亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Reconfigurable Intelligent Surfaces (RISs), comprising large numbers of low-cost and passive metamaterials with tunable reflection properties, have been recently proposed as an enabler for programmable radio propagation environments. However, the role of the channel conditions near the RISs on their optimizability has not been analyzed adequately. In this paper, we present an asymptotic closed-form expression for the mutual information of a multi-antenna transmitter-receiver pair in the presence of multiple RISs, in the large-antenna limit, using the random matrix and replica theories. Under mild assumptions, asymptotic expressions for the eigenvalues and the eigenvectors of the channel covariance matrices are derived. We find that, when the channel close to an RIS is correlated, for instance due to small angle spread, the communication link benefits significantly from the RIS optimization, resulting in gains that are surprisingly higher than the nearly uncorrelated case. Furthermore, when the desired reflection from the RIS departs significantly from geometrical optics, the surface can be optimized to provide robust communication links. Building on the properties of the eigenvectors of the covariance matrices, we are able to find the optimal response of the RISs in closed form, bypassing the need for brute-force optimization.

相關內容

The emerging intelligent reflecting surface (IRS) technology introduces the potential of controlled light propagation in visible light communication (VLC) systems. This concept opens the door for new applications in which the channel itself can be altered to achieve specific key performance indicators. In this paper, for the first time in the open literature, we investigate the role that IRSs can play in enhancing the link reliability in VLC systems employing non-orthogonal multiple access (NOMA). We propose a framework for the joint optimisation of the NOMA and IRS parameters and show that it provides significant enhancements in link reliability. The enhancement is even more pronounced when the VLC channel is subject to blockage and random device orientation.

In topology optimization, the state of structures is typically obtained by numerically evaluating a discretized PDE-based model. The degrees of freedom of such a model can be partitioned in free and prescribed sets to define the boundary conditions. A multi-partition problem involves multiple partitions of the same discretization, typically corresponding to different loading scenarios. As a result, solving multi-partition problems involves multiple factorization/preconditionings of the system matrix, requiring a high computational effort. In this paper, a novel method is proposed to efficiently calculate the responses and accompanying design sensitivities in such multi-partition problems using static condensation for use in gradient-based topology optimization. A main problem class that benefits from the proposed method is the topology optimization of small-displacement multi-input-multi-output compliant mechanisms. However, the method is applicable to any linear problem. We present its formulation and an algorithmic complexity analysis to estimate computational advantages for both direct and iterative solution methods to solve the system of equations, verified by numerical experiments. It is demonstrated that substantial gains are achievable for large-scale multi-partition problems. This is especially true for problems with both a small set of number of degrees of freedom that fully describes the performance of the structure and with large similarities between the different partitions. A major contribution to the gain is the lack of large adjoint analyses required to obtain the sensitivities of the performance measure.

Bistatic backscatter communication (BackCom) allows passive tags to transmit over extended ranges, but at the cost of having carrier emitters either transmitting at high powers or being deployed very close to tags. In this paper, we examine how the presence of an intelligent reflecting surface (IRS) could benefit the bistatic BackCom system. We study the transmit power minimization problem at the carrier emitter, where its transmit beamforming vector is jointly optimized with the IRS phase shifts, whilst guaranteeing a required BackCom performance. A unique feature in this system setup is the multiple IRS reflections experienced by signals traveling from the carrier emitter to the reader, which renders the optimization problem highly nonconvex. Therefore, we propose algorithms based on the minorization-maximization and alternating optimization techniques to obtain approximate solutions for the joint design. We also propose low-complexity algorithms based on successive optimization of individual phase shifts. Our results reveal considerable transmit power savings in both single-tag and multi-tag systems, even with moderate IRS sizes, which may be translated to significant range improvements using the original transmit power or a reduction of the reliance of tags on carrier emitters located at close range.

Simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) is a promising technology to achieve full-space coverage. This paper investigates the resource allocation problem in a STAR-RIS-assisted multi-carrier communication network. To maximize the system sum-rate, a joint optimization problem for orthogonal multiple access (OMA) is first formulated, which is a mixed-integer non-linear programming problem. To solve this challenging problem, we first propose a channel assignment scheme utilizing matching theory and then invoke the alternating optimization-based method to optimize the resource allocation policy and beamforming vectors iteratively. Furthermore, the sum-rate maximization problem for non-orthogonal multiple access (NOMA) is investigated. To efficiently solve it, we first propose a location-based matching algorithm to determine the sub-channel assignment, where a transmitted user and a reflected user are grouped on a sub-channel. Then, a three-step approach is proposed, where the decoding orders, beamforming-coefficient vectors, and power allocation are optimized by employing semidefinite programming, convex upper bound approximation, and geometry programming, respectively. Numerical results unveil that: 1) For OMA, a general design that includes same-side user-pairing for channel assignment is preferable, while for NOMA, the proposed transmission-and-reflection scheme can achieve near-optimal performance. 2) The STAR-RIS-aided NOMA network significantly outperforms the networks employing conventional RISs and OMA.

