亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider a high-dimensional sparse normal means model where the goal is to estimate the mean vector assuming the proportion of non-zero means is unknown. We model the mean vector by a one-group global-local shrinkage prior belonging to a broad class of such priors that includes the horseshoe prior. We address some questions related to asymptotic properties of the resulting posterior distribution of the mean vector for the said class priors. We consider two ways to model the global parameter in this paper. Firstly by considering this as an unknown fixed parameter and then by an empirical Bayes estimate of it. In the second approach, we do a hierarchical Bayes treatment by assigning a suitable non-degenerate prior distribution to it. We first show that for the class of priors under study, the posterior distribution of the mean vector contracts around the true parameter at a near minimax rate when the empirical Bayes approach is used. Next, we prove that in the hierarchical Bayes approach, the corresponding Bayes estimate attains the minimax risk asymptotically under the squared error loss function. We also show that the posterior contracts around the true parameter at a near minimax rate. These results generalize those of van der Pas et al. (2014) \cite{van2014horseshoe}, (2017) \cite{van2017adaptive}, proved for the horseshoe prior. We have also studied in this work the asymptotic Bayes optimality of global-local shrinkage priors where the number of non-null hypotheses is unknown. Here our target is to propose some conditions on the prior density of the global parameter such that the Bayes risk induced by the decision rule attains Optimal Bayes risk, up to some multiplicative constant. Using our proposed condition, under the asymptotic framework of Bogdan et al. (2011) \cite{bogdan2011asymptotic}, we are able to provide an affirmative answer to satisfy our hunch.

相關內容

Sparse structure learning in high-dimensional Gaussian graphical models is an important problem in multivariate statistical signal processing; since the sparsity pattern naturally encodes the conditional independence relationship among variables. However, maximum a posteriori (MAP) estimation is challenging if the prior model admits multiple levels of hierarchy, and traditional numerical optimization routines or expectation--maximization algorithms are difficult to implement. To this end, our contribution is a novel local linear approximation scheme that circumvents this issue using a very simple computational algorithm. Most importantly, the conditions under which our algorithm is guaranteed to converge to the MAP estimate are explicitly derived and are shown to cover a broad class of completely monotone priors, including the graphical horseshoe. Further, the resulting MAP estimate is shown to be sparse and consistent in the $\ell_2$-norm. Numerical results validate the speed, scalability, and statistical performance of the proposed method.

In recent years, learning-based approaches have revolutionized motion planning. The data generation process for these methods involves caching a large number of high quality paths for different queries (start, goal pairs) in various environments. Conventionally, a uniform random strategy is used for sampling these queries. However, this leads to inclusion of "trivial paths" in the dataset (e.g.,, straight line paths in case of length-optimal planning), which can be solved efficiently if the planner has access to a steering function. This work proposes a "non-trivial" query sampling procedure to add more complex paths in the dataset. Numerical experiments show that a higher success rate can be attained for neural planners trained on such a non-trivial dataset.

Combining machine learning and constrained optimization, Predict+Optimize tackles optimization problems containing parameters that are unknown at the time of solving. Prior works focus on cases with unknowns only in the objectives. A new framework was recently proposed to cater for unknowns also in constraints by introducing a loss function, called Post-hoc Regret, that takes into account the cost of correcting an unsatisfiable prediction. Since Post-hoc Regret is non-differentiable, the previous work computes only its approximation. While the notion of Post-hoc Regret is general, its specific implementation is applicable to only packing and covering linear programming problems. In this paper, we first show how to compute Post-hoc Regret exactly for any optimization problem solvable by a recursive algorithm satisfying simple conditions. Experimentation demonstrates substantial improvement in the quality of solutions as compared to the earlier approximation approach. Furthermore, we show experimentally the empirical behavior of different combinations of correction and penalty functions used in the Post-hoc Regret of the same benchmarks. Results provide insights for defining the appropriate Post-hoc Regret in different application scenarios.

This paper presents a new approach for the estimation and inference of the regression parameters in a panel data model with interactive fixed effects. It relies on the assumption that the factor loadings can be expressed as an unknown smooth function of the time average of covariates plus an idiosyncratic error term. Compared to existing approaches, our estimator has a simple partial least squares form and does neither require iterative procedures nor the previous estimation of factors. We derive its asymptotic properties by finding out that the limiting distribution has a discontinuity, depending on the explanatory power of our basis functions which is expressed by the variance of the error of the factor loadings. As a result, the usual ``plug-in" methods based on estimates of the asymptotic covariance are only valid pointwise and may produce either over- or under-coverage probabilities. We show that uniformly valid inference can be achieved by using the cross-sectional bootstrap. A Monte Carlo study indicates good performance in terms of mean squared error. We apply our methodology to analyze the determinants of growth rates in OECD countries.

