Brain segmentation from neonatal MRI images is a very challenging task due to large changes in the shape of cerebral structures and variations in signal intensities reflecting the gestational process. In this context, there is a clear need for segmentation techniques that are robust to variations in image contrast and to the spatial configuration of anatomical structures. In this work, we evaluate the potential of synthetic learning, a contrast-independent model trained using synthetic images generated from the ground truth labels of very few subjects.We base our experiments on the dataset released by the developmental Human Connectome Project, for which high-quality T1- and T2-weighted images are available for more than 700 babies aged between 26 and 45 weeks post-conception. First, we confirm the impressive performance of a standard Unet trained on a few T2-weighted volumes, but also confirm that such models learn intensity-related features specific to the training domain. We then evaluate the synthetic learning approach and confirm its robustness to variations in image contrast by reporting the capacity of such a model to segment both T1- and T2-weighted images from the same individuals. However, we observe a clear influence of the age of the baby on the predictions. We improve the performance of this model by enriching the synthetic training set with realistic motion artifacts and over-segmentation of the white matter. Based on extensive visual assessment, we argue that the better performance of the model trained on real T2w data may be due to systematic errors in the ground truth. We propose an original experiment combining two definitions of the ground truth allowing us to show that learning from real data will reproduce any systematic bias from the training set, while synthetic models can avoid this limitation. Overall, our experiments confirm that synthetic learning is an effective solution for segmenting neonatal brain MRI. Our adapted synthetic learning approach combines key features that will be instrumental for large multi-site studies and clinical applications.
An increasingly common viewpoint is that protein dynamics data sets reside in a non-linear subspace of low conformational energy. Ideal data analysis tools for such data sets should therefore account for such non-linear geometry. The Riemannian geometry setting can be suitable for a variety of reasons. First, it comes with a rich structure to account for a wide range of geometries that can be modelled after an energy landscape. Second, many standard data analysis tools initially developed for data in Euclidean space can also be generalised to data on a Riemannian manifold. In the context of protein dynamics, a conceptual challenge comes from the lack of a suitable smooth manifold and the lack of guidelines for constructing a smooth Riemannian structure based on an energy landscape. In addition, computational feasibility in computing geodesics and related mappings poses a major challenge. This work considers these challenges. The first part of the paper develops a novel local approximation technique for computing geodesics and related mappings on Riemannian manifolds in a computationally feasible manner. The second part constructs a smooth manifold of point clouds modulo rigid body group actions and a Riemannian structure that is based on an energy landscape for protein conformations. The resulting Riemannian geometry is tested on several data analysis tasks relevant for protein dynamics data. It performs exceptionally well on coarse-grained molecular dynamics simulated data. In particular, the geodesics with given start- and end-points approximately recover corresponding molecular dynamics trajectories for proteins that undergo relatively ordered transitions with medium sized deformations. The Riemannian protein geometry also gives physically realistic summary statistics and retrieves the underlying dimension even for large-sized deformations within seconds on a laptop.
We propose a method to detect model misspecifications in nonlinear causal additive and potentially heteroscedastic noise models. We aim to identify predictor variables for which we can infer the causal effect even in cases of such misspecification. We develop a general framework based on knowledge of the multivariate observational data distribution and we then propose an algorithm for finite sample data, discuss its asymptotic properties, and illustrate its performance on simulated and real data.
Feature attribution is a fundamental task in both machine learning and data analysis, which involves determining the contribution of individual features or variables to a model's output. This process helps identify the most important features for predicting an outcome. The history of feature attribution methods can be traced back to General Additive Models (GAMs), which extend linear regression models by incorporating non-linear relationships between dependent and independent variables. In recent years, gradient-based methods and surrogate models have been applied to unravel complex Artificial Intelligence (AI) systems, but these methods have limitations. GAMs tend to achieve lower accuracy, gradient-based methods can be difficult to interpret, and surrogate models often suffer from stability and fidelity issues. Furthermore, most existing methods do not consider users' contexts, which can significantly influence their preferences. To address these limitations and advance the current state-of-the-art, we define a novel feature attribution framework called Context-Aware Feature Attribution Through Argumentation (CA-FATA). Our framework harnesses the power of argumentation by treating each feature as an argument that can either support, attack or neutralize a prediction. Additionally, CA-FATA formulates feature attribution as an argumentation procedure, and each computation has explicit semantics, which makes it inherently interpretable. CA-FATA also easily integrates side information, such as users' contexts, resulting in more accurate predictions.
Bagging is a commonly used ensemble technique in statistics and machine learning to improve the performance of prediction procedures. In this paper, we study the prediction risk of variants of bagged predictors under the proportional asymptotics regime, in which the ratio of the number of features to the number of observations converges to a constant. Specifically, we propose a general strategy to analyze the prediction risk under squared error loss of bagged predictors using classical results on simple random sampling. Specializing the strategy, we derive the exact asymptotic risk of the bagged ridge and ridgeless predictors with an arbitrary number of bags under a well-specified linear model with arbitrary feature covariance matrices and signal vectors. Furthermore, we prescribe a generic cross-validation procedure to select the optimal subsample size for bagging and discuss its utility to eliminate the non-monotonic behavior of the limiting risk in the sample size (i.e., double or multiple descents). In demonstrating the proposed procedure for bagged ridge and ridgeless predictors, we thoroughly investigate the oracle properties of the optimal subsample size and provide an in-depth comparison between different bagging variants.
