亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Given a closed simple polygon $P$, we say two points $p,q$ see each other if the segment $pq$ is fully contained in $P$. The art gallery problem seeks a minimum size set $G\subset P$ of guards that sees $P$ completely. The only currently correct algorithm to solve the art gallery problem exactly uses algebraic methods and is attributed to Sharir. As the art gallery problem is ER-complete, it seems unlikely to avoid algebraic methods, without additional assumptions. In this paper, we introduce the notion of vision stability. In order to describe vision stability consider an enhanced guard that can see "around the corner" by an angle of $\delta$ or a diminished guard whose vision is by an angle of $\delta$ "blocked" by reflex vertices. A polygon $P$ has vision stability $\delta$ if the optimal number of enhanced guards to guard $P$ is the same as the optimal number of diminished guards to guard $P$. We will argue that most relevant polygons are vision stable. We describe a one-shot vision stable algorithm that computes an optimal guard set for visionstable polygons using polynomial time and solving one integer program. It guarantees to find the optimal solution for every vision stable polygon. We implemented an iterative visionstable algorithm and show its practical performance is slower, but comparable with other state of the art algorithms. Our iterative algorithm is inspired and follows closely the one-shot algorithm. It delays several steps and only computes them when deemed necessary. Given a chord $c$ of a polygon, we denote by $n(c)$ the number of vertices visible from $c$. The chord-width of a polygon is the maximum $n(c)$ over all possible chords $c$. The set of vision stable polygons admits an FPT algorithm when parametrized by the chord-width. Furthermore, the one-shot algorithm runs in FPT time, when parameterized by the number of reflex vertices.

相關內容

We study a game played between advertisers in an online ad platform. The platform sells ad impressions by first-price auction and provides autobidding algorithms that optimize bids on each advertiser's behalf. Each advertiser strategically declares a budget constraint (and possibly a maximum bid) to their autobidder. The chosen constraints define an "inner" budget-pacing game for the autobidders, who compete to maximize the total value received subject to the constraints. Advertiser payoffs in the constraint-choosing "metagame" are determined by the equilibrium reached by the autobidders. Advertisers only specify budgets and linear values to their autobidders, but their true preferences can be more general: we assume only that they have weakly decreasing marginal value for clicks and weakly increasing marginal disutility for spending money. Our main result is that despite this gap between general preferences and simple autobidder constraints, the allocations at equilibrium are approximately efficient. Specifically, at any pure Nash equilibrium of the metagame, the resulting allocation obtains at least half of the liquid welfare of any allocation and this bound is tight. We also obtain a 4-approximation for any mixed Nash equilibrium, and this result extends also to Bayes-Nash equilibria. These results rely on the power to declare budgets: if advertisers can specify only a (linear) value per click but not a budget constraint, the approximation factor at equilibrium can be as bad as linear in the number of advertisers.

The process of annotating histological gigapixel-sized whole slide images (WSIs) at the pixel level for the purpose of training a supervised segmentation model is time-consuming. Region-based active learning (AL) involves training the model on a limited number of annotated image regions instead of requesting annotations of the entire images. These annotation regions are iteratively selected, with the goal of optimizing model performance while minimizing the annotated area. The standard method for region selection evaluates the informativeness of all square regions of a specified size and then selects a specific quantity of the most informative regions. We find that the efficiency of this method highly depends on the choice of AL step size (i.e., the combination of region size and the number of selected regions per WSI), and a suboptimal AL step size can result in redundant annotation requests or inflated computation costs. This paper introduces a novel technique for selecting annotation regions adaptively, mitigating the reliance on this AL hyperparameter. Specifically, we dynamically determine each region by first identifying an informative area and then detecting its optimal bounding box, as opposed to selecting regions of a uniform predefined shape and size as in the standard method. We evaluate our method using the task of breast cancer metastases segmentation on the public CAMELYON16 dataset and show that it consistently achieves higher sampling efficiency than the standard method across various AL step sizes. With only 2.6\% of tissue area annotated, we achieve full annotation performance and thereby substantially reduce the costs of annotating a WSI dataset. The source code is available at //github.com/DeepMicroscopy/AdaptiveRegionSelection.

