We propose SMPLitex, a method for estimating and manipulating the complete 3D appearance of humans captured from a single image. SMPLitex builds upon the recently proposed generative models for 2D images, and extends their use to the 3D domain through pixel-to-surface correspondences computed on the input image. To this end, we first train a generative model for complete 3D human appearance, and then fit it into the input image by conditioning the generative model to the visible parts of the subject. Furthermore, we propose a new dataset of high-quality human textures built by sampling SMPLitex conditioned on subject descriptions and images. We quantitatively and qualitatively evaluate our method in 3 publicly available datasets, demonstrating that SMPLitex significantly outperforms existing methods for human texture estimation while allowing for a wider variety of tasks such as editing, synthesis, and manipulation
AI-empowered music processing is a diverse field that encompasses dozens of tasks, ranging from generation tasks (e.g., timbre synthesis) to comprehension tasks (e.g., music classification). For developers and amateurs, it is very difficult to grasp all of these task to satisfy their requirements in music processing, especially considering the huge differences in the representations of music data and the model applicability across platforms among various tasks. Consequently, it is necessary to build a system to organize and integrate these tasks, and thus help practitioners to automatically analyze their demand and call suitable tools as solutions to fulfill their requirements. Inspired by the recent success of large language models (LLMs) in task automation, we develop a system, named MusicAgent, which integrates numerous music-related tools and an autonomous workflow to address user requirements. More specifically, we build 1) toolset that collects tools from diverse sources, including Hugging Face, GitHub, and Web API, etc. 2) an autonomous workflow empowered by LLMs (e.g., ChatGPT) to organize these tools and automatically decompose user requests into multiple sub-tasks and invoke corresponding music tools. The primary goal of this system is to free users from the intricacies of AI-music tools, enabling them to concentrate on the creative aspect. By granting users the freedom to effortlessly combine tools, the system offers a seamless and enriching music experience.
This work presents an algorithm for tracking the shape of multiple entangling Deformable Linear Objects (DLOs) from a sequence of RGB-D images. This algorithm runs in real-time and improves on previous single-DLO tracking approaches by enabling tracking of multiple objects. This is achieved using Global-Local Topology Preservation (GLTP). This work uses the geodesic distance in GLTP to define the distance between separate objects and the distance between different parts of the same object. Tracking multiple entangling DLOs is demonstrated experimentally. The source code is publicly released.
Semi-supervised video object segmentation (Semi-VOS), which requires only annotating the first frame of a video to segment future frames, has received increased attention recently. Among existing pipelines, the memory-matching-based one is becoming the main research stream, as it can fully utilize the temporal sequence information to obtain high-quality segmentation results. Even though this type of method has achieved promising performance, the overall framework still suffers from heavy computation overhead, mainly caused by the per-frame dense convolution operations between high-resolution feature maps and each kernel filter. Therefore, we propose a sparse baseline of VOS named SpVOS in this work, which develops a novel triple sparse convolution to reduce the computation costs of the overall VOS framework. The designed triple gate, taking full consideration of both spatial and temporal redundancy between adjacent video frames, adaptively makes a triple decision to decide how to apply the sparse convolution on each pixel to control the computation overhead of each layer, while maintaining sufficient discrimination capability to distinguish similar objects and avoid error accumulation. A mixed sparse training strategy, coupled with a designed objective considering the sparsity constraint, is also developed to balance the VOS segmentation performance and computation costs. Experiments are conducted on two mainstream VOS datasets, including DAVIS and Youtube-VOS. Results show that, the proposed SpVOS achieves superior performance over other state-of-the-art sparse methods, and even maintains comparable performance, e.g., an 83.04% (79.29%) overall score on the DAVIS-2017 (Youtube-VOS) validation set, with the typical non-sparse VOS baseline (82.88% for DAVIS-2017 and 80.36% for Youtube-VOS) while saving up to 42% FLOPs, showing its application potential for resource-constrained scenarios.
Dataset distillation plays a crucial role in creating compact datasets with similar training performance compared with original large-scale ones. This is essential for addressing the challenges of data storage and training costs. Prevalent methods facilitate knowledge transfer by matching the gradients, embedding distributions, or training trajectories of synthetic images with those of the sampled original images. Although there are various matching objectives, currently the strategy for selecting original images is limited to naive random sampling. We argue that random sampling overlooks the evenness of the selected sample distribution, which may result in noisy or biased matching targets. Besides, the sample diversity is also not constrained by random sampling. Additionally, current methods predominantly focus on single-dimensional matching, where information is not fully utilized. To address these challenges, we propose a novel matching strategy called Dataset Distillation by Bidirectional REpresentAtive Matching (DREAM+), which selects representative original images for bidirectional matching. DREAM+ is applicable to a variety of mainstream dataset distillation frameworks and significantly reduces the number of distillation iterations by more than 15 times without affecting performance. Given sufficient training time, DREAM+ can further improve the performance and achieve state-of-the-art results. We have released the code at github.com/NUS-HPC-AI-Lab/DREAM+.
