite element-based high-order solvers of conservation laws offer large accuracy but face challenges near discontinuities due to the Gibbs phenomenon. Artificial viscosity is a popular and effective solution to this problem based on physical insight. In this work, we present a physics-informed machine learning algorithm to automate the discovery of artificial viscosity models in a non-supervised paradigm. The algorithm is inspired by reinforcement learning and trains a neural network acting cell-by-cell (the viscosity model) by minimizing a loss defined as the difference with respect to a reference solution thanks to automatic differentiation. This enables a dataset-free training procedure. We prove that the algorithm is effective by integrating it into a state-of-the-art Runge-Kutta discontinuous Galerkin solver. We showcase several numerical tests on scalar and vectorial problems, such as Burgers' and Euler's equations in one and two dimensions. Results demonstrate that the proposed approach trains a model that is able to outperform classical viscosity models. Moreover, we show that the learnt artificial viscosity model is able to generalize across different problems and parameters.
Decision-making algorithms are being used in important decisions, such as who should be enrolled in health care programs and be hired. Even though these systems are currently deployed in high-stakes scenarios, many of them cannot explain their decisions. This limitation has prompted the Explainable Artificial Intelligence (XAI) initiative, which aims to make algorithms explainable to comply with legal requirements, promote trust, and maintain accountability. This paper questions whether and to what extent explainability can help solve the responsibility issues posed by autonomous AI systems. We suggest that XAI systems that provide post-hoc explanations could be seen as blameworthy agents, obscuring the responsibility of developers in the decision-making process. Furthermore, we argue that XAI could result in incorrect attributions of responsibility to vulnerable stakeholders, such as those who are subjected to algorithmic decisions (i.e., patients), due to a misguided perception that they have control over explainable algorithms. This conflict between explainability and accountability can be exacerbated if designers choose to use algorithms and patients as moral and legal scapegoats. We conclude with a set of recommendations for how to approach this tension in the socio-technical process of algorithmic decision-making and a defense of hard regulation to prevent designers from escaping responsibility.