Efficient exploration is critical in cooperative deep Multi-Agent Reinforcement Learning (MARL). In this work, we propose an exploration method that effectively encourages cooperative exploration based on the idea of sequential action-computation scheme. The high-level intuition is that to perform optimism-based exploration, agents would explore cooperative strategies if each agent's optimism estimate captures a structured dependency relationship with other agents. Assuming agents compute actions following a sequential order at \textit{each environment timestep}, we provide a perspective to view MARL as tree search iterations by considering agents as nodes at different depths of the search tree. Inspired by the theoretically justified tree search algorithm UCT (Upper Confidence bounds applied to Trees), we develop a method called Conditionally Optimistic Exploration (COE). COE augments each agent's state-action value estimate with an action-conditioned optimistic bonus derived from the visitation count of the global state and joint actions of preceding agents. COE is performed during training and disabled at deployment, making it compatible with any value decomposition method for centralized training with decentralized execution. Experiments across various cooperative MARL benchmarks show that COE outperforms current state-of-the-art exploration methods on hard-exploration tasks.

This paper proposes a hybrid genetic algorithm for solving the Multiple Traveling Salesman Problem (mTSP) to minimize the length of the longest tour. The genetic algorithm utilizes a TSP sequence as the representation of each individual, and a dynamic programming algorithm is employed to evaluate the individual and find the optimal mTSP solution for the given sequence of cities. A novel crossover operator is designed to combine similar tours from two parents and offers great diversity for the population. For some of the generated offspring, we detect and remove intersections between tours to obtain a solution with no intersections. This is particularly useful for the min-max mTSP. The generated offspring are also improved by a self-adaptive random local search and a thorough neighborhood search. Our algorithm outperforms all existing algorithms on average, with similar cutoff time thresholds, when tested against multiple benchmark sets found in the literature. Additionally, we improve the best-known solutions for 21 out of 89 instances on four benchmark sets.

Breaking safety constraints in control systems can lead to potential risks, resulting in unexpected costs or catastrophic damage. Nevertheless, uncertainty is ubiquitous, even among similar tasks. In this paper, we develop a novel adaptive safe control framework that integrates meta learning, Bayesian models, and control barrier function (CBF) method. Specifically, with the help of CBF method, we learn the inherent and external uncertainties by a unified adaptive Bayesian linear regression (ABLR) model, which consists of a forward neural network (NN) and a Bayesian output layer. Meta learning techniques are leveraged to pre-train the NN weights and priors of the ABLR model using data collected from historical similar tasks. For a new control task, we refine the meta-learned models using a few samples, and introduce pessimistic confidence bounds into CBF constraints to ensure safe control. Moreover, we provide theoretical criteria to guarantee probabilistic safety during the control processes. To validate our approach, we conduct comparative experiments in various obstacle avoidance scenarios. The results demonstrate that our algorithm significantly improves the Bayesian model-based CBF method, and is capable for efficient safe exploration even with multiple uncertain constraints.

We introduce a new quantum algorithm for computing the Betti numbers of a simplicial complex. In contrast to previous quantum algorithms that work by estimating the eigenvalues of the combinatorial Laplacian, our algorithm is an instance of the generic Incremental Algorithm for computing Betti numbers that incrementally adds simplices to the simplicial complex and tests whether or not they create a cycle. In contrast to existing quantum algorithms for computing Betti numbers that work best when the complex has close to the maximal number of simplices, our algorithm works best for sparse complexes. To test whether a simplex creates a cycle, we introduce a quantum span-program algorithm. We show that the query complexity of our span program is parameterized by quantities called the effective resistance and effective capacitance of the boundary of the simplex. Unfortunately, we also prove upper and lower bounds on the effective resistance and capacitance, showing both quantities can be exponentially large with respect to the size of the complex, implying that our algorithm would have to run for exponential time to exactly compute Betti numbers. However, as a corollary to these bounds, we show that the spectral gap of the combinatorial Laplacian can be exponentially small. As the runtime of all previous quantum algorithms for computing Betti numbers are parameterized by the inverse of the spectral gap, our bounds show that all quantum algorithms for computing Betti numbers must run for exponentially long to exactly compute Betti numbers. Finally, we prove some novel formulas for effective resistance and effective capacitance to give intuition for these quantities.

