亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a computationally-efficient strategy to initialise the hyperparameters of a Gaussian process (GP) avoiding the computation of the likelihood function. Our strategy can be used as a pretraining stage to find initial conditions for maximum-likelihood (ML) training, or as a standalone method to compute hyperparameters values to be plugged in directly into the GP model. Motivated by the fact that training a GP via ML is equivalent (on average) to minimising the KL-divergence between the true and learnt model, we set to explore different metrics/divergences among GPs that are computationally inexpensive and provide hyperparameter values that are close to those found via ML. In practice, we identify the GP hyperparameters by projecting the empirical covariance or (Fourier) power spectrum onto a parametric family, thus proposing and studying various measures of discrepancy operating on the temporal and frequency domains. Our contribution extends the variogram method developed by the geostatistics literature and, accordingly, it is referred to as the generalised variogram method (GVM). In addition to the theoretical presentation of GVM, we provide experimental validation in terms of accuracy, consistency with ML and computational complexity for different kernels using synthetic and real-world data.

相關內容

在貝葉斯統計中,超參數是先驗分布的參數; 該術語用于將它們與所分析的基礎系統的模型參數區分開。

The widespread adoption of edge computing has emerged as a prominent trend for alleviating task processing delays and reducing energy consumption. However, the dynamic nature of network conditions and the varying computation capacities of edge servers (ESs) can introduce disparities between computation loads and available computing resources in edge computing networks, potentially leading to inadequate service quality. To address this challenge, this paper investigates a practical scenario characterized by dynamic task offloading. Initially, we examine traditional Multi-armed Bandit (MAB) algorithms, namely the $\varepsilon$-greedy algorithm and the UCB1-based algorithm. However, both algorithms exhibit certain weaknesses in effectively addressing the tidal data traffic patterns. Consequently, based on MAB, we propose an adaptive task offloading algorithm (ATOA) that overcomes these limitations. By conducting extensive simulations, we demonstrate the superiority of our ATOA solution in reducing task processing latency compared to conventional MAB methods. This substantiates the effectiveness of our approach in enhancing the performance of edge computing networks and improving overall service quality.

Data heterogeneity across clients is a key challenge in federated learning. Prior works address this by either aligning client and server models or using control variates to correct client model drift. Although these methods achieve fast convergence in convex or simple non-convex problems, the performance in over-parameterized models such as deep neural networks is lacking. In this paper, we first revisit the widely used FedAvg algorithm in a deep neural network to understand how data heterogeneity influences the gradient updates across the neural network layers. We observe that while the feature extraction layers are learned efficiently by FedAvg, the substantial diversity of the final classification layers across clients impedes the performance. Motivated by this, we propose to correct model drift by variance reduction only on the final layers. We demonstrate that this significantly outperforms existing benchmarks at a similar or lower communication cost. We furthermore provide proof for the convergence rate of our algorithm.

Subject clustering (i.e., the use of measured features to cluster subjects, such as patients or cells, into multiple groups) is a problem of great interest. In recent years, many approaches were proposed, among which unsupervised deep learning (UDL) has received a great deal of attention. Two interesting questions are (a) how to combine the strengths of UDL and other approaches, and (b) how these approaches compare to one other. We combine Variational Auto-Encoder (VAE), a popular UDL approach, with the recent idea of Influential Feature PCA (IF-PCA), and propose IF-VAE as a new method for subject clustering. We study IF-VAE and compare it with several other methods (including IF-PCA, VAE, Seurat, and SC3) on $10$ gene microarray data sets and $8$ single-cell RNA-seq data sets. We find that IF-VAE significantly improves over VAE, but still underperforms IF-PCA. We also find that IF-PCA is quite competitive, which slightly outperforms Seurat and SC3 over the $8$ single-cell data sets. IF-PCA is conceptually simple and permits delicate analysis. We demonstrate that IF-PCA is capable of achieving the phase transition in a Rare/Weak model. Comparatively, Seurat and SC3 are more complex and theoretically difficult to analyze (for these reasons, their optimality remains unclear).

We show that the two-stage minimum description length (MDL) criterion widely used to estimate linear change-point (CP) models corresponds to the marginal likelihood of a Bayesian model with a specific class of prior distributions. This allows results from the frequentist and Bayesian paradigms to be bridged together. Thanks to this link, one can rely on the consistency of the number and locations of the estimated CPs and the computational efficiency of frequentist methods, and obtain a probability of observing a CP at a given time, compute model posterior probabilities, and select or combine CP methods via Bayesian posteriors. Furthermore, we adapt several CP methods to take advantage of the MDL probabilistic representation. Based on simulated data, we show that the adapted CP methods can improve structural break detection compared to state-of-the-art approaches. Finally, we empirically illustrate the usefulness of combining CP detection methods when dealing with long time series and forecasting.

