亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A second-order accurate kernel-free boundary integral method is presented for Stokes and Navier boundary value problems on three-dimensional irregular domains. It solves equations in the framework of boundary integral equations, whose corresponding discrete forms are well-conditioned and solved by the GMRES method. A notable feature of this approach is that the boundary or volume integrals encountered in BIEs are indirectly evaluated by a Cartesian grid-based method, which includes discretizing corresponding simple interface problems with a MAC scheme, correcting discrete linear systems to reduce large local truncation errors near the interface, solving the modified system by a CG method together with an FFT-based Poisson solver. No extra work or special quadratures are required to deal with singular or hyper-singular boundary integrals and the dependence on the analytical expressions of Green's functions for the integral kernels is completely eliminated. Numerical results are given to demonstrate the efficiency and accuracy of the Cartesian grid-based method.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI雜志。 Publisher:Elsevier。 SIT:

The Immersed Boundary (IB) method of Peskin (J. Comput. Phys., 1977) is useful for problems involving fluid-structure interactions or complex geometries. By making use of a regular Cartesian grid that is independent of the geometry, the IB framework yields a robust numerical scheme that can efficiently handle immersed deformable structures. Additionally, the IB method has been adapted to problems with prescribed motion and other PDEs with given boundary data. IB methods for these problems traditionally involve penalty forces which only approximately satisfy boundary conditions, or they are formulated as constraint problems. In the latter approach, one must find the unknown forces by solving an equation that corresponds to a poorly conditioned first-kind integral equation. This operation can require a large number of iterations of a Krylov method, and since a time-dependent problem requires this solve at each time step, this method can be prohibitively inefficient without preconditioning. In this work, we introduce a new, well-conditioned IB formulation for boundary value problems, which we call the Immersed Boundary Double Layer (IBDL) method. We present the method as it applies to Poisson and Helmholtz problems to demonstrate its efficiency over the original constraint method. In this double layer formulation, the equation for the unknown boundary distribution corresponds to a well-conditioned second-kind integral equation that can be solved efficiently with a small number of iterations of a Krylov method. Furthermore, the iteration count is independent of both the mesh size and immersed boundary point spacing. The method converges away from the boundary, and when combined with a local interpolation, it converges in the entire PDE domain. Additionally, while the original constraint method applies only to Dirichlet problems, the IBDL formulation can also be used for Neumann conditions.

This paper studies the number of limit cycles that may bifurcate from an equilibrium of an autonomous system of differential equations. The system in question is assumed to be of dimension $n$, have a zero-Hopf equilibrium at the origin, and consist only of homogeneous terms of order $m$. Denote by $H_k(n,m)$ the maximum number of limit cycles of the system that can be detected by using the averaging method of order $k$. We prove that $H_1(n,m)\leq(m-1)\cdot m^{n-2}$ and $H_k(n,m)\leq(km)^{n-1}$ for generic $n\geq3$, $m\geq2$ and $k>1$. The exact numbers of $H_k(n,m)$ or tight bounds on the numbers are determined by computing the mixed volumes of some polynomial systems obtained from the averaged functions. Based on symbolic and algebraic computation, a general and algorithmic approach is proposed to derive sufficient conditions for a given differential system to have a prescribed number of limit cycles. The effectiveness of the proposed approach is illustrated by a family of third-order differential equations and by a four-dimensional hyperchaotic differential system.

Integer linear programming models a wide range of practical combinatorial optimization problems and has significant impacts in industry and management sectors. This work develops the first standalone local search solver for general integer linear programming validated on a large heterogeneous problem dataset. We propose a local search framework that switches in three modes, namely Search, Improve, and Restore modes, and design tailored operators adapted to different modes, thus improve the quality of the current solution according to different situations. For the Search and Restore modes, we propose an operator named tight move, which adaptively modifies variables' values trying to make some constraint tight. For the Improve mode, an efficient operator lift move is proposed to improve the quality of the objective function while maintaining feasibility. Putting these together, we develop a local search solver for integer linear programming called Local-ILP. Experiments conducted on the MIPLIB dataset show the effectiveness of our solver in solving large-scale hard integer linear programming problems within a reasonably short time. Local-ILP is competitive and complementary to the state-of-the-art commercial solver Gurobi and significantly outperforms the state-of-the-art non-commercial solver SCIP. Moreover, our solver establishes new records for 6 MIPLIB open instances.

In this paper we obtain complexity bounds for computational problems on algebraic power series over several commuting variables. The power series are specified by systems of polynomial equations: a formalism closely related to weighted context-free grammars. We focus on three problems -- decide whether a given algebraic series is identically zero, determine whether all but finitely many coefficients are zero, and compute the coefficient of a specific monomial. We relate these questions to well-known computational problems on arithmetic circuits and thereby show that all three problems lie in the counting hierarchy. Our main result improves the best known complexity bound on deciding zeroness of an algebraic series. This problem is known to lie in PSPACE by reduction to the decision problem for the existential fragment of the theory of real closed fields. Here we show that the problem lies in the counting hierarchy by reduction to the problem of computing the degree of a polynomial given by an arithmetic circuit. As a corollary we obtain new complexity bounds on multiplicity equivalence of context-free grammars restricted to a bounded language, language inclusion of a nondeterministic finite automaton in an unambiguous context-free grammar, and language inclusion of a non-deterministic context-free grammar in an unambiguous finite automaton.

