亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In 2021, Google announced they would disable third-party cookies in the Chrome browser in order to improve user privacy. They proposed FLoC as an alternative, meant to enable interest-based advertising while mitigating risks of individualized user tracking. The FLoC algorithm assigns users to 'cohorts' that represent groups of users with similar browsing behaviors so that third-parties can serve users ads based on their group. After testing FLoC in a real world trial, Google canceled the proposal, with little explanation, in favor of new alternatives to third-party cookies. In this work, we offer a post-mortem analysis of how FLoC handled balancing utility and privacy. In particular, we analyze two potential problems raised by privacy advocates: FLoC (1) allows individualized user tracking rather than prevents it and (2) risks revealing sensitive user demographic information, presenting a new privacy risk. We test these problems by implementing FLoC and compute cohorts for users in a dataset of browsing histories collected from more than 90,000 U.S. devices over a one-year period. For (1) we investigate the uniqueness of users' cohort ID sequences over time. We find that more than 95% are uniquely identifiable after 4 weeks. We show how these risks increase when cohort IDs are combined with fingerprinting data. While these risks may be mitigated by frequently clearing first-party cookies and increasing cohort sizes, such changes would degrade utility for users and advertisers, respectively. For (2), although we find a statistically significant relationship between domain visits and racial background, we do not find that FLoC risks correlating cohort IDs with race. However, alternative clustering techniques could elevate this risk. Our contributions provide example analyses for those seeking to develop novel approaches to monetizing the web in the future.

相關內容

Cookie(復(fu)數形態 Cookies)指某(mou)些網(wang)站為了(le)辨別用戶身份(fen)而儲存在用戶本地終端(duan)(Client Side)上的(de)數據(通常(chang)經過(guo)加密)。定義(yi)于 RFC2109。

Large scale adoption of large language models has introduced a new era of convenient knowledge transfer for a slew of natural language processing tasks. However, these models also run the risk of undermining user trust by exposing unwanted information about the data subjects, which may be extracted by a malicious party, e.g. through adversarial attacks. We present an empirical investigation into the extent of the personal information encoded into pre-trained representations by a range of popular models, and we show a positive correlation between the complexity of a model, the amount of data used in pre-training, and data leakage. In this paper, we present the first wide coverage evaluation and comparison of some of the most popular privacy-preserving algorithms, on a large, multi-lingual dataset on sentiment analysis annotated with demographic information (location, age and gender). The results show since larger and more complex models are more prone to leaking private information, use of privacy-preserving methods is highly desirable. We also find that highly privacy-preserving technologies like differential privacy (DP) can have serious model utility effects, which can be ameliorated using hybrid or metric-DP techniques.

The human footprint is having a unique set of ridges unmatched by any other human being, and therefore it can be used in different identity documents for example birth certificate, Indian biometric identification system AADHAR card, driving license, PAN card, and passport. There are many instances of the crime scene where an accused must walk around and left the footwear impressions as well as barefoot prints and therefore, it is very crucial to recovering the footprints from identifying the criminals. Footprint-based biometric is a considerably newer technique for personal identification. Fingerprints, retina, iris and face recognition are the methods most useful for attendance record of the person. This time the world is facing the problem of global terrorism. It is challenging to identify the terrorist because they are living as regular as the citizens do. Their soft target includes the industries of special interests such as defence, silicon and nanotechnology chip manufacturing units, pharmacy sectors. They pretend themselves as religious persons, so temples and other holy places, even in markets is in their targets. These are the places where one can obtain their footprints quickly. The gait itself is sufficient to predict the behaviour of the suspects. The present research is driven to identify the usefulness of footprint and gait as an alternative to personal identification.

Unlike suggested during their early years of existence, Bitcoin and similar cryptocurrencies in fact offer significantly less privacy as compared to traditional banking. A myriad of privacy-enhancing extensions to those cryptocurrencies as well as several clean-slate privacy-protecting cryptocurrencies have been proposed in turn. To convey a better understanding of the protection of popular design decisions, we investigate expected anonymity set sizes in an initial simulation study. The large variation of expected transaction values yields soberingly small effective anonymity sets for protocols that leak transaction values. We hence examine the effect of preliminary, intuitive strategies for merging groups of payments into larger anonymity sets, for instance by choosing from pre-specified value classes. The results hold promise, as they indeed induce larger anonymity sets at comparatively low cost, depending on the corresponding strategy

Prior studies in privacy policies frame the question answering (QA) tasks as identifying the most relevant text segment or a list of sentences from the policy document for a user query. However, annotating such a dataset is challenging as it requires specific domain expertise (e.g., law academics). Even if we manage a small-scale one, a bottleneck that remains is that the labeled data are heavily imbalanced (only a few segments are relevant) --limiting the gain in this domain. Therefore, in this paper, we develop a novel data augmentation framework based on ensembling retriever models that captures the relevant text segments from unlabeled policy documents and expand the positive examples in the training set. In addition, to improve the diversity and quality of the augmented data, we leverage multiple pre-trained language models (LMs) and cascaded them with noise reduction oracles. Using our augmented data on the PrivacyQA benchmark, we elevate the existing baseline by a large margin (10\% F1) and achieve a new state-of-the-art F1 score of 50\%. Our ablation studies provide further insights into the effectiveness of our approach.