The dynamic vehicle dispatching problem corresponds to deciding which vehicles to assign to requests that arise stochastically over time and space. It emerges in diverse areas, such as in the assignment of trucks to loads to be transported; in emergency systems; and in ride-hailing services. In this paper, we model the problem as a semi-Markov decision process, which allows us to treat time as continuous. In this setting, decision epochs coincide with discrete events whose time intervals are random. We argue that an event-based approach substantially reduces the combinatorial complexity of the decision space and overcomes other limitations of discrete-time models often proposed in the literature. In order to test our approach, we develop a new discrete-event simulator and use double deep q-learning to train our decision agents. Numerical experiments are carried out in realistic scenarios using data from New York City. We compare the policies obtained through our approach with heuristic policies often used in practice. Results show that our policies exhibit better average waiting times, cancellation rates and total service times, with reduction in average waiting times of up to 50% relative to the other tested heuristic policies.

For several decades the dominant techniques for integer linear programming have been branching and cutting planes. Recently, several authors have developed core point methods for solving symmetric integer linear programs (ILPs). An integer point is called a core point if its orbit polytope is lattice-free. It has been shown that for symmetric ILPs, optimizing over the set of core points gives the same answer as considering the entire space. Existing core point techniques rely on the number of core points (or equivalence classes) being finite, which requires special symmetry groups. In this paper we develop some new methods for solving symmetric ILPs (based on outer approximations of core points) that do not depend on finiteness but are more efficient if the group has large disjoint cycles in its set of generators.

Poetry holds immense significance within the cultural and traditional fabric of any nation. It serves as a vehicle for poets to articulate their emotions, preserve customs, and convey the essence of their culture. Arabic poetry is no exception, having played a cherished role in the heritage of the Arabic community throughout history and maintaining its relevance in the present era. Typically, comprehending Arabic poetry necessitates the expertise of a linguist who can analyze its content and assess its quality. This paper presents the introduction of a framework called \textit{Ashaar} //github.com/ARBML/Ashaar, which encompasses a collection of datasets and pre-trained models designed specifically for the analysis and generation of Arabic poetry. The pipeline established within our proposed approach encompasses various aspects of poetry, such as meter, theme, and era classification. It also incorporates automatic poetry diacritization, enabling more intricate analyses like automated extraction of the \textit{Arudi} style. Additionally, we explore the feasibility of generating conditional poetry through the pre-training of a character-based GPT model. Furthermore, as part of this endeavor, we provide four datasets: one for poetry generation, another for diacritization, and two for Arudi-style prediction. These datasets aim to facilitate research and development in the field of Arabic poetry by enabling researchers and enthusiasts to delve into the nuances of this rich literary tradition.

We consider error-correction coding schemes for adversarial wiretap channels (AWTCs) in which the channel can a) read a fraction of the codeword bits up to a bound $r$ and b) flip a fraction of the bits up to a bound $p$. The channel can freely choose the locations of the bit reads and bit flips via a process with unbounded computational power. Codes for the AWTC are of broad interest in the area of information security, as they can provide data resiliency in settings where an attacker has limited access to a storage or transmission medium. We investigate a family of non-linear codes known as pseudolinear codes, which were first proposed by Guruswami and Indyk (FOCS 2001) for constructing list-decodable codes independent of the AWTC setting. Unlike general non-linear codes, pseudolinear codes admit efficient encoders and have succinct representations. We focus on unique decoding and show that random pseudolinear codes can achieve rates up to the binary symmetric channel (BSC) capacity $1-H_2(p)$ for any $p,r$ in the less noisy region: $p<1/2$ and $r<1-H_2(p)$ where $H_2(\cdot)$ is the binary entropy function. Thus, pseudolinear codes are the first known optimal-rate binary code family for the less noisy AWTC that admit efficient encoders. The above result can be viewed as a derandomization result of random general codes in the AWTC setting, which in turn opens new avenues for applying derandomization techniques to randomized constructions of AWTC codes. Our proof applies a novel concentration inequality for sums of random variables with limited independence which may be of interest as an analysis tool more generally.

北京阿比特科技有限公司