亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work we propose and analyse a structure-preserving approximation of the non-isothermal Cahn-Hilliard-Navier-Stokes system using conforming finite elements in space and implicit time discretisation with convex-concave splitting. The system is first reformulated into a variational form which reveal the structure of the equations, which is then used in the subsequent approximation.

相關內容

Discovering causal relationships from observational data is a fundamental yet challenging task. Invariant causal prediction (ICP, Peters et al., 2016) is a method for causal feature selection which requires data from heterogeneous settings and exploits that causal models are invariant. ICP has been extended to general additive noise models and to nonparametric settings using conditional independence tests. However, the latter often suffer from low power (or poor type I error control) and additive noise models are not suitable for applications in which the response is not measured on a continuous scale, but reflects categories or counts. Here, we develop transformation-model (TRAM) based ICP, allowing for continuous, categorical, count-type, and uninformatively censored responses (these model classes, generally, do not allow for identifiability when there is no exogenous heterogeneity). As an invariance test, we propose TRAM-GCM based on the expected conditional covariance between environments and score residuals with uniform asymptotic level guarantees. For the special case of linear shift TRAMs, we also consider TRAM-Wald, which tests invariance based on the Wald statistic. We provide an open-source R package 'tramicp' and evaluate our approach on simulated data and in a case study investigating causal features of survival in critically ill patients.

In this paper, we present a~generalisation of proof simulation procedures for Frege systems by Bonet and Buss to some logics for which the deduction theorem does not hold. In particular, we study the case of finite-valued \L{}ukasiewicz logics. To this end, we provide proof systems that augment Avron's Frege system for \L{}ukasiewicz three-valued logic with nested and general versions of the disjunction elimination rule, respectively. For these systems we provide upper bounds on speed-ups w.r.t.\ both the number of steps in proofs and the length of proofs. We also consider Tamminga's natural deduction and Avron's hypersequent calculus for 3-valued \L{}ukasiewicz logic and generalise our results considering the disjunction elimination rule to all finite-valued \L{}ukasiewicz logics.

This study introduces a reduced-order model (ROM) for analyzing the transient diffusion-deformation of hydrogels. The full-order model (FOM) describing hydrogel transient behavior consists of a coupled system of partial differential equations in which chemical potential and displacements are coupled. This system is formulated in a monolithic fashion and solved using the Finite Element Method (FEM). The ROM employs proper orthogonal decomposition as a model order reduction approach. We test the ROM performance through benchmark tests on hydrogel swelling behavior and a case study simulating co-axial printing. Finally, we embed the ROM into an optimization problem to identify the model material parameters of the coupled problem using full-field data. We verify that the ROM can predict hydrogels' diffusion-deformation evolution and material properties, significantly reducing computation time compared to the FOM. The results demonstrate the ROM's accuracy and computational efficiency. This work paths the way towards advanced practical applications of ROMs, e.g., in the context of feedback error control in hydrogel 3D printing.

We show convergence rates for a sparse grid approximation of the distribution of solutions of the stochastic Landau-Lifshitz-Gilbert equation. Beyond being a frequently studied equation in engineering and physics, the stochastic Landau-Lifshitz-Gilbert equation poses many interesting challenges that do not appear simultaneously in previous works on uncertainty quantification: The equation is strongly non-linear, time-dependent, and has a non-convex side constraint. Moreover, the parametrization of the stochastic noise features countably many unbounded parameters and low regularity compared to other elliptic and parabolic problems studied in uncertainty quantification. We use a novel technique to establish uniform holomorphic regularity of the parameter-to-solution map based on a Gronwall-type estimate and the implicit function theorem. This method is very general and based on a set of abstract assumptions. Thus, it can be applied beyond the Landau-Lifshitz-Gilbert equation as well. We demonstrate numerically the feasibility of approximating with sparse grid and show a clear advantage of a multi-level sparse grid scheme.

Backtracking linesearch is the de facto approach for minimizing continuously differentiable functions with locally Lipschitz gradient. In recent years, it has been shown that in the convex setting it is possible to avoid linesearch altogether, and to allow the stepsize to adapt based on a local smoothness estimate without any backtracks or evaluations of the function value. In this work we propose an adaptive proximal gradient method, adaPG, that uses novel estimates of the local smoothness modulus which leads to less conservative stepsize updates and that can additionally cope with nonsmooth terms. This idea is extended to the primal-dual setting where an adaptive three-term primal-dual algorithm, adaPD, is proposed which can be viewed as an extension of the PDHG method. Moreover, in this setting the "essentially" fully adaptive variant adaPD$^+$ is proposed that avoids evaluating the linear operator norm by invoking a backtracking procedure, that, remarkably, does not require extra gradient evaluations. Numerical simulations demonstrate the effectiveness of the proposed algorithms compared to the state of the art.