Estimating a Gibbs density function given a sample is an important problem in computational statistics and statistical learning. Although the well established maximum likelihood method is commonly used, it requires the computation of the partition function (i.e., the normalization of the density). This function can be easily calculated for simple low-dimensional problems but its computation is difficult or even intractable for general densities and high-dimensional problems. In this paper we propose an alternative approach based on Maximum A-Posteriori (MAP) estimators, we name Maximum Recovery MAP (MR-MAP), to derive estimators that do not require the computation of the partition function, and reformulate the problem as an optimization problem. We further propose a least-action type potential that allows us to quickly solve the optimization problem as a feed-forward hyperbolic neural network. We demonstrate the effectiveness of our methods on some standard data sets.

Rather than refining individual candidate solutions for a general non-convex optimization problem, by analogy to evolution, we consider minimizing the average loss for a parametric distribution over hypotheses. In this setting, we prove that Fisher-Rao natural gradient descent (FR-NGD) optimally approximates the continuous-time replicator equation (an essential model of evolutionary dynamics) by minimizing the mean-squared error for the relative fitness of competing hypotheses. We term this finding "conjugate natural selection" and demonstrate its utility by numerically solving an example non-convex optimization problem over a continuous strategy space. Next, by developing known connections between discrete-time replicator dynamics and Bayes's rule, we show that when absolute fitness corresponds to the negative KL-divergence of a hypothesis's predictions from actual observations, FR-NGD provides the optimal approximation of continuous Bayesian inference. We use this result to demonstrate a novel method for estimating the parameters of stochastic processes.

Object pose estimation is a core computer vision problem and often an essential component in robotics. Pose estimation is usually approached by seeking the single best estimate of an object's pose, but this approach is ill-suited for tasks involving visual ambiguity. In such cases it is desirable to estimate the uncertainty as a pose distribution to allow downstream tasks to make informed decisions. Pose distributions can have arbitrary complexity which motivates estimating unparameterized distributions, however, until now they have only been used for orientation estimation on SO(3) due to the difficulty in training on and normalizing over SE(3). We propose a novel method for pose distribution estimation on SE(3). We use a hierarchical grid, a pyramid, which enables efficient importance sampling during training and sparse evaluation of the pyramid at inference, allowing real time 6D pose distribution estimation. Our method outperforms state-of-the-art methods on SO(3), and to the best of our knowledge, we provide the first quantitative results on pose distribution estimation on SE(3). Code will be available at spyropose.github.io

Semiparametric models are useful in econometrics, social sciences and medicine application. In this paper, a new estimator based on least square methods is proposed to estimate the direction of unknown parameters in semi-parametric models. The proposed estimator is consistent and has asymptotic distribution under mild conditions without the knowledge of the form of link function. Simulations show that the proposed estimator is significantly superior to maximum score estimator given by Manski (1975) for binary response variables. When the error term is long-tailed distributions or distribution with infinity moments, the proposed estimator perform well. Its application is illustrated with data of exporting participation of manufactures in Guangdong.

Predictive coding (PC) accounts of perception now form one of the dominant computational theories of the brain, where they prescribe a general algorithm for inference and learning over hierarchical latent probabilistic models. Despite this, they have enjoyed little export to the broader field of machine learning, where comparative generative modelling techniques have flourished. In part, this has been due to the poor performance of models trained with PC when evaluated by both sample quality and marginal likelihood. By adopting the perspective of PC as a variational Bayes algorithm under the Laplace approximation, we identify the source of these deficits to lie in the exclusion of an associated Hessian term in the PC objective function, which would otherwise regularise the sharpness of the probability landscape and prevent over-certainty in the approximate posterior. To remedy this, we make three primary contributions: we begin by suggesting a simple Monte Carlo estimated evidence lower bound which relies on sampling from the Hessian-parameterised variational posterior. We then derive a novel block diagonal approximation to the full Hessian matrix that has lower memory requirements and favourable mathematical properties. Lastly, we present an algorithm that combines our method with standard PC to reduce memory complexity further. We evaluate models trained with our approach against the standard PC framework on image benchmark datasets. Our approach produces higher log-likelihoods and qualitatively better samples that more closely capture the diversity of the data-generating distribution.

We investigate the possibility of solving continuous non-convex optimization problems using a network of interacting quantum optical oscillators. We propose a native encoding of continuous variables in analog signals associated with the quadrature operators of a set of quantum optical modes. Optical coupling of the modes and noise introduced by vacuum fluctuations from external reservoirs or by weak measurements of the modes are used to optically simulate a diffusion process on a set of continuous random variables. The process is run sufficiently long for it to relax into the steady state of an energy potential defined on a continuous domain. As a first demonstration, we numerically benchmark solving box-constrained quadratic programming (BoxQP) problems using these settings. We consider delay-line and measurement-feedback variants of the experiment. Our benchmarking results demonstrate that in both cases the optical network is capable of solving BoxQP problems over three orders of magnitude faster than a state-of-the-art classical heuristic.

北京阿比特科技有限公司