The Taylor expansion, which stems from Linear Logic and its differential extensions, is an approximation framework for the $\lambda$-calculus (and many of its variants). The reduction of the approximants of a $\lambda$-term induces a reduction on the $\lambda$-term itself, which enjoys a simulation property: whenever a term reduces to another, the approximants reduce accordingly. In recent work, we extended this result to an infinitary $\lambda$-calculus (namely, $\Lambda_{\infty}^{001}$). This short paper solves the question whether the converse property also holds: if the approximants of some term reduce to the approximants of another term, is there a $\beta$-reduction between these terms? This happens to be true for the $\lambda$-calculus, as we show, but our proof fails in the infinitary case. We exhibit a counter-example, refuting the conservativity for $\Lambda_{\infty}^{001}$.
A graph $G$ contains a graph $H$ as an induced minor if $H$ can be obtained from $G$ by vertex deletions and edge contractions. The class of $H$-induced-minor-free graphs generalizes the class of $H$-minor-free graphs, but unlike $H$-minor-free graphs, it can contain dense graphs. We show that if an $n$-vertex $m$-edge graph $G$ does not contain a graph $H$ as an induced minor, then it has a balanced vertex separator of size $O_{H}(\sqrt{m})$, where the $O_{H}(\cdot)$-notation hides factors depending on $H$. More precisely, our upper bound for the size of the balanced separator is $O(\min(|V(H)|^2, \log n) \cdot \sqrt{|V(H)|+|E(H)|} \cdot \sqrt{m})$. We give an algorithm for finding either an induced minor model of $H$ in $G$ or such a separator in randomized polynomial-time. We apply this to obtain subexponential $2^{O_{H}(n^{2/3} \log n)}$ time algorithms on $H$-induced-minor-free graphs for a large class of problems including maximum independent set, minimum feedback vertex set, 3-coloring, and planarization. For graphs $H$ where every edge is incident to a vertex of degree at most 2, our results imply a $2^{O_{H}(n^{2/3} \log n)}$ time algorithm for testing if $G$ contains $H$ as an induced minor. Our second main result is that there exists a fixed tree $T$, so that there is no $2^{o(n/\log^3 n)}$ time algorithm for testing if a given $n$-vertex graph contains $T$ as an induced minor unless the Exponential Time Hypothesis (ETH) fails. Our reduction also gives NP-hardness, which solves an open problem asked by Fellows, Kratochv\'il, Middendorf, and Pfeiffer [Algorithmica, 1995], who asked if there exists a fixed planar graph $H$ so that testing for $H$ as an induced minor is NP-hard.
In supervised learning, the regularization path is sometimes used as a convenient theoretical proxy for the optimization path of gradient descent initialized from zero. In this paper, we study a modification of the regularization path for infinite-width 2-layer ReLU neural networks with nonzero initial distribution of the weights at different scales. By exploiting a link with unbalanced optimal-transport theory, we show that, despite the non-convexity of the 2-layer network training, this problem admits an infinite-dimensional convex counterpart. We formulate the corresponding functional-optimization problem and investigate its main properties. In particular, we show that, as the scale of the initialization ranges between $0$ and $+\infty$, the associated path interpolates continuously between the so-called kernel and rich regimes. Numerical experiments confirm that, in our setting, the scaling path and the final states of the optimization path behave similarly, even beyond these extreme points.
This paper describes a purely functional library for computing level-$p$-complexity of Boolean functions, and applies it to two-level iterated majority. Boolean functions are simply functions from $n$ bits to one bit, and they can describe digital circuits, voting systems, etc. An example of a Boolean function is majority, which returns the value that has majority among the $n$ input bits for odd $n$. The complexity of a Boolean function $f$ measures the cost of evaluating it: how many bits of the input are needed to be certain about the result of $f$. There are many competing complexity measures but we focus on level-$p$-complexity -- a function of the probability $p$ that a bit is 1. The level-$p$-complexity $D_p(f)$ is the minimum expected cost when the input bits are independent and identically distributed with Bernoulli($p$) distribution. We specify the problem as choosing the minimum expected cost of all possible decision trees -- which directly translates to a clearly correct, but very inefficient implementation. The library uses thinning and memoization for efficiency and type classes for separation of concerns. The complexity is represented using (sets of) polynomials, and the order relation used for thinning is implemented using polynomial factorisation and root-counting. Finally we compute the complexity for two-level iterated majority and improve on an earlier result by J.~Jansson.
An $n$-vertex $m$-edge graph is \emph{$k$-vertex connected} if it cannot be disconnected by deleting less than $k$ vertices. After more than half a century of intensive research, the result by [Li et al. STOC'21] finally gave a \emph{randomized} algorithm for checking $k$-connectivity in near-optimal $\widehat{O}(m)$ time. (We use $\widehat{O}(\cdot)$ to hide an $n^{o(1)}$ factor.) Deterministic algorithms, unfortunately, have remained much slower even if we assume a linear-time max-flow algorithm: they either require at least $\Omega(mn)$ time [Even'75; Henzinger Rao and Gabow, FOCS'96; Gabow, FOCS'00] or assume that $k=o(\sqrt{\log n})$ [Saranurak and Yingchareonthawornchai, FOCS'22]. We show a \emph{deterministic} algorithm for checking $k$-vertex connectivity in time proportional to making $\widehat{O}(k^{2})$ max-flow calls, and, hence, in $\widehat{O}(mk^{2})$ time using the deterministic max-flow algorithm by [Brand et al. FOCS'23]. Our algorithm gives the first almost-linear-time bound for all $k$ where $\sqrt{\log n}\le k\le n^{o(1)}$ and subsumes up to a sub polynomial factor the long-standing state-of-the-art algorithm by [Even'75] which requires $O(n+k^{2})$ max-flow calls. Our key technique is a deterministic algorithm for terminal reduction for vertex connectivity: given a terminal set separated by a vertex mincut, output either a vertex mincut or a smaller terminal set that remains separated by a vertex mincut. We also show a deterministic $(1+\epsilon)$-approximation algorithm for vertex connectivity that makes $O(n/\epsilon^2)$ max-flow calls, improving the bound of $O(n^{1.5})$ max-flow calls in the exact algorithm of [Gabow, FOCS'00]. The technique is based on Ramanujan graphs.
