亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The ComOM shared task aims to extract comparative opinions from product reviews in Vietnamese language. There are two sub-tasks, including (1) Comparative Sentence Identification (CSI) and (2) Comparative Element Extraction (CEE). The first task is to identify whether the input is a comparative review, and the purpose of the second task is to extract the quintuplets mentioned in the comparative review. To address this task, our team proposes a two-stage system based on fine-tuning a BERTology model for the CSI task and unified multi-task instruction tuning for the CEE task. Besides, we apply the simple data augmentation technique to increase the size of the dataset for training our model in the second stage. Experimental results show that our approach outperforms the other competitors and has achieved the top score on the official private test.

相關內容

Named Entity Recognition (NER) is a key information extraction task with a long-standing tradition. While recent studies address and aim to correct annotation errors via re-labeling efforts, little is known about the sources of human label variation, such as text ambiguity, annotation error, or guideline divergence. This is especially the case for high-quality datasets and beyond English CoNLL03. This paper studies disagreements in expert-annotated named entity datasets for three languages: English, Danish, and Bavarian. We show that text ambiguity and artificial guideline changes are dominant factors for diverse annotations among high-quality revisions. We survey student annotations on a subset of difficult entities and substantiate the feasibility and necessity of manifold annotations for understanding named entity ambiguities from a distributional perspective.

Prior research on AI-assisted human decision-making has explored several different explainable AI (XAI) approaches. A recent paper has proposed a paradigm shift calling for hypothesis-driven XAI through a conceptual framework called evaluative AI that gives people evidence that supports or refutes hypotheses without necessarily giving a decision-aid recommendation. In this paper we describe and evaluate an approach for hypothesis-driven XAI based on the Weight of Evidence (WoE) framework, which generates both positive and negative evidence for a given hypothesis. Through human behavioural experiments, we show that our hypothesis-driven approach increases decision accuracy, reduces reliance compared to a recommendation-driven approach and an AI-explanation-only baseline, but with a small increase in under-reliance compared to the recommendation-driven approach. Further, we show that participants used our hypothesis-driven approach in a materially different way to the two baselines.

The current literature on AI-advised decision making -- involving explainable AI systems advising human decision makers -- presents a series of inconclusive and confounding results. To synthesize these findings, we propose a simple theory that elucidates the frequent failure of AI explanations to engender appropriate reliance and complementary decision making performance. We argue explanations are only useful to the extent that they allow a human decision maker to verify the correctness of an AI's prediction, in contrast to other desiderata, e.g., interpretability or spelling out the AI's reasoning process. Prior studies find in many decision making contexts AI explanations do not facilitate such verification. Moreover, most tasks fundamentally do not allow easy verification, regardless of explanation method, limiting the potential benefit of any type of explanation. We also compare the objective of complementary performance with that of appropriate reliance, decomposing the latter into the notions of outcome-graded and strategy-graded reliance.

In patent prosecution, timely and effective responses to Office Actions (OAs) are crucial for acquiring patents, yet past automation and AI research have scarcely addressed this aspect. To address this gap, our study introduces the Patent Office Action Response Intelligence System (PARIS) and its advanced version, the Large Language Model Enhanced PARIS (LE-PARIS). These systems are designed to expedite the efficiency of patent attorneys in collaboratively handling OA responses. The systems' key features include the construction of an OA Topics Database, development of Response Templates, and implementation of Recommender Systems and LLM-based Response Generation. Our validation involves a multi-paradigmatic analysis using the USPTO Office Action database and longitudinal data of attorney interactions with our systems over six years. Through five studies, we examine the constructiveness of OA topics (studies 1 and 2) using topic modeling and the proposed Delphi process, the efficacy of our proposed hybrid recommender system tailored for OA (both LLM-based and non-LLM-based) (study 3), the quality of response generation (study 4), and the practical value of the systems in real-world scenarios via user studies (study 5). Results demonstrate that both PARIS and LE-PARIS significantly meet key metrics and positively impact attorney performance.

Large language models and AI chatbots have been at the forefront of democratizing artificial intelligence. However, the releases of ChatGPT and other similar tools have been followed by growing concerns regarding the difficulty of controlling large language models and their outputs. Currently, we are witnessing a cat-and-mouse game where users attempt to misuse the models with a novel attack called prompt injections. In contrast, the developers attempt to discover the vulnerabilities and block the attacks simultaneously. In this paper, we provide an overview of these emergent threats and present a categorization of prompt injections, which can guide future research on prompt injections and act as a checklist of vulnerabilities in the development of LLM interfaces. Moreover, based on previous literature and our own empirical research, we discuss the implications of prompt injections to LLM end users, developers, and researchers.

