亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Scientific research increasingly relies on distributed computational resources, storage systems, networks, and instruments, ranging from HPC and cloud systems to edge devices. Event-driven architecture (EDA) benefits applications targeting distributed research infrastructures by enabling the organization, communication, processing, reliability, and security of events generated from many sources. To support the development of scientific EDA, we introduce Octopus, a hybrid, cloud-to-edge event fabric designed to link many local event producers and consumers with cloud-hosted brokers. Octopus can be scaled to meet demand, permits the deployment of highly available Triggers for automatic event processing, and enforces fine-grained access control. We identify requirements in self-driving laboratories, scientific data automation, online task scheduling, epidemic modeling, and dynamic workflow management use cases, and present results demonstrating Octopus' ability to meet those requirements. Octopus supports producing and consuming events at a rate of over 4.2 M and 9.6 M events per second, respectively, from distributed clients.

相關內容

Processing 是一門開源編程語言和(he)與之配套的(de)(de)集成開發環境(IDE)的(de)(de)名稱。Processing 在電子藝術(shu)和(he)視覺設計(ji)社區被用來教授編程基礎,并運用于大(da)量的(de)(de)新媒體和(he)互動(dong)藝術(shu)作品中。

Recent developments in computer graphics, machine learning, and sensor technologies enable numerous opportunities for extended reality (XR) setups for everyday life, from skills training to entertainment. With large corporations offering consumer-grade head-mounted displays (HMDs) in an affordable way, it is likely that XR will become pervasive, and HMDs will develop as personal devices like smartphones and tablets. However, having intelligent spaces and naturalistic interactions in XR is as important as technological advances so that users grow their engagement in virtual and augmented spaces. To this end, large language model (LLM)--powered non-player characters (NPCs) with speech-to-text (STT) and text-to-speech (TTS) models bring significant advantages over conventional or pre-scripted NPCs for facilitating more natural conversational user interfaces (CUIs) in XR. In this paper, we provide the community with an open-source, customizable, extensible, and privacy-aware Unity package, CUIfy, that facilitates speech-based NPC-user interaction with various LLMs, STT, and TTS models. Our package also supports multiple LLM-powered NPCs per environment and minimizes the latency between different computational models through streaming to achieve usable interactions between users and NPCs. We publish our source code in the following repository: //gitlab.lrz.de/hctl/cuify

Efficient state space models (SSMs), such as linear recurrent neural networks and linear attention variants, offer computational advantages over Transformers but struggle with tasks requiring long-range in-context retrieval-like text copying, associative recall, and question answering over long contexts. Previous efforts to address these challenges have focused on architectural modifications, often reintroducing computational inefficiencies. In this paper, we propose a novel training procedure, Birdie, that significantly enhances the in-context retrieval capabilities of SSMs without altering their architecture. Our approach combines bidirectional input processing with dynamic mixtures of specialized pre-training objectives, optimized via reinforcement learning. We introduce a new bidirectional SSM architecture that seamlessly transitions from bidirectional context processing to causal generation. Experimental evaluations demonstrate that Birdie markedly improves performance on retrieval-intensive tasks such as multi-number phone book lookup, long paragraph question-answering, and infilling. This narrows the performance gap with Transformers, while retaining computational efficiency. Our findings highlight the importance of training procedures in leveraging the fixed-state capacity of SSMs, offering a new direction to advance their capabilities. All code and pre-trained models are available at //www.github.com/samblouir/birdie, with support for JAX and PyTorch.

Watermarking generative content serves as a vital tool for authentication, ownership protection, and mitigation of potential misuse. Existing watermarking methods face the challenge of balancing robustness and concealment. They empirically inject a watermark that is both invisible and robust and passively achieve concealment by limiting the strength of the watermark, thus reducing the robustness. In this paper, we propose to explicitly introduce a watermark hiding process to actively achieve concealment, thus allowing the embedding of stronger watermarks. To be specific, we implant a robust watermark in an intermediate diffusion state and then guide the model to hide the watermark in the final generated image. We employ an adversarial optimization algorithm to produce the optimal hiding prompt guiding signal for each watermark. The prompt embedding is optimized to minimize artifacts in the generated image, while the watermark is optimized to achieve maximum strength. The watermark can be verified by reversing the generation process. Experiments on various diffusion models demonstrate the watermark remains verifiable even under significant image tampering and shows superior invisibility compared to other state-of-the-art robust watermarking methods.

CNNs exhibit inherent equivariance to image translation, leading to efficient parameter and data usage, faster learning, and improved robustness. The concept of translation equivariant networks has been successfully extended to rotation transformation using group convolution for discrete rotation groups and harmonic functions for the continuous rotation group encompassing $360^\circ$. We explore the compatibility of the SA mechanism with full rotation equivariance, in contrast to previous studies that focused on discrete rotation. We introduce the Harmformer, a harmonic transformer with a convolutional stem that achieves equivariance for both translation and continuous rotation. Accompanied by an end-to-end equivariance proof, the Harmformer not only outperforms previous equivariant transformers, but also demonstrates inherent stability under any continuous rotation, even without seeing rotated samples during training.

