亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Distribution-free tests such as the Wilcoxon rank sum test are popular for testing the equality of two univariate distributions. Among the important reasons for their popularity are the striking results of Hodges-Lehmann (1956) and Chernoff-Savage (1958), where the authors show that the asymptotic (Pitman) relative efficiency of Wilcoxon's test with respect to Student's $t$-test, under location-shift alternatives, never falls below $0.864$ (with the identity score) and $1$ (with the Gaussian score) respectively, despite the former being exactly distribution-free for all sample sizes. Motivated by these results, we propose and study a large family of exactly distribution-free multivariate rank-based two-sample tests by leveraging the theory of optimal transport. First, we propose distribution-free analogs of the Hotelling $T^2$ test (the natural multidimensional counterpart of Student's $t$-test) and show that they satisfy Hodges-Lehmann and Chernoff-Savage-type efficiency lower bounds over natural sub-families of multivariate distributions, despite being entirely agnostic to the underlying data generating mechanism -- making them the first multivariate, nonparametric, exactly distribution-free tests that provably achieve such efficiency lower bounds. As these tests are derived from Hotelling $T^2$, naturally they are not universally consistent (same as Wilcoxon's test). To overcome this, we propose exactly distribution-free versions of the celebrated kernel maximum mean discrepancy test and the energy test. These tests are indeed universally consistent under no moment assumptions, exactly distribution-free for all sample sizes, and have non-trivial Pitman efficiency. We believe this trifecta of properties hasn't yet been proven for any existing test in the literature.

相關內容

The total correlation(TC) is a crucial index to measure the correlation between marginal distribution in multidimensional random variables, and it is frequently applied as an inductive bias in representation learning. Previous research has shown that the TC value can be estimated using mutual information boundaries through decomposition. However, we found through theoretical derivation and qualitative experiments that due to the use of importance sampling in the decomposition process, the bias of TC value estimated based on MI bounds will be amplified when the proposal distribution in the sampling differs significantly from the target distribution. To reduce estimation bias issues, we propose a TC estimation correction model based on supervised learning, which uses the training iteration loss sequence of the TC estimator based on MI bounds as input features to output the true TC value. Experiments show that our proposed method can improve the accuracy of TC estimation and eliminate the variance generated by the TC estimation process.

We use a Stein identity to define a new class of parametric distributions which we call ``independent additive weighted bias distributions.'' We investigate related $L^2$-type discrepancy measures, empirical versions of which not only encompass traditional ODE-based procedures but also offer novel methods for conducting goodness-of-fit tests in composite hypothesis testing problems. We determine critical values for these new procedures using a parametric bootstrap approach and evaluate their power through Monte Carlo simulations. As an illustration, we apply these procedures to examine the compatibility of two real data sets with a compound Poisson Gamma distribution.

Typical algorithms for point cloud registration such as Iterative Closest Point (ICP) require a favorable initial transform estimate between two point clouds in order to perform a successful registration. State-of-the-art methods for choosing this starting condition rely on stochastic sampling or global optimization techniques such as branch and bound. In this work, we present a new method based on Bayesian optimization for finding the critical initial ICP transform. We provide three different configurations for our method which highlights the versatility of the algorithm to both find rapid results and refine them in situations where more runtime is available such as offline map building. Experiments are run on popular data sets and we show that our approach outperforms state-of-the-art methods when given similar computation time. Furthermore, it is compatible with other improvements to ICP, as it focuses solely on the selection of an initial transform, a starting point for all ICP-based methods.

Matrix factorizations are among the most important building blocks of scientific computing. State-of-the-art libraries, however, are not communication-optimal, underutilizing current parallel architectures. We present novel algorithms for Cholesky and LU factorizations that utilize an asymptotically communication-optimal 2.5D decomposition. We first establish a theoretical framework for deriving parallel I/O lower bounds for linear algebra kernels, and then utilize its insights to derive Cholesky and LU schedules, both communicating N^3/(P*sqrt(M)) elements per processor, where M is the local memory size. The empirical results match our theoretical analysis: our implementations communicate significantly less than Intel MKL, SLATE, and the asymptotically communication-optimal CANDMC and CAPITAL libraries. Our code outperforms these state-of-the-art libraries in almost all tested scenarios, with matrix sizes ranging from 2,048 to 262,144 on up to 512 CPU nodes of the Piz Daint supercomputer, decreasing the time-to-solution by up to three times. Our code is ScaLAPACK-compatible and available as an open-source library.