In this work, we introduce Wonder3D, a novel method for efficiently generating high-fidelity textured meshes from single-view images.Recent methods based on Score Distillation Sampling (SDS) have shown the potential to recover 3D geometry from 2D diffusion priors, but they typically suffer from time-consuming per-shape optimization and inconsistent geometry. In contrast, certain works directly produce 3D information via fast network inferences, but their results are often of low quality and lack geometric details.To holistically improve the quality, consistency, and efficiency of image-to-3D tasks, we propose a cross-domain diffusion model that generates multi-view normal maps and the corresponding color images. To ensure consistency, we employ a multi-view cross-domain attention mechanism that facilitates information exchange across views and modalities. Lastly, we introduce a geometry-aware normal fusion algorithm that extracts high-quality surfaces from the multi-view 2D representations. Our extensive evaluations demonstrate that our method achieves high-quality reconstruction results, robust generalization, and reasonably good efficiency compared to prior works.
We present a novel approach to multilingual audio-visual speech recognition tasks by introducing a single model on a multilingual dataset. Motivated by a human cognitive system where humans can intuitively distinguish different languages without any conscious effort or guidance, we propose a model that can capture which language is given as an input speech by distinguishing the inherent similarities and differences between languages. To do so, we design a prompt fine-tuning technique into the largely pre-trained audio-visual representation model so that the network can recognize the language class as well as the speech with the corresponding language. Our work contributes to developing robust and efficient multilingual audio-visual speech recognition systems, reducing the need for language-specific models.
As language models become increasingly integrated into our digital lives, Personalized Text Generation (PTG) has emerged as a pivotal component with a wide range of applications. However, the bias inherent in user written text, often used for PTG model training, can inadvertently associate different levels of linguistic quality with users' protected attributes. The model can inherit the bias and perpetuate inequality in generating text w.r.t. users' protected attributes, leading to unfair treatment when serving users. In this work, we investigate fairness of PTG in the context of personalized explanation generation for recommendations. We first discuss the biases in generated explanations and their fairness implications. To promote fairness, we introduce a general framework to achieve measure-specific counterfactual fairness in explanation generation. Extensive experiments and human evaluations demonstrate the effectiveness of our method.
This Paper proposes a novel Transformer-based end-to-end autonomous driving model named Detrive. This model solves the problem that the past end-to-end models cannot detect the position and size of traffic participants. Detrive uses an end-to-end transformer based detection model as its perception module; a multi-layer perceptron as its feature fusion network; a recurrent neural network with gate recurrent unit for path planning; and two controllers for the vehicle's forward speed and turning angle. The model is trained with an on-line imitation learning method. In order to obtain a better training set, a reinforcement learning agent that can directly obtain a ground truth bird's-eye view map from the Carla simulator as a perceptual output, is used as teacher for the imitation learning. The trained model is tested on the Carla's autonomous driving benchmark. The results show that the Transformer detector based end-to-end model has obvious advantages in dynamic obstacle avoidance compared with the traditional classifier based end-to-end model.
This paper develops a Blue-Green Infrastructure (BGI) performance evaluation approach by integrating a Non-dominated Sorting Genetic Algorithm II (NSGA-II) with a detailed hydrodynamic model. The proposed Cost OptimisatioN Framework for Implementing blue-Green infrastructURE (CONFIGURE), with a simplified problem-framing process and efficient genetic operations, can be connected to any flood simulation model. In this study, CONFIGURE is integrated with the CityCAT hydrodynamic model to optimise the locations and combinations of permeable surfaces. Permeable zones with four different levels of spatial discretisation are designed to evaluate their efficiency for 100-year and 30-year return period rainstorms. Overall, the framework performs effectively for the given scenarios. The application of the detailed hydrodynamic model explicitly captures the functioning of permeable features to provide the optimal locations for their deployment. Moreover, the size and the location of the permeable surfaces and the intensity of the rainstorm events are the critical performance parameters for economical BGI deployment.
Audio fingerprinting is a well-established solution for song identification from short recording excerpts. Popular methods rely on the extraction of sparse representations, generally spectral peaks, and have proven to be accurate, fast, and scalable to large collections. However, real-world applications of audio identification often happen in noisy environments, which can cause these systems to fail. In this work, we tackle this problem by introducing and releasing a new audio augmentation pipeline that adds noise to music snippets in a realistic way, by stochastically mimicking real-world scenarios. We then propose and release a deep learning model that removes noisy components from spectrograms in order to improve peak-based fingerprinting systems' accuracy. We show that the addition of our model improves the identification performance of commonly used audio fingerprinting systems, even under noisy conditions.