Graph neural networks are recognized for their strong performance across various applications, with the backpropagation algorithm playing a central role in the development of most GNN models. However, despite its effectiveness, BP has limitations that challenge its biological plausibility and affect the efficiency, scalability and parallelism of training neural networks for graph-based tasks. While several non-BP training algorithms, such as the direct feedback alignment, have been successfully applied to fully-connected and convolutional network components for handling Euclidean data, directly adapting these non-BP frameworks to manage non-Euclidean graph data in GNN models presents significant challenges. These challenges primarily arise from the violation of the i.i.d. assumption in graph data and the difficulty in accessing prediction errors for all samples (nodes) within the graph. To overcome these obstacles, in this paper we propose DFA-GNN, a novel forward learning framework tailored for GNNs with a case study of semi-supervised learning. The proposed method breaks the limitations of BP by using a dedicated forward training mechanism. Specifically, DFA-GNN extends the principles of DFA to adapt to graph data and unique architecture of GNNs, which incorporates the information of graph topology into the feedback links to accommodate the non-Euclidean characteristics of graph data. Additionally, for semi-supervised graph learning tasks, we developed a pseudo error generator that spreads residual errors from training data to create a pseudo error for each unlabeled node. These pseudo errors are then utilized to train GNNs using DFA. Extensive experiments on 10 public benchmarks reveal that our learning framework outperforms not only previous non-BP methods but also the standard BP methods, and it exhibits excellent robustness against various types of noise and attacks.

The rapid growth of UAV applications necessitates a robust communication and networking architecture capable of addressing the diverse requirements of various applications concurrently, rather than relying on application-specific solutions. This paper proposes a generic and reliable multi-UAV communication and networking architecture designed to support the varying demands of heterogeneous applications, including short-range and long-range communication, star and mesh topologies, different data rates, and multiple wireless standards. Our architecture accommodates both adhoc and infrastructure networks, ensuring seamless connectivity throughout the network. Additionally, we present the design of a multi-protocol UAV gateway that enables interoperability among various communication protocols. Furthermore, we introduce a data processing and service layer framework with a graphical user interface of a ground control station that facilitates remote control and monitoring from any location at any time. We practically implemented the proposed architecture and evaluated its performance using different metrics, demonstrating its effectiveness.

To alleviate computational load on RSUs and cloud platforms, reduce communication bandwidth requirements, and provide a more stable vehicular network service, this paper proposes an optimized pinning control approach for heterogeneous multi-network vehicular ad-hoc networks (VANETs). In such networks, vehicles participate in multiple task-specific networks with asymmetric coupling and dynamic topologies. We first establish a rigorous theoretical foundation by proving the stability of pinning control strategies under both single and multi-network conditions, deriving sufficient stability conditions using Lyapunov theory and linear matrix inequalities (LMIs). Building on this theoretical groundwork, we propose an adaptive genetic algorithm tailored to select optimal pinning nodes, effectively balancing LMI constraints while prioritizing overlapping nodes to enhance control efficiency. Extensive simulations across various network scales demonstrate that our approach achieves rapid consensus with a reduced number of control nodes, particularly when leveraging network overlaps. This work provides a comprehensive solution for efficient control node selection in complex vehicular networks, offering practical implications for deploying large-scale intelligent transportation systems.

This study investigated the integration of cutting-edge technologies and methodologies for creating dynamic, user-centered library environments. In creative strategies for engagement and innovation, library users must be empowered to undertake the new role of modernizing library services and enhancing user experiences. It also enhances the information management and user engagement. This can be attained from personalized approaches, such as recommendation systems to interactive platforms that will have effective experiences tailored to users of different natures. It investigates the consumer engagement practices of enthusiasm, sharing, and learning about their roles in cognitive, affective, and behavioural engagements. Combined, these new approaches will help promote learning, interaction, and growth, add value, and have a more positive impact on users. The challenge for libraries in this rapidly changing, technologically advancing, and digitally networked world, with a base of expectant users, is to remain relevant and engaging. This study discusses innovative strategies for empowering library users and enhancing their engagement through creative and technological approaches. This investigation was conducted to integrate cutting-edge technologies and methodologies into creating dynamic library settings that are user-centered and foster learning, interaction, and personal growth.

The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at //github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.

The cross-domain recommendation technique is an effective way of alleviating the data sparsity in recommender systems by leveraging the knowledge from relevant domains. Transfer learning is a class of algorithms underlying these techniques. In this paper, we propose a novel transfer learning approach for cross-domain recommendation by using neural networks as the base model. We assume that hidden layers in two base networks are connected by cross mappings, leading to the collaborative cross networks (CoNet). CoNet enables dual knowledge transfer across domains by introducing cross connections from one base network to another and vice versa. CoNet is achieved in multi-layer feedforward networks by adding dual connections and joint loss functions, which can be trained efficiently by back-propagation. The proposed model is evaluated on two real-world datasets and it outperforms baseline models by relative improvements of 3.56\% in MRR and 8.94\% in NDCG, respectively.

北京阿比特科技有限公司