Recent years have seen a surge in applications and technologies aimed at motivating users to achieve personal goals and improve their wellbeing. However, these often fail to promote long-term behaviour change, and sometimes even backfire. We consider how self-determination theory (SDT), a metatheory of human motivation and wellbeing, can help explain why such technologies fail, and how they may better help users internalise the motivation behind their goals and make enduring changes in their behaviour. In this work, we systematically reviewed 15 papers in the ACM Digital Library that apply SDT to the design of behaviour change technologies (BCTs). We identified 50 suggestions for design features in BCTs, grounded in SDT, that researchers have applied to enhance user motivation. However, we find that SDT is often leveraged to optimise engagement with the technology itself rather than with the targeted behaviour change per se. When interpreted through the lens of SDT, the implication is that BCTs may fail to cultivate sustained changes in behaviour, as users' motivation depends on their enjoyment of the intervention, which may wane over time. An underexplored opportunity remains for designers to leverage SDT to support users to internalise the ultimate goals and value of certain behaviour changes, enhancing their motivation to sustain these changes in the long term.

Large Language Models have emerged as prime candidates to tackle misinformation mitigation. However, existing approaches struggle with hallucinations and overconfident predictions. We propose an uncertainty quantification framework that leverages both direct confidence elicitation and sampled-based consistency methods to provide better calibration for NLP misinformation mitigation solutions. We first investigate the calibration of sample-based consistency methods that exploit distinct features of consistency across sample sizes and stochastic levels. Next, we evaluate the performance and distributional shift of a robust numeric verbalization prompt across single vs. two-step confidence elicitation procedure. We also compare the performance of the same prompt with different versions of GPT and different numerical scales. Finally, we combine the sample-based consistency and verbalized methods to propose a hybrid framework that yields a better uncertainty estimation for GPT models. Overall, our work proposes novel uncertainty quantification methods that will improve the reliability of Large Language Models in misinformation mitigation applications.

Pre-trained Language Models (PLMs) have achieved great success in various Natural Language Processing (NLP) tasks under the pre-training and fine-tuning paradigm. With large quantities of parameters, PLMs are computation-intensive and resource-hungry. Hence, model pruning has been introduced to compress large-scale PLMs. However, most prior approaches only consider task-specific knowledge towards downstream tasks, but ignore the essential task-agnostic knowledge during pruning, which may cause catastrophic forgetting problem and lead to poor generalization ability. To maintain both task-agnostic and task-specific knowledge in our pruned model, we propose ContrAstive Pruning (CAP) under the paradigm of pre-training and fine-tuning. It is designed as a general framework, compatible with both structured and unstructured pruning. Unified in contrastive learning, CAP enables the pruned model to learn from the pre-trained model for task-agnostic knowledge, and fine-tuned model for task-specific knowledge. Besides, to better retain the performance of the pruned model, the snapshots (i.e., the intermediate models at each pruning iteration) also serve as effective supervisions for pruning. Our extensive experiments show that adopting CAP consistently yields significant improvements, especially in extremely high sparsity scenarios. With only 3% model parameters reserved (i.e., 97% sparsity), CAP successfully achieves 99.2% and 96.3% of the original BERT performance in QQP and MNLI tasks. In addition, our probing experiments demonstrate that the model pruned by CAP tends to achieve better generalization ability.

Recently pre-trained language representation models such as BERT have shown great success when fine-tuned on downstream tasks including information retrieval (IR). However, pre-training objectives tailored for ad-hoc retrieval have not been well explored. In this paper, we propose Pre-training with Representative wOrds Prediction (PROP) for ad-hoc retrieval. PROP is inspired by the classical statistical language model for IR, specifically the query likelihood model, which assumes that the query is generated as the piece of text representative of the "ideal" document. Based on this idea, we construct the representative words prediction (ROP) task for pre-training. Given an input document, we sample a pair of word sets according to the document language model, where the set with higher likelihood is deemed as more representative of the document. We then pre-train the Transformer model to predict the pairwise preference between the two word sets, jointly with the Masked Language Model (MLM) objective. By further fine-tuning on a variety of representative downstream ad-hoc retrieval tasks, PROP achieves significant improvements over baselines without pre-training or with other pre-training methods. We also show that PROP can achieve exciting performance under both the zero- and low-resource IR settings. The code and pre-trained models are available at //github.com/Albert-Ma/PROP.

Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.

北京阿比特科技有限公司