亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper we consider ill-posed inverse problems, both linear and nonlinear, by a heavy ball method in which a strongly convex regularization function is incorporated to detect the feature of the sought solution. We develop ideas on how to adaptively choose the step-sizes and the momentum coefficients to achieve acceleration over the Landweber-type method. We then analyze the method and establish its regularization property when it is terminated by the discrepancy principle. Various numerical results are reported which demonstrate the superior performance of our method over the Landweber-type method by reducing substantially the required number of iterations and the computational time.

相關內容

Various approaches to iterative refinement (IR) for least-squares problems have been proposed in the literature and it may not be clear which approach is suitable for a given problem. We consider three approaches to IR for least-squares problems when two precisions are used and review their theoretical guarantees, known shortcomings and when the method can be expected to recognize that the correct solution has been found, and extend uniform precision analysis for an IR approach based on the semi-normal equations to the two-precision case. We focus on the situation where it is desired to refine the solution to the working precision level. It is shown that the IR methods exhibit different sensitivities to the conditioning of the problem and the size of the least-squares residual, which should be taken into account when choosing the IR approach. We also discuss a new approach that is based on solving multiple least-squares problems.

Conformal prediction has been a popular distribution-free framework for uncertainty quantification. In this paper, we present a novel conformal prediction method for time-series, which we call Kernel-based Optimally Weighted Conformal Prediction Intervals (KOWCPI). Specifically, KOWCPI adapts the classic Reweighted Nadaraya-Watson (RNW) estimator for quantile regression on dependent data and learns optimal data-adaptive weights. Theoretically, we tackle the challenge of establishing a conditional coverage guarantee for non-exchangeable data under strong mixing conditions on the non-conformity scores. We demonstrate the superior performance of KOWCPI on real time-series against state-of-the-art methods, where KOWCPI achieves narrower confidence intervals without losing coverage.

In this paper, we reconsider two new iterative methods for solving absolute value equations (AVE), which is proposed by Ali and Pan (Jpn. J. Ind. Appl. Math. 40: 303--314, 2023). Convergence results of the two iterative schemes and new sufficient conditions for the unique solvability of AVE are presented. In addition, for a special case, the optimal iteration parameters of the two algorithms are analyzed, respectively. Numerical results demonstrate our claims.

The multidimensional knapsack problem (MKP) is an NP-hard combinatorial optimization problem whose solution is determining a subset of maximum total profit items that do not violate capacity constraints. Due to its hardness, large-scale MKP instances are usually a target for metaheuristics, a context in which effective feasibility maintenance strategies are crucial. In 1998, Chu and Beasley proposed an effective heuristic repair that is still relevant for recent metaheuristics. However, due to its deterministic nature, the diversity of solutions such heuristic provides is insufficient for long runs. As a result, the search for new solutions ceases after a while. This paper proposes an efficiency-based randomization strategy for the heuristic repair that increases the variability of the repaired solutions without deteriorating quality and improves the overall results.

In this paper, we develop a new and effective approach to nonparametric quantile regression that accommodates ultrahigh-dimensional data arising from spatio-temporal processes. This approach proves advantageous in staving off computational challenges that constitute known hindrances to existing nonparametric quantile regression methods when the number of predictors is much larger than the available sample size. We investigate conditions under which estimation is feasible and of good overall quality and obtain sharp approximations that we employ to devising statistical inference methodology. These include simultaneous confidence intervals and tests of hypotheses, whose asymptotics is borne by a non-trivial functional central limit theorem tailored to martingale differences. Additionally, we provide finite-sample results through various simulations which, accompanied by an illustrative application to real-worldesque data (on electricity demand), offer guarantees on the performance of the proposed methodology.

In this paper, we describe and analyze the spectral properties of a symmetric positive definite inexact block preconditioner for a class of symmetric, double saddle-point linear systems. We develop a spectral analysis of the preconditioned matrix, showing that its eigenvalues can be described in terms of the roots of a cubic polynomial with real coefficients. We illustrate the efficiency of the proposed preconditioners, and verify the theoretical bounds, in solving large-scale PDE-constrained optimization problems.

In this paper, we present a logic for conditional strong historical necessity in branching time and apply it to analyze a nontheological version of Lavenham's argument for future determinism. Strong historical necessity is motivated from a linguistical perspective, and an example of it is ``If I had not gotten away, I must have been dead''. The approach of the logic is as follows. The agent accepts ontic rules concerning how the world evolves over time. She takes some rules as indefeasible, which determine acceptable timelines. When evaluating a sentence with conditional strong historical necessity, we introduce its antecedent as an indefeasible ontic rule and then check whether its consequent holds for all acceptable timelines. The argument is not sound by the logic.

In this paper, we propose a weak Galerkin finite element method (WG) for solving singularly perturbed convection-diffusion problems on a Bakhvalov-type mesh in 2D. Our method is flexible and allows the use of discontinuous approximation functions on the meshe. An error estimate is devised in a suitable norm and the optimal convergence order is obtained. Finally, numerical experiments are given to support the theory and to show the efficiency of the proposed method.

In this paper we develop a non-diffusive neural network (NDNN) algorithm for accurately solving weak solutions to hyperbolic conservation laws. The principle is to construct these weak solutions by computing smooth local solutions in subdomains bounded by discontinuity lines (DLs), the latter defined from the Rankine-Hugoniot jump conditions. The proposed approach allows to efficiently consider an arbitrary number of entropic shock waves, shock wave generation, as well as wave interactions. Some numerical experiments are presented to illustrate the strengths and properties of the algorithms.

In this paper, we investigate nonlinear optimization problems whose constraints are defined as fuzzy relational equations (FRE) with max-min composition. Since the feasible solution set of the FRE is often a non-convex set and the resolution of the FREs is an NP-hard problem, conventional nonlinear approaches may involve high computational complexity. Based on the theoretical aspects of the problem, an algorithm (called FRE-ACO algorithm) is presented which benefits from the structural properties of the FREs, the ability of discrete ant colony optimization algorithm (denoted by ACO) to tackle combinatorial problems, and that of continuous ant colony optimization algorithm (denoted by ACOR) to solve continuous optimization problems. In the current method, the fundamental ideas underlying ACO and ACOR are combined and form an efficient approach to solve the nonlinear optimization problems constrained with such non-convex regions. Moreover, FRE-ACO algorithm preserves the feasibility of new generated solutions without having to initially find the minimal solutions of the feasible region or check the feasibility after generating the new solutions. FRE-ACO algorithm has been compared with some related works proposed for solving nonlinear optimization problems with respect to maxmin FREs. The obtained results demonstrate that the proposed algorithm has a higher convergence rate and requires a less number of function evaluations compared to other considered algorithms.

北京阿比特科技有限公司