In recent years, differential privacy has emerged as the de facto standard for sharing statistics of datasets while limiting the disclosure of private information about the involved individuals. This is achieved by randomly perturbing the statistics to be published, which in turn leads to a privacy-accuracy trade-off: larger perturbations provide stronger privacy guarantees, but they result in less accurate statistics that offer lower utility to the recipients. Of particular interest are therefore optimal mechanisms that provide the highest accuracy for a pre-selected level of privacy. To date, work in this area has focused on specifying families of perturbations a priori and subsequently proving their asymptotic and/or best-in-class optimality. In this paper, we develop a class of mechanisms that enjoy non-asymptotic and unconditional optimality guarantees. To this end, we formulate the mechanism design problem as an infinite-dimensional distributionally robust optimization problem. We show that the problem affords a strong dual, and we exploit this duality to develop converging hierarchies of finite-dimensional upper and lower bounding problems. Our upper (primal) bounds correspond to implementable perturbations whose suboptimality can be bounded by our lower (dual) bounds. Both bounding problems can be solved within seconds via cutting plane techniques that exploit the inherent problem structure. Our numerical experiments demonstrate that our perturbations can outperform the previously best results from the literature on artificial as well as standard benchmark problems.

We introduce a new approach to nonlinear sufficient dimension reduction in cases where both the predictor and the response are distributional data, modeled as members of a metric space. Our key step is to build universal kernels (cc-universal) on the metric spaces, which results in reproducing kernel Hilbert spaces for the predictor and response that are rich enough to characterize the conditional independence that determines sufficient dimension reduction. For univariate distributions, we construct the universal kernel using the Wasserstein distance, while for multivariate distributions, we resort to the sliced Wasserstein distance. The sliced Wasserstein distance ensures that the metric space possesses similar topological properties to the Wasserstein space while also offering significant computation benefits. Numerical results based on synthetic data show that our method outperforms possible competing methods. The method is also applied to several data sets, including fertility and mortality data and Calgary temperature data.

Bayesian Additive Regression Trees (BART) are a powerful semiparametric ensemble learning technique for modeling nonlinear regression functions. Although initially BART was proposed for predicting only continuous and binary response variables, over the years multiple extensions have emerged that are suitable for estimating a wider class of response variables (e.g. categorical and count data) in a multitude of application areas. In this paper we describe a Generalized framework for Bayesian trees and their additive ensembles where the response variable comes from an exponential family distribution and hence encompasses a majority of these variants of BART. We derive sufficient conditions on the response distribution, under which the posterior concentrates at a minimax rate, up to a logarithmic factor. In this regard our results provide theoretical justification for the empirical success of BART and its variants.

PCA-Net is a recently proposed neural operator architecture which combines principal component analysis (PCA) with neural networks to approximate operators between infinite-dimensional function spaces. The present work develops approximation theory for this approach, improving and significantly extending previous work in this direction: First, a novel universal approximation result is derived, under minimal assumptions on the underlying operator and the data-generating distribution. Then, two potential obstacles to efficient operator learning with PCA-Net are identified, and made precise through lower complexity bounds; the first relates to the complexity of the output distribution, measured by a slow decay of the PCA eigenvalues. The other obstacle relates to the inherent complexity of the space of operators between infinite-dimensional input and output spaces, resulting in a rigorous and quantifiable statement of the curse of dimensionality. In addition to these lower bounds, upper complexity bounds are derived. A suitable smoothness criterion is shown to ensure an algebraic decay of the PCA eigenvalues. Furthermore, it is shown that PCA-Net can overcome the general curse of dimensionality for specific operators of interest, arising from the Darcy flow and the Navier-Stokes equations.

The order-preserving pattern mining can be regarded as discovering frequent trends in time series, since the same order-preserving pattern has the same relative order which can represent a trend. However, in the case where data noise is present, the relative orders of many meaningful patterns are usually similar rather than the same. To mine similar relative orders in time series, this paper addresses an approximate order-preserving pattern (AOP) mining method based on (delta-gamma) distance to effectively measure the similarity, and proposes an algorithm called AOP-Miner to mine AOPs according to global and local approximation parameters. AOP-Miner adopts a pattern fusion strategy to generate candidate patterns generation and employs the screening strategy to calculate the supports of candidate patterns. Experimental results validate that AOP-Miner outperforms other competitive methods and can find more similar trends in time series.

Under-approximations of reachable sets and tubes have been receiving growing research attention due to their important roles in control synthesis and verification. Available under-approximation methods applicable to continuous-time linear systems typically assume the ability to compute transition matrices and their integrals exactly, which is not feasible in general, and/or suffer from high computational costs. In this note, we attempt to overcome these drawbacks for a class of linear time-invariant (LTI) systems, where we propose a novel method to under-approximate finite-time forward reachable sets and tubes, utilizing approximations of the matrix exponential and its integral. In particular, we consider the class of continuous-time LTI systems with an identity input matrix and initial and input values belonging to full dimensional sets that are affine transformations of closed unit balls. The proposed method yields computationally efficient under-approximations of reachable sets and tubes, when implemented using zonotopes, with first-order convergence guarantees in the sense of the Hausdorff distance. To illustrate its performance, we implement our approach in three numerical examples, where linear systems of dimensions ranging between 2 and 200 are considered.

北京阿比特科技有限公司