Dialogue relation extraction (DRE) that identifies the relations between argument pairs in dialogue text, suffers much from the frequent occurrence of personal pronouns, or entity and speaker coreference. This work introduces a new benchmark dataset DialogRE^C+, introducing coreference resolution into the DRE scenario. With the aid of high-quality coreference knowledge, the reasoning of argument relations is expected to be enhanced. In DialogRE^C+ dataset, we manually annotate total 5,068 coreference chains over 36,369 argument mentions based on the existing DialogRE data, where four different coreference chain types namely speaker chain, person chain, location chain and organization chain are explicitly marked. We further develop 4 coreference-enhanced graph-based DRE models, which learn effective coreference representations for improving the DRE task. We also train a coreference resolution model based on our annotations and evaluate the effect of automatically extracted coreference chains demonstrating the practicality of our dataset and its potential to other domains and tasks.
Simile detection is a valuable task for many natural language processing (NLP)-based applications, particularly in the field of literature. However, existing research on simile detection often relies on corpora that are limited in size and do not adequately represent the full range of simile forms. To address this issue, we propose a simile data augmentation method based on \textbf{W}ord replacement And Sentence completion using the GPT-2 language model. Our iterative process called I-WAS, is designed to improve the quality of the augmented sentences. To better evaluate the performance of our method in real-world applications, we have compiled a corpus containing a more diverse set of simile forms for experimentation. Our experimental results demonstrate the effectiveness of our proposed data augmentation method for simile detection.
Video Action Recognition (VAR) is a challenging task due to its inherent complexities. Though different approaches have been explored in the literature, designing a unified framework to recognize a large number of human actions is still a challenging problem. Recently, Multi-Modal Learning (MML) has demonstrated promising results in this domain. In literature, 2D skeleton or pose modality has often been used for this task, either independently or in conjunction with the visual information (RGB modality) present in videos. However, the combination of pose, visual information, and text attributes has not been explored yet, though text and pose attributes independently have been proven to be effective in numerous computer vision tasks. In this paper, we present the first pose augmented Vision-language model (VLM) for VAR. Notably, our scheme achieves an accuracy of 92.81% and 73.02% on two popular human video action recognition benchmark datasets, UCF-101 and HMDB-51, respectively, even without any video data pre-training, and an accuracy of 96.11% and 75.75% after kinetics pre-training.
We consider the Max-$3$-Section problem, where we are given an undirected graph $ G=(V,E)$ equipped with non-negative edge weights $w :E\rightarrow \mathbb{R}_+$ and the goal is to find a partition of $V$ into three equisized parts while maximizing the total weight of edges crossing between different parts. Max-$3$-Section is closely related to other well-studied graph partitioning problems, e.g., Max-$k$-Cut, Max-$3$-Cut, and Max-Bisection. We present a polynomial time algorithm achieving an approximation of $ 0.795$, that improves upon the previous best known approximation of $ 0.673$. The requirement of multiple parts that have equal sizes renders Max-$3$-Section much harder to cope with compared to, e.g., Max-Bisection. We show a new algorithm that combines the existing approach of Lassere hierarchy along with a random cut strategy that suffices to give our result.
This paper presents VoxelMap++: a voxel mapping method with plane merging which can effectively improve the accuracy and efficiency of LiDAR(-inertial) based simultaneous localization and mapping (SLAM). This map is a collection of voxels that contains one plane feature with 3DOF representation and corresponding covariance estimation. Considering total map will contain a large number of coplanar features (kid planes), these kid planes' 3DOF estimation can be regarded as the measurements with covariance of a larger plane (father plane). Thus, we design a plane merging module based on union-find which can save resources and further improve the accuracy of plane fitting. This module can distinguish the kid planes in different voxels and merge these kid planes to estimate the father plane. After merging, the father plane 3DOF representation will be more accurate than the kids plane and the uncertainty will decrease significantly which can further improve the performance of LiDAR(-inertial) odometry. Experiments on challenging environments such as corridors and forests demonstrate the high accuracy and efficiency of our method compared to other state-of-the-art methods (see our attached video). By the way, our implementation VoxelMap++ is open-sourced on GitHub which is applicable for both non-repetitive scanning LiDARs and traditional scanning LiDAR.
Hierarchical least-squares programs with linear constraints (HLSP) are a type of optimization problem very common in robotics. Each priority level contains an objective in least-squares form which is subject to the linear constraints of the higher priority levels. Active-set methods are a popular choice for solving them. However, they can perform poorly in terms of computational time if there are large changes of the active set. We therefore propose a computationally efficient primal-dual interior-point method (IPM) for dense HLSP's which is able to maintain constant numbers of solver iterations in these situations. We base our IPM on the computationally efficient nullspace method as it requires only a single matrix factorization per solver iteration instead of two as it is the case for other IPM formulations. We show that the resulting normal equations can be expressed in least-squares form. This avoids the formation of the quadratic Lagrangian Hessian and can possibly maintain high levels of sparsity. Our solver reliably solves ill-posed instantaneous hierarchical robot control problems without exhibiting the large variations in computation time seen in active-set methods.