The random batch method (RBM) proposed in [Jin et al., J. Comput. Phys., 400(2020), 108877] for large interacting particle systems is an efficient with linear complexity in particle numbers and highly scalable algorithm for $N$-particle interacting systems and their mean-field limits when $N$ is large. We consider in this work the quantitative error estimate of RBM toward its mean-field limit, the Fokker-Planck equation. Under mild assumptions, we obtain a uniform-in-time $O(\tau^2 + 1/N)$ bound on the scaled relative entropy between the joint law of the random batch particles and the tensorized law at the mean-field limit, where $\tau$ is the time step size and $N$ is the number of particles. Therefore, we improve the existing rate in discretization step size from $O(\sqrt{\tau})$ to $O(\tau)$ in terms of the Wasserstein distance.

We propose an operator learning approach to accelerate geometric Markov chain Monte Carlo (MCMC) for solving infinite-dimensional nonlinear Bayesian inverse problems. While geometric MCMC employs high-quality proposals that adapt to posterior local geometry, it requires computing local gradient and Hessian information of the log-likelihood, incurring a high cost when the parameter-to-observable (PtO) map is defined through expensive model simulations. We consider a delayed-acceptance geometric MCMC method driven by a neural operator surrogate of the PtO map, where the proposal is designed to exploit fast surrogate approximations of the log-likelihood and, simultaneously, its gradient and Hessian. To achieve a substantial speedup, the surrogate needs to be accurate in predicting both the observable and its parametric derivative (the derivative of the observable with respect to the parameter). Training such a surrogate via conventional operator learning using input--output samples often demands a prohibitively large number of model simulations. In this work, we present an extension of derivative-informed operator learning [O'Leary-Roseberry et al., J. Comput. Phys., 496 (2024)] using input--output--derivative training samples. Such a learning method leads to derivative-informed neural operator (DINO) surrogates that accurately predict the observable and its parametric derivative at a significantly lower training cost than the conventional method. Cost and error analysis for reduced basis DINO surrogates are provided. Numerical studies on PDE-constrained Bayesian inversion demonstrate that DINO-driven MCMC generates effective posterior samples 3--9 times faster than geometric MCMC and 60--97 times faster than prior geometry-based MCMC. Furthermore, the training cost of DINO surrogates breaks even after collecting merely 10--25 effective posterior samples compared to geometric MCMC.

Algorithms for initializing particle distribution in SPH simulations of complex geometries have been proven essential for improving the accuracy of SPH simulations. However, no such algorithms exist for boundary integral SPH models, which can model complex geometries without needing virtual particle layers. This study introduces a Boundary Integral based Particle Initialization (BIPI) algorithm. It consists of a particle-shifting technique carefully designed to redistribute particles to fit the boundary by using the boundary integral formulation for particles adjacent to the boundary. The proposed BIPI algorithm gives special consideration to particles adjacent to the boundary to prevent artificial volume compression. It can automatically produce a "uniform" particle distribution with reduced and stabilized concentration gradient for domains with complex geometrical shapes. Finally, a number of examples are presented to demonstrate the effectiveness of the proposed algorithm.

Entropy comparison inequalities are obtained for the differential entropy $h(X+Y)$ of the sum of two independent random vectors $X,Y$, when one is replaced by a Gaussian. For identically distributed random vectors $X,Y$, these are closely related to bounds on the entropic doubling constant, which quantifies the entropy increase when adding an independent copy of a random vector to itself. Consequences of both large and small doubling are explored. For the former, lower bounds are deduced on the entropy increase when adding an independent Gaussian, while for the latter, a qualitative stability result for the entropy power inequality is obtained. In the more general case of non-identically distributed random vectors $X,Y$, a Gaussian comparison inequality with interesting implications for channel coding is established: For additive-noise channels with a power constraint, Gaussian codebooks come within a $\frac{{\sf snr}}{3{\sf snr}+2}$ factor of capacity. In the low-SNR regime this improves the half-a-bit additive bound of Zamir and Erez (2004). Analogous results are obtained for additive-noise multiple access channels, and for linear, additive-noise MIMO channels.

In this work, we develop recent research on the fully mixed virtual element method (mixed-VEM) based on the Banach space for the stationary Boussinesq equation to suggest and analyze a new mixed-VEM for