The problem of anticipating human actions is an inherently uncertain one. However, we can reduce this uncertainty if we have a sense of the goal that the actor is trying to achieve. Here, we present an action anticipation model that leverages goal information for the purpose of reducing the uncertainty in future predictions. Since we do not possess goal information or the observed actions during inference, we resort to visual representation to encapsulate information about both actions and goals. Through this, we derive a novel concept called abstract goal which is conditioned on observed sequences of visual features for action anticipation. We design the abstract goal as a distribution whose parameters are estimated using a variational recurrent network. We sample multiple candidates for the next action and introduce a goal consistency measure to determine the best candidate that follows from the abstract goal. Our method obtains impressive results on the very challenging Epic-Kitchens55 (EK55), EK100, and EGTEA Gaze+ datasets. We obtain absolute improvements of +13.69, +11.24, and +5.19 for Top-1 verb, Top-1 noun, and Top-1 action anticipation accuracy respectively over prior state-of-the-art methods for seen kitchens (S1) of EK55. Similarly, we also obtain significant improvements in the unseen kitchens (S2) set for Top-1 verb (+10.75), noun (+5.84) and action (+2.87) anticipation. Similar trend is observed for EGTEA Gaze+ dataset, where absolute improvement of +9.9, +13.1 and +6.8 is obtained for noun, verb, and action anticipation. It is through the submission of this paper that our method is currently the new state-of-the-art for action anticipation in EK55 and EGTEA Gaze+ //competitions.codalab.org/competitions/20071#results Code available at //github.com/debadityaroy/Abstract_Goal

Demand for reliable statistics at a local area (small area) level has greatly increased in recent years. Traditional area-specific estimators based on probability samples are not adequate because of small sample size or even zero sample size in a local area. As a result, methods based on models linking the areas are widely used. World Bank focused on estimating poverty measures, in particular poverty incidence and poverty gap called FGT measures, using a simulated census method, called ELL, based on a one-fold nested error model for a suitable transformation of the welfare variable. Modified ELL methods leading to significant gain in efficiency over ELL also have been proposed under the one-fold model. An advantage of ELL and modified ELL methods is that distributional assumptions on the random effects in the model are not needed. In this paper, we extend ELL and modified ELL to two-fold nested error models to estimate poverty indicators for areas (say a state) and subareas (say counties within a state). Our simulation results indicate that the modified ELL estimators lead to large efficiency gains over ELL at the area level and subarea level. Further, modified ELL method retaining both area and subarea estimated effects in the model (called MELL2) performs significantly better in terms of mean squared error (MSE) for sampled subareas than the modified ELL retaining only estimated area effect in the model (called MELL1).

Posterior predictive p-values (ppps) have become popular tools for Bayesian model criticism, being general-purpose and easy to use. However, their interpretation can be difficult because their distribution is not uniform under the hypothesis that the model did generate the data. To address this issue, procedures to obtain calibrated ppps (cppps) have been proposed although not used in practice, because they require repeated simulation of new data and model estimation via MCMC. Here we give methods to balance the computational trade-off between the number of calibration replicates and the number of MCMC samples per replicate. Our results suggest that investing in a large number of calibration replicates while using short MCMC chains can save significant computation time compared to naive implementations, without significant loss in accuracy. We propose different estimators for the variance of the cppp that can be used to confirm quickly when the model fits the data well. Variance estimation requires the effective sample sizes of many short MCMC chains; we show that these can be well approximated using the single long MCMC chain from the real-data model. The procedure for cppp is implemented in NIMBLE, a flexible framework for hierarchical modeling that supports many models and discrepancy measures.

Motivated by pathwise stochastic calculus, we say that a continuous real-valued function $x$ admits the roughness exponent $R$ if the $p^{\text{th}}$ variation of $x$ converges to zero if $p>1/R$ and to infinity if $p<1/R$. For the sample paths of many stochastic processes, such as fractional Brownian motion, the roughness exponent exists and equals the standard Hurst parameter. In our main result, we provide a mild condition on the Faber--Schauder coefficients of $x$ under which the roughness exponent exists and is given as the limit of the classical Gladyshev estimates $\widehat R_n(x)$. This result can be viewed as a strong consistency result for the Gladyshev estimators in an entirely model-free setting, because no assumption whatsoever is made on the possible dynamics of the function $x$. Nonetheless, our proof is probabilistic and relies on a martingale that is hidden in the Faber--Schauder expansion of $x$. Since the Gladyshev estimators are not scale-invariant, we construct several scale-invariant estimators that are derived from the sequence $(\widehat R_n)_{n\in\mathbb N}$. We also discuss how a dynamic change in the roughness parameter of a time series can be detected. Finally, we extend our results to the case in which the $p^{\text{th}}$ variation of $x$ is defined over a sequence of unequally spaced partitions. Our results are illustrated by means of high-frequency financial time series.

Classic machine learning methods are built on the $i.i.d.$ assumption that training and testing data are independent and identically distributed. However, in real scenarios, the $i.i.d.$ assumption can hardly be satisfied, rendering the sharp drop of classic machine learning algorithms' performances under distributional shifts, which indicates the significance of investigating the Out-of-Distribution generalization problem. Out-of-Distribution (OOD) generalization problem addresses the challenging setting where the testing distribution is unknown and different from the training. This paper serves as the first effort to systematically and comprehensively discuss the OOD generalization problem, from the definition, methodology, evaluation to the implications and future directions. Firstly, we provide the formal definition of the OOD generalization problem. Secondly, existing methods are categorized into three parts based on their positions in the whole learning pipeline, namely unsupervised representation learning, supervised model learning and optimization, and typical methods for each category are discussed in detail. We then demonstrate the theoretical connections of different categories, and introduce the commonly used datasets and evaluation metrics. Finally, we summarize the whole literature and raise some future directions for OOD generalization problem. The summary of OOD generalization methods reviewed in this survey can be found at //out-of-distribution-generalization.com.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司