亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce Zef, the first Byzantine-Fault Tolerant (BFT) protocol to support payments in anonymous digital coins at arbitrary scale. Zef follows the communication and security model of FastPay: both protocols are asynchronous, low-latency, linearly-scalable, and powered by partially-trusted sharded authorities. In contrast with FastPay, user accounts in Zef are uniquely-identified and safely removable. Zef coins are bound to an account by a digital certificate and otherwise stored off-chain by their owners. To create and redeem coins, users interact with the protocol via privacy-preserving operations: Zef uses randomized commitments and NIZK proofs to hide coin values; and, created coins are made unlinkable using the blind and randomizable threshold anonymous credentials of Coconut. Besides the detailed specifications and our analysis of the protocol, we are making available an open-source implementation of Zef in Rust. Our extensive benchmarks on AWS confirm textbook linear scalability and demonstrate a confirmation time under one second at nominal capacity. Compared to existing anonymous payment systems based on a blockchain, this represents a latency speedup of three orders of magnitude, with no theoretical limit on throughput.

相關內容

iOS 8 提供的應用間和應用跟系統的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source:

Unlike suggested during their early years of existence, Bitcoin and similar cryptocurrencies in fact offer significantly less privacy as compared to traditional banking. A myriad of privacy-enhancing extensions to those cryptocurrencies as well as several clean-slate privacy-protecting cryptocurrencies have been proposed in turn. To convey a better understanding of the protection of popular design decisions, we investigate expected anonymity set sizes in an initial simulation study. The large variation of expected transaction values yields soberingly small effective anonymity sets for protocols that leak transaction values. We hence examine the effect of preliminary, intuitive strategies for merging groups of payments into larger anonymity sets, for instance by choosing from pre-specified value classes. The results hold promise, as they indeed induce larger anonymity sets at comparatively low cost, depending on the corresponding strategy

Differential privacy is a mathematical concept that provides an information-theoretic security guarantee. While differential privacy has emerged as a de facto standard for guaranteeing privacy in data sharing, the known mechanisms to achieve it come with some serious limitations. Utility guarantees are usually provided only for a fixed, a priori specified set of queries. Moreover, there are no utility guarantees for more complex - but very common - machine learning tasks such as clustering or classification. In this paper we overcome some of these limitations. Working with metric privacy, a powerful generalization of differential privacy, we develop a polynomial-time algorithm that creates a private measure from a data set. This private measure allows us to efficiently construct private synthetic data that are accurate for a wide range of statistical analysis tools. Moreover, we prove an asymptotically sharp min-max result for private measures and synthetic data for general compact metric spaces. A key ingredient in our construction is a new superregular random walk, whose joint distribution of steps is as regular as that of independent random variables, yet which deviates from the origin logarithmicaly slowly.

Industrial Control Systems (ICSs) rely on insecure protocols and devices to monitor and operate critical infrastructure. Prior work has demonstrated that powerful attackers with detailed system knowledge can manipulate exchanged sensor data to deteriorate performance of the process, even leading to full shutdowns of plants. Identifying those attacks requires iterating over all possible sensor values, and running detailed system simulation or analysis to identify optimal attacks. That setup allows adversaries to identify attacks that are most impactful when applied on the system for the first time, before the system operators become aware of the manipulations. In this work, we investigate if constrained attackers without detailed system knowledge and simulators can identify comparable attacks. In particular, the attacker only requires abstract knowledge on general information flow in the plant, instead of precise algorithms, operating parameters, process models, or simulators. We propose an approach that allows single-shot attacks, i.e., near-optimal attacks that are reliably shutting down a system on the first try. The approach is applied and validated on two use cases, and demonstrated to achieve comparable results to prior work, which relied on detailed system information and simulations.

Data collection and research methodology represents a critical part of the research pipeline. On the one hand, it is important that we collect data in a way that maximises the validity of what we are measuring, which may involve the use of long scales with many items. On the other hand, collecting a large number of items across multiple scales results in participant fatigue, and expensive and time consuming data collection. It is therefore important that we use the available resources optimally. In this work, we consider how a consideration for theory and the associated causal/structural model can help us to streamline data collection procedures by not wasting time collecting data for variables which are not causally critical for subsequent analysis. This not only saves time and enables us to redirect resources to attend to other variables which are more important, but also increases research transparency and the reliability of theory testing. In order to achieve this streamlined data collection, we leverage structural models, and Markov conditional independency structures implicit in these models to identify the substructures which are critical for answering a particular research question. In this work, we review the relevant concepts and present a number of didactic examples with the hope that psychologists can use these techniques to streamline their data collection process without invalidating the subsequent analysis. We provide a number of simulation results to demonstrate the limited analytical impact of this streamlining.

The fundamental tradeoff between transaction per second (TPS) and security in blockchain systems persists despite numerous prior attempts to boost TPS. To increase TPS without compromising security, we propose a bodyless block propagation (BBP) scheme for which the block body is not validated and transmitted during the block propagation process. Rather, the nodes in the blockchain network anticipate the transactions and their ordering in the next upcoming block so that these transactions can be pre-executed and pre-validated before the birth of the block. It is critical, however, all nodes have a consensus on the transaction content of the next block. This paper puts forth a transaction selection, ordering, and synchronization algorithm to drive the nodes to reach such a consensus. Yet, the coinbase address of the miner of the next block cannot be anticipated, and therefore transactions that depend on the coinbase address cannot be pre-executed and pre-validated. This paper further puts forth an algorithm to deal with such unresolvable transactions for an overall consistent and TPS-efficient scheme. With our scheme, most transactions do not need to be validated and transmitted during block propagation, ridding the dependence of propagation time on the number of transactions in the block, and making the system fully TPS scalable. Experimental results show that our protocol can reduce propagation time by 4x with respect to the current Ethereum blockchain, and its TPS performance is limited by the node hardware performance rather than block propagation.

