亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recognizing novel sub-categories with scarce samples is an essential and challenging research topic in computer vision. Existing literature addresses this challenge by employing local-based representation approaches, which may not sufficiently facilitate meaningful object-specific semantic understanding, leading to a reliance on apparent background correlations. Moreover, they primarily rely on high-dimensional local descriptors to construct complex embedding space, potentially limiting the generalization. To address the above challenges, this article proposes a novel model called RSaG for few-shot fine-grained visual recognition. RSaG introduces additional saliency-aware supervision via saliency detection to guide the model toward focusing on the intrinsic discriminative regions. Specifically, RSaG utilizes the saliency detection model to emphasize the critical regions of each sub-category, providing additional object-specific information for fine-grained prediction. RSaG transfers such information with two symmetric branches in a mutual learning paradigm. Furthermore, RSaG exploits inter-regional relationships to enhance the informativeness of the representation and subsequently summarize the highlighted details into contextual embeddings to facilitate the effective transfer, enabling quick generalization to novel sub-categories. The proposed approach is empirically evaluated on three widely used benchmarks, demonstrating its superior performance.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 多峰值 · 視覺問答 · MoDELS · Weight ·
2023 年 10 月 29 日

This paper explores post-disaster analytics using multimodal deep learning models trained with curriculum learning method. Studying post-disaster analytics is important as it plays a crucial role in mitigating the impact of disasters by providing timely and accurate insights into the extent of damage and the allocation of resources. We propose a curriculum learning strategy to enhance the performance of multimodal deep learning models. Curriculum learning emulates the progressive learning sequence in human education by training deep learning models on increasingly complex data. Our primary objective is to develop a curriculum-trained multimodal deep learning model, with a particular focus on visual question answering (VQA) capable of jointly processing image and text data, in conjunction with semantic segmentation for disaster analytics using the FloodNet\footnote{//github.com/BinaLab/FloodNet-Challenge-EARTHVISION2021} dataset. To achieve this, U-Net model is used for semantic segmentation and image encoding. A custom built text classifier is used for visual question answering. Existing curriculum learning methods rely on manually defined difficulty functions. We introduce a novel curriculum learning approach termed Dynamic Task and Weight Prioritization (DATWEP), which leverages a gradient-based method to automatically decide task difficulty during curriculum learning training, thereby eliminating the need for explicit difficulty computation. The integration of DATWEP into our multimodal model shows improvement on VQA performance. Source code is available at //github.com/fualsan/DATWEP.

Neural Radiance Fields (NeRFs) have proven to be powerful 3D representations, capable of high quality novel view synthesis of complex scenes. While NeRFs have been applied to graphics, vision, and robotics, problems with slow rendering speed and characteristic visual artifacts prevent adoption in many use cases. In this work, we investigate combining an autoencoder (AE) with a NeRF, in which latent features (instead of colours) are rendered and then convolutionally decoded. The resulting latent-space NeRF can produce novel views with higher quality than standard colour-space NeRFs, as the AE can correct certain visual artifacts, while rendering over three times faster. Our work is orthogonal to other techniques for improving NeRF efficiency. Further, we can control the tradeoff between efficiency and image quality by shrinking the AE architecture, achieving over 13 times faster rendering with only a small drop in performance. We hope that our approach can form the basis of an efficient, yet high-fidelity, 3D scene representation for downstream tasks, especially when retaining differentiability is useful, as in many robotics scenarios requiring continual learning.

We present ASPIRO, an approach for structured data verbalisation into short template sentences in zero to few-shot settings. Unlike previous methods, our approach prompts large language models (LLMs) to directly produce entity-agnostic templates, rather than relying on LLMs to faithfully copy the given example entities, or validating/crafting the templates manually. We incorporate LLM re-prompting, triggered by algorithmic parsing checks, as well as the PARENT metric induced consistency validation to identify and rectify template generation problems in real-time. ASPIRO, compared to direct LLM output, averages 66\% parsing error rate reduction in generated verbalisations of RDF triples on the DART dataset. Our best 5-shot text-davinci-003 setup, scoring BLEU of 50.62, METEOR of 45.16, BLEURT of 0.82, NUBIA of 0.87, and PARENT of 0.8962 on the Rel2Text dataset, competes effectively with recent fine-tuned pre-trained language models.

We introduce a novel method for real-time animation control and generation on rigged models using natural language input. First, we embed a large language model (LLM) in Unity to output structured texts that can be parsed into diverse and realistic animations. Second, we illustrate LLM's potential to enable flexible state transition between existing animations. We showcase the robustness of our approach through qualitative results on various rigged models and motions.