The solution of time-dependent hyperbolic conservation laws on cut cell meshes causes the small cell problem: standard schemes are not stable on the arbitrarily small cut cells if an explicit time stepping scheme is used and the time step size is chosen based on the size of the background cells. In [J. Sci. Comput. 71, 919-943 (2017)], the mixed explicit implicit approach in general and MUSCL-Trap in particular have been introduced to solve this problem by using implicit time stepping on the cut cells. Theoretical and numerical results have indicated that this might lead to a loss in accuracy when switching between the explicit and implicit time stepping. In this contribution we examine this in more detail and will prove in one dimension that the specific combination MUSCL-Trap of an explicit second-order and an implicit second-order scheme results in a fully second-order mixed scheme. As this result is unlikely to hold in two dimensions, we also introduce two new versions of mixed explicit implicit schemes based on exchanging the explicit scheme. We present numerical tests in two dimensions where we compare the new versions with the original MUSCL-Trap scheme.
The aim of this study is to analyze the effect of serum metabolites on diabetic nephropathy (DN) and predict the prevalence of DN through a machine learning approach. The dataset consists of 548 patients from April 2018 to April 2019 in Second Affiliated Hospital of Dalian Medical University (SAHDMU). We select the optimal 38 features through a Least absolute shrinkage and selection operator (LASSO) regression model and a 10-fold cross-validation. We compare four machine learning algorithms, including eXtreme Gradient Boosting (XGB), random forest, decision tree and logistic regression, by AUC-ROC curves, decision curves, calibration curves. We quantify feature importance and interaction effects in the optimal predictive model by Shapley Additive exPlanations (SHAP) method. The XGB model has the best performance to screen for DN with the highest AUC value of 0.966. The XGB model also gains more clinical net benefits than others and the fitting degree is better. In addition, there are significant interactions between serum metabolites and duration of diabetes. We develop a predictive model by XGB algorithm to screen for DN. C2, C5DC, Tyr, Ser, Met, C24, C4DC, and Cys have great contribution in the model, and can possibly be biomarkers for DN.
This paper presents a new algorithm for generating random inverse-Wishart matrices that directly generates the Cholesky factor of the matrix without computing the factorization. Whenever parameterized in terms of a precision matrix $\Omega=\Sigma^{-1}$, or its Cholesky factor, instead of a covariance matrix $\Sigma$, the new algorithm is more efficient than the current standard algorithm.
Estimating the structure of directed acyclic graphs (DAGs) from observational data remains a significant challenge in machine learning. Most research in this area concentrates on learning a single DAG for the entire population. This paper considers an alternative setting where the graph structure varies across individuals based on available "contextual" features. We tackle this contextual DAG problem via a neural network that maps the contextual features to a DAG, represented as a weighted adjacency matrix. The neural network is equipped with a novel projection layer that ensures the output matrices are sparse and satisfy a recently developed characterization of acyclicity. We devise a scalable computational framework for learning contextual DAGs and provide a convergence guarantee and an analytical gradient for backpropagating through the projection layer. Our experiments suggest that the new approach can recover the true context-specific graph where existing approaches fail.
Meta-analysis is the aggregation of data from multiple studies to find patterns across a broad range relating to a particular subject. It is becoming increasingly useful to apply meta-analysis to summarize these studies being done across various fields. In meta-analysis, it is common to use the mean and standard deviation from each study to compare for analysis. While many studies reported mean and standard deviation for their summary statistics, some report other values including the minimum, maximum, median, and first and third quantiles. Often, the quantiles and median are reported when the data is skewed and does not follow a normal distribution. In order to correctly summarize the data and draw conclusions from multiple studies, it is necessary to estimate the mean and standard deviation from each study, considering variation and skewness within each study. In past literature, methods have been proposed to estimate the mean and standard deviation, but do not consider negative values. Data that include negative values are common and would increase the accuracy and impact of the me-ta-analysis. We propose a method that implements a generalized Box-Cox transformation to estimate the mean and standard deviation accounting for such negative values while maintaining similar accuracy.
Deep learning is usually described as an experiment-driven field under continuous criticizes of lacking theoretical foundations. This problem has been partially fixed by a large volume of literature which has so far not been well organized. This paper reviews and organizes the recent advances in deep learning theory. The literature is categorized in six groups: (1) complexity and capacity-based approaches for analyzing the generalizability of deep learning; (2) stochastic differential equations and their dynamic systems for modelling stochastic gradient descent and its variants, which characterize the optimization and generalization of deep learning, partially inspired by Bayesian inference; (3) the geometrical structures of the loss landscape that drives the trajectories of the dynamic systems; (4) the roles of over-parameterization of deep neural networks from both positive and negative perspectives; (5) theoretical foundations of several special structures in network architectures; and (6) the increasingly intensive concerns in ethics and security and their relationships with generalizability.