The emerging public awareness and government regulations of data privacy motivate new paradigms of collecting and analyzing data that are transparent and acceptable to data owners. We present a new concept of privacy and corresponding data formats, mechanisms, and theories for privatizing data during data collection. The privacy, named Interval Privacy, enforces the raw data conditional distribution on the privatized data to be the same as its unconditional distribution over a nontrivial support set. Correspondingly, the proposed privacy mechanism will record each data value as a random interval (or, more generally, a range) containing it. The proposed interval privacy mechanisms can be easily deployed through survey-based data collection interfaces, e.g., by asking a respondent whether its data value is within a randomly generated range. Another unique feature of interval mechanisms is that they obfuscate the truth but do not perturb it. Using narrowed range to convey information is complementary to the popular paradigm of perturbing data. Also, the interval mechanisms can generate progressively refined information at the discretion of individuals, naturally leading to privacy-adaptive data collection. We develop different aspects of theory such as composition, robustness, distribution estimation, and regression learning from interval-valued data. Interval privacy provides a new perspective of human-centric data privacy where individuals have a perceptible, transparent, and simple way of sharing sensitive data.

The concept of federated learning (FL) was first proposed by Google in 2016. Thereafter, FL has been widely studied for the feasibility of application in various fields due to its potential to make full use of data without compromising the privacy. However, limited by the capacity of wireless data transmission, the employment of federated learning on mobile devices has been making slow progress in practical. The development and commercialization of the 5th generation (5G) mobile networks has shed some light on this. In this paper, we analyze the challenges of existing federated learning schemes for mobile devices and propose a novel cross-device federated learning framework, which utilizes the anonymous communication technology and ring signature to protect the privacy of participants while reducing the computation overhead of mobile devices participating in FL. In addition, our scheme implements a contribution-based incentive mechanism to encourage mobile users to participate in FL. We also give a case study of autonomous driving. Finally, we present the performance evaluation of the proposed scheme and discuss some open issues in federated learning.

Bayesian model selection provides a powerful framework for objectively comparing models directly from observed data, without reference to ground truth data. However, Bayesian model selection requires the computation of the marginal likelihood (model evidence), which is computationally challenging, prohibiting its use in many high-dimensional Bayesian inverse problems. With Bayesian imaging applications in mind, in this work we present the proximal nested sampling methodology to objectively compare alternative Bayesian imaging models for applications that use images to inform decisions under uncertainty. The methodology is based on nested sampling, a Monte Carlo approach specialised for model comparison, and exploits proximal Markov chain Monte Carlo techniques to scale efficiently to large problems and to tackle models that are log-concave and not necessarily smooth (e.g., involving l_1 or total-variation priors). The proposed approach can be applied computationally to problems of dimension O(10^6) and beyond, making it suitable for high-dimensional inverse imaging problems. It is validated on large Gaussian models, for which the likelihood is available analytically, and subsequently illustrated on a range of imaging problems where it is used to analyse different choices of dictionary and measurement model.

The Accumulate Protocol ("Accumulate") is an identity-based, Delegated Proof of Stake (DPoS) blockchain designed to power the digital economy through interoperability with Layer-1 blockchains, integration with enterprise tech stacks, and interfacing with the World Wide Web. Accumulate bypasses the trilemma of security, scalability, and decentralization by implementing a chain-of-chains architecture in which digital identities with the ability to manage keys, tokens, data, and other identities are treated as their own independent blockchains. This architecture allows these identities, known as Accumulate Digital Identifiers (ADIs), to be processed and validated in parallel over the Accumulate network. Each ADI also possesses a hierarchical set of keys with different priority levels that allow users to manage their security over time and create complex signature authorization schemes that expand the utility of multi-signature transactions. A two token system provides predictable costs for enterprise users, while anchoring all transactions to Layer-1 blockchains provides enterprise-grade security to everyone.

Earables (ear wearables) is rapidly emerging as a new platform encompassing a diverse range of personal applications. The traditional authentication methods hence become less applicable and inconvenient for earables due to their limited input interface. Nevertheless, earables often feature rich around-the-head sensing capability that can be leveraged to capture new types of biometrics. In this work, we proposeToothSonic which leverages the toothprint-induced sonic effect produced by users performing teeth gestures for earable authentication. In particular, we design representative teeth gestures that can produce effective sonic waves carrying the information of the toothprint. To reliably capture the acoustic toothprint, it leverages the occlusion effect of the ear canal and the inward-facing microphone of the earables. It then extracts multi-level acoustic features to reflect the intrinsic toothprint information for authentication. The key advantages of ToothSonic are that it is suitable for earables and is resistant to various spoofing attacks as the acoustic toothprint is captured via the user's private teeth-ear channel that modulates and encrypts the sonic waves. Our experiment studies with 25 participants show that ToothSonic achieves up to 95% accuracy with only one of the users' tooth gestures.

北京阿比特科技有限公司