Data collection and research methodology represents a critical part of the research pipeline. On the one hand, it is important that we collect data in a way that maximises the validity of what we are measuring, which may involve the use of long scales with many items. On the other hand, collecting a large number of items across multiple scales results in participant fatigue, and expensive and time consuming data collection. It is therefore important that we use the available resources optimally. In this work, we consider how a consideration for theory and the associated causal/structural model can help us to streamline data collection procedures by not wasting time collecting data for variables which are not causally critical for subsequent analysis. This not only saves time and enables us to redirect resources to attend to other variables which are more important, but also increases research transparency and the reliability of theory testing. In order to achieve this streamlined data collection, we leverage structural models, and Markov conditional independency structures implicit in these models to identify the substructures which are critical for answering a particular research question. In this work, we review the relevant concepts and present a number of didactic examples with the hope that psychologists can use these techniques to streamline their data collection process without invalidating the subsequent analysis. We provide a number of simulation results to demonstrate the limited analytical impact of this streamlining.

The emerging public awareness and government regulations of data privacy motivate new paradigms of collecting and analyzing data that are transparent and acceptable to data owners. We present a new concept of privacy and corresponding data formats, mechanisms, and theories for privatizing data during data collection. The privacy, named Interval Privacy, enforces the raw data conditional distribution on the privatized data to be the same as its unconditional distribution over a nontrivial support set. Correspondingly, the proposed privacy mechanism will record each data value as a random interval (or, more generally, a range) containing it. The proposed interval privacy mechanisms can be easily deployed through survey-based data collection interfaces, e.g., by asking a respondent whether its data value is within a randomly generated range. Another unique feature of interval mechanisms is that they obfuscate the truth but do not perturb it. Using narrowed range to convey information is complementary to the popular paradigm of perturbing data. Also, the interval mechanisms can generate progressively refined information at the discretion of individuals, naturally leading to privacy-adaptive data collection. We develop different aspects of theory such as composition, robustness, distribution estimation, and regression learning from interval-valued data. Interval privacy provides a new perspective of human-centric data privacy where individuals have a perceptible, transparent, and simple way of sharing sensitive data.

We present our case study that aims to help professional assessors make decisions in human assessment, in which they conduct interviews with assessees and evaluate their suitability for certain job roles. Our workshop with two industrial assessors revealed that a computational system that can extract nonverbal cues of assesses from interview videos would be beneficial to assessors in terms of supporting their decision making. In response, we developed such a system based on an unsupervised anomaly detection algorithm using multimodal behavioral features such as facial keypoints, pose, head pose, and gaze. Moreover, we enabled the system to output how much each feature contributed to the outlierness of the detected cues with the purpose of enhancing its interpretability. We then conducted a preliminary study to examine the validity of the system's output by using 20 actual assessment interview videos and involving the two assessors. The results suggested the advantages of using unsupervised anomaly detection in an interpretable manner by illustrating the informativeness of its outputs for assessors. Our approach, which builds on top of the idea of separation of observation and interpretation in human-AI teaming, will facilitate human decision making in highly contextual domains, such as human assessment, while keeping their trust in the system.

In the interdependent values (IDV) model introduced by Milgrom and Weber [1982], agents have private signals that capture their information about different social alternatives, and the valuation of every agent is a function of all agent signals. While interdependence has been mainly studied for auctions, it is extremely relevant for a large variety of social choice settings, including the canonical setting of public projects. The IDV model is very challenging relative to standard independent private values, and welfare guarantees have been achieved through two alternative conditions known as {\em single-crossing} and {\em submodularity over signals (SOS)}. In either case, the existing theory falls short of solving the public projects setting. Our contribution is twofold: (i) We give a workable characterization of truthfulness for IDV public projects for the largest class of valuations for which such a characterization exists, and term this class \emph{decomposable valuations}; (ii) We provide possibility and impossibility results for welfare approximation in public projects with SOS valuations. Our main impossibility result is that, in contrast to auctions, no universally truthful mechanism performs better for public projects with SOS valuations than choosing a project at random. Our main positive result applies to {\em excludable} public projects with SOS, for which we establish a constant factor approximation similar to auctions. Our results suggest that exclusion may be a key tool for achieving welfare guarantees in the IDV model.

Blended learning (BL) is a recent tread among many options that can best fit learners' needs, regardless of time and place. This study aimed to discover students' perceptions of BL and the challenges faced by them while using technology. This quantitative study used data gathered from 300 students enrolled in four public universities in the Sindh province of Pakistan. the finding shows that students were compatible with the use of technology, and it has a positive effect on their academic experience. The study also showed that the use of technology encourages peer collaboration. The challenges found include: neither teacher support nor a training program was provided to the students for the course which needed to shift from a traditional face to face paradigm to a blended format, a lake of space lies with skills in a laboratory assistants for the courses with a blended format and as shortage of high tech computer laboratories / computer units to run these courses. Therefore, it is recommended that the authorities must develop and incorporate a comprehensive mechanism for the effective implementation of BL in the learning teaching-learning process heads of the departments should also provide additional computing infrastructure to their departments.

Recent advances in diffusion models bring the state-of-the art performance on image generation tasks. However, empirical results on previous research in diffusion models imply that there is an inverse correlation on performances for density estimation and sample generation. This paper analyzes that the inverse correlation arises because density estimation is mostly contributed from small diffusion time, whereas sample generation mainly depends on large diffusion time. However, training score network on both small and large diffusion time is demanding because of the loss imbalance issue. To successfully train the score network on both small and large diffusion time, this paper introduces a training technique, Soft Truncation, that softens the truncation time for every mini-batch update, which is universally applicable to any types of diffusion models. It turns out that Soft Truncation is equivalent to a diffusion model with a general weight, and we prove the variational bound of the general weighted diffusion model. In view of this variational bound, Soft Truncation becomes a natural way to train the score network. In experiments, Soft Truncation achieves the state-of-the-art performance on CIFAR-10, CelebA, CelebA-HQ $256\times 256$, and STL-10 datasets.

北京阿比特科技有限公司