Real-time novel-view image synthesis on mobile devices is prohibitive due to the limited computational power and storage. Using volumetric rendering methods, such as NeRF and its derivatives, on mobile devices is not suitable due to the high computational cost of volumetric rendering. On the other hand, recent advances in neural light field representations have shown promising real-time view synthesis results on mobile devices. Neural light field methods learn a direct mapping from a ray representation to the pixel color. The current choice of ray representation is either stratified ray sampling or Plucker coordinates, overlooking the classic light slab (two-plane) representation, the preferred representation to interpolate between light field views. In this work, we find that using the light slab representation is an efficient representation for learning a neural light field. More importantly, it is a lower-dimensional ray representation enabling us to learn the 4D ray space using feature grids which are significantly faster to train and render. Although mostly designed for frontal views, we show that the light-slab representation can be further extended to non-frontal scenes using a divide-and-conquer strategy. Our method offers superior rendering quality compared to previous light field methods and achieves a significantly improved trade-off between rendering quality and speed.

We propose a novel approach to self-supervised learning of point cloud representations by differentiable neural rendering. Motivated by the fact that informative point cloud features should be able to encode rich geometry and appearance cues and render realistic images, we train a point-cloud encoder within a devised point-based neural renderer by comparing the rendered images with real images on massive RGB-D data. The learned point-cloud encoder can be easily integrated into various downstream tasks, including not only high-level tasks like 3D detection and segmentation, but low-level tasks like 3D reconstruction and image synthesis. Extensive experiments on various tasks demonstrate the superiority of our approach compared to existing pre-training methods.

This paper presents an in-depth study of multimodal machine translation (MMT), examining the prevailing understanding that MMT systems exhibit decreased sensitivity to visual information when text inputs are complete. Instead, we attribute this phenomenon to insufficient cross-modal interaction, rather than image information redundancy. A novel approach is proposed to generate parallel Visual Question-Answering (VQA) style pairs from the source text, fostering more robust cross-modal interaction. Using Large Language Models (LLMs), we explicitly model the probing signal in MMT to convert it into VQA-style data to create the Multi30K-VQA dataset. An MMT-VQA multitask learning framework is introduced to incorporate explicit probing signals from the dataset into the MMT training process. Experimental results on two widely-used benchmarks demonstrate the effectiveness of this novel approach. Our code and data would be available at: \url{//github.com/libeineu/MMT-VQA}.

We present a novel framework for global localization and guided relocalization of a vehicle in an unstructured environment. Compared to existing methods, our pipeline does not rely on cues from urban fixtures (e.g., lane markings, buildings), nor does it make assumptions that require the vehicle to be navigating on a road network. Instead, we achieve localization in both urban and non-urban environments by robustly associating and registering the vehicle's local semantic object map with a compact semantic reference map, potentially built from other viewpoints, time periods, and/or modalities. Robustness to noise, outliers, and missing objects is achieved through our graph-based data association algorithm. Further, the guided relocalization capability of our pipeline mitigates drift inherent in odometry-based localization after the initial global localization. We evaluate our pipeline on two publicly-available, real-world datasets to demonstrate its effectiveness at global localization in both non-urban and urban environments. The Katwijk Beach Planetary Rover dataset is used to show our pipeline's ability to perform accurate global localization in unstructured environments. Demonstrations on the KITTI dataset achieve an average pose error of 3.8m across all 35 localization events on Sequence 00 when localizing in a reference map created from aerial images. Compared to existing works, our pipeline is more general because it can perform global localization in unstructured environments using maps built from different viewpoints.

This survey paper specially analyzed computer vision-based object detection challenges and solutions by different techniques. We mainly highlighted object detection by three different trending strategies, i.e., 1) domain adaptive deep learning-based approaches (discrepancy-based, Adversarial-based, Reconstruction-based, Hybrid). We examined general as well as tiny object detection-related challenges and offered solutions by historical and comparative analysis. In part 2) we mainly focused on tiny object detection techniques (multi-scale feature learning, Data augmentation, Training strategy (TS), Context-based detection, GAN-based detection). In part 3), To obtain knowledge-able findings, we discussed different object detection methods, i.e., convolutions and convolutional neural networks (CNN), pooling operations with trending types. Furthermore, we explained results with the help of some object detection algorithms, i.e., R-CNN, Fast R-CNN, Faster R-CNN, YOLO, and SSD, which are generally considered the base bone of CV, CNN, and OD. We performed comparative analysis on different datasets such as MS-COCO, PASCAL VOC07,12, and ImageNet to analyze results and present findings. At the end, we showed future directions with existing challenges of the field. In the future, OD methods and models can be analyzed for real-time object detection, tracking strategies.

Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.

北京阿比特科技有限公司