3D shape reconstruction typically requires identifying object features or textures in multiple images of a subject. This approach is not viable when the subject is semi-transparent and moving in and out of focus. Here we overcome these challenges by rendering a candidate shape with adaptive blurring and transparency for comparison with the images. We use the microscopic nematode Caenorhabditis elegans as a case study as it freely explores a 3D complex fluid with constantly changing optical properties. We model the slender worm as a 3D curve using an intrinsic parametrisation that naturally admits biologically-informed constraints and regularisation. To account for the changing optics we develop a novel differentiable renderer to construct images from 2D projections and compare against raw images to generate a pixel-wise error to jointly update the curve, camera and renderer parameters using gradient descent. The method is robust to interference such as bubbles and dirt trapped in the fluid, stays consistent through complex sequences of postures, recovers reliable estimates from blurry images and provides a significant improvement on previous attempts to track C. elegans in 3D. Our results demonstrate the potential of direct approaches to shape estimation in complex physical environments in the absence of ground-truth data.

According to ICH Q8 guidelines, the biopharmaceutical manufacturer submits a design space (DS) definition as part of the regulatory approval application, in which case process parameter (PP) deviations within this space are not considered a change and do not trigger a regulatory post approval procedure. A DS can be described by non-linear PP ranges, i.e., the range of one PP conditioned on specific values of another. However, independent PP ranges (linear combinations) are often preferred in biopharmaceutical manufacturing due to their operation simplicity. While some statistical software supports the calculation of a DS comprised of linear combinations, such methods are generally based on discretizing the parameter space - an approach that scales poorly as the number of PPs increases. Here, we introduce a novel method for finding linear PP combinations using a numeric optimizer to calculate the largest design space within the parameter space that results in critical quality attribute (CQA) boundaries within acceptance criteria, predicted by a regression model. A precomputed approximation of tolerance intervals is used in inequality constraints to facilitate fast evaluations of this boundary using a single matrix multiplication. Correctness of the method was validated against different ground truths with known design spaces. Compared to stateof-the-art, grid-based approaches, the optimizer-based procedure is more accurate, generally yields a larger DS and enables the calculation in higher dimensions. Furthermore, a proposed weighting scheme can be used to favor certain PPs over others and therefore enabling a more dynamic approach to DS definition and exploration. The increased PP ranges of the larger DS provide greater operational flexibility for biopharmaceutical manufacturers.

In this article, we study the semi discrete and fully discrete formulations for a Kirchhoff type quasilinear integro-differential equation involving time-fractional derivative of order $\alpha \in (0,1) $. For the semi discrete formulation of the equation under consideration, we discretize the space domain using a conforming FEM and keep the time variable continuous. We modify the standard Ritz-Volterra projection operator to carry out error analysis for the semi discrete formulation of the considered equation. In general, solutions of the time-fractional partial differential equations (PDEs) have a weak singularity near time $t=0$. Taking this singularity into account, we develop a new linearized fully discrete numerical scheme for the considered equation on a graded mesh in time. We derive a priori bounds on the solution of this fully discrete numerical scheme using a new weighted $H^{1}(\Omega)$ norm. We prove that the developed numerical scheme has an accuracy rate of $O(P^{-1}+N^{-(2-\alpha)})$ in $L^{\infty}(0,T;L^{2}(\Omega))$ as well as in $L^{\infty}(0,T;H^{1}_{0}(\Omega))$, where $P$ and $N$ are degrees of freedom in the space and time directions respectively. The robustness and efficiency of the proposed numerical scheme are demonstrated by some numerical examples.

In continuum-armed bandit problems where the underlying function resides in a reproducing kernel Hilbert space (RKHS), namely, the kernelised bandit problems, an important open problem remains of how well learning algorithms can adapt if the regularity of the associated kernel function is unknown. In this work, we study adaptivity to the regularity of translation-invariant kernels, which is characterized by the decay rate of the Fourier transformation of the kernel, in the bandit setting. We derive an adaptivity lower bound, proving that it is impossible to simultaneously achieve optimal cumulative regret in a pair of RKHSs with different regularities. To verify the tightness of this lower bound, we show that an existing bandit model selection algorithm applied with minimax non-adaptive kernelised bandit algorithms matches the lower bound in dependence of $T$, the total number of steps, except for log factors. By filling in the regret bounds for adaptivity between RKHSs, we connect the statistical difficulty for adaptivity in continuum-armed bandits in three fundamental types of function spaces: RKHS, Sobolev space, and H\"older space.

Behaviors of the synthetic characters in current military simulations are limited since they are generally generated by rule-based and reactive computational models with minimal intelligence. Such computational models cannot adapt to reflect the experience of the characters, resulting in brittle intelligence for even the most effective behavior models devised via costly and labor-intensive processes. Observation-based behavior model adaptation that leverages machine learning and the experience of synthetic entities in combination with appropriate prior knowledge can address the issues in the existing computational behavior models to create a better training experience in military training simulations. In this paper, we introduce a framework that aims to create autonomous synthetic characters that can perform coherent sequences of believable behavior while being aware of human trainees and their needs within a training simulation. This framework brings together three mutually complementary components. The first component is a Unity-based simulation environment - Rapid Integration and Development Environment (RIDE) - supporting One World Terrain (OWT) models and capable of running and supporting machine learning experiments. The second is Shiva, a novel multi-agent reinforcement and imitation learning framework that can interface with a variety of simulation environments, and that can additionally utilize a variety of learning algorithms. The final component is the Sigma Cognitive Architecture that will augment the behavior models with symbolic and probabilistic reasoning capabilities. We have successfully created proof-of-concept behavior models leveraging this framework on realistic terrain as an essential step towards bringing machine learning into military simulations.

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

北京阿比特科技有限公司