Direct communication between humans and autonomous underwater vehicles (AUVs) is a relatively underexplored area in human-robot interaction (HRI) research, although many tasks (\eg surveillance, inspection, and search-and-rescue) require close diver-robot collaboration. Many core functionalities in this domain are in need of further study to improve robotic capabilities for ease of interaction. One of these is the challenge of autonomous robots approaching and positioning themselves relative to divers to initiate and facilitate interactions. Suboptimal AUV positioning can lead to poor quality interaction and lead to excessive cognitive and physical load for divers. In this paper, we introduce a novel method for AUVs to autonomously navigate and achieve diver-relative positioning to begin interaction. Our method is based only on monocular vision, requires no global localization, and is computationally efficient. We present our algorithm along with an implementation of said algorithm on board both a simulated and physical AUV, performing extensive evaluations in the form of closed-water tests in a controlled pool. Analysis of our results show that the proposed monocular vision-based algorithm performs reliably and efficiently operating entirely on-board the AUV.

The group synchronization problem is to estimate unknown group elements at the vertices of a graph when given a set of possibly noisy observations of group differences at the edges. We consider the group synchronization problem on finite graphs with size tending to infinity, and we focus on the question of whether the true edge differences can be exactly recovered from the observations (i.e., strong recovery). We prove two main results, one positive and one negative. In the positive direction, we prove that for a sequence of synchronization problems containing the complete digraph along with a relatively well behaved prior distribution and observation kernel, with high probability we can recover the correct edge labeling. Our negative result provides conditions on a sequence of sparse graphs under which it is impossible to recover the correct edge labeling with high probability.

We present monostatic sampling methods for limited-aperture scattering problems in two dimensions. The direct sampling method (DSM) is well known to provide a robust, stable, and fast numerical scheme for imaging inhomogeneities from multistatic measurements even with only one or two incident fields. However, in practical applications, monostatic measurements in limited-aperture configuration are frequently encountered. A monostatic sampling method (MSM) was studied in full-aperture configuration in recent literature. In this paper, we develop MSM in limited-aperture configuration and derive an asymptotic formula of the corresponding indicator function. Based on the asymptotic formula, we then analyze the imaging performance of the proposed method depending on the range of measurement directions and the geometric, material properties of inhomogeneities. Furthermore, we propose a modified numerical scheme with multi-frequency measurements that improve imaging performance, especially for small anomalies. Numerical simulations are presented to validate the analytical results.

Intelligent reflecting surface (IRS) is a new and revolutionary technology capable of reconfiguring the wireless propagation environment by controlling its massive low-cost passive reflecting elements. Different from prior works that focus on optimizing IRS reflection coefficients or single-IRS placement, we aim to maximize the minimum throughput of a single-cell multiuser system aided by multiple IRSs, by joint multi-IRS placement and power control at the access point (AP), which is a mixed-integer non-convex problem with drastically increased complexity with the number of IRSs/users. To tackle this challenge, a ring-based IRS placement scheme is proposed along with a power control policy that equalizes the users' non-outage probability. An efficient searching algorithm is further proposed to obtain a close-to-optimal solution for arbitrary number of IRSs/rings. Numerical results validate our analysis and show that our proposed scheme significantly outperforms the benchmark schemes without IRS and/or with other power control policies. Moreover, it is shown that the IRSs are preferably deployed near AP for coverage range extension, while with more IRSs, they tend to spread out over the cell to cover more and get closer to target users.

Consider a system that integrates positioning and single-user millimeter wave (mmWave) communication, where the communication part adopts wavelength division multiplexing (WDM) and orbital angular momentum (OAM). This paper addresses the power allocation and high dimensional constellation design in short-range line-of-sight (LOS) environment, where the communication links are relatively stable. We propose a map-assisted method to replace online estimation, feedback and computation with the look-up table searching. We explore the possibility of using a few patterns in the maps, and investigate the performance loss of using the optimal solution of one position for other positions. For power allocation, we first characterize the performance loss outside the OAM beam regions, where we only use plane waves, and figure out that the loss is always small. However, in OAM beam regions, the performance loss has similar characteristics only at some specific positions. Combining with numerical results, we illustrate that a few patterns can be adopted for all receiver locations in the map. We also investigate the high dimensional constellation design and prove that the positions where the channel matrices are sufficiently close to be proportional can employ a fixed constellation. Then, we figure out that the constellation design for all receiver locations can be represented by a few constellation sets.

Many resource allocation problems in the cloud can be described as a basic Virtual Network Embedding Problem (VNEP): finding mappings of request graphs (describing the workloads) onto a substrate graph (describing the physical infrastructure). In the offline setting, the two natural objectives are profit maximization, i.e., embedding a maximal number of request graphs subject to the resource constraints, and cost minimization, i.e., embedding all requests at minimal overall cost. The VNEP can be seen as a generalization of classic routing and call admission problems, in which requests are arbitrary graphs whose communication endpoints are not fixed. Due to its applications, the problem has been studied intensively in the networking community. However, the underlying algorithmic problem is hardly understood. This paper presents the first fixed-parameter tractable approximation algorithms for the VNEP. Our algorithms are based on randomized rounding. Due to the flexible mapping options and the arbitrary request graph topologies, we show that a novel linear program formulation is required. Only using this novel formulation the computation of convex combinations of valid mappings is enabled, as the formulation needs to account for the structure of the request graphs. Accordingly, to capture the structure of request graphs, we introduce the graph-theoretic notion of extraction orders and extraction width and show that our algorithms have exponential runtime in the request graphs' maximal width. Hence, for request graphs of fixed extraction width, we obtain the first polynomial-time approximations. Studying the new notion of extraction orders we show that (i) computing extraction orders of minimal width is NP-hard and (ii) that computing decomposable LP solutions is in general NP-hard, even when restricting request graphs to planar ones.

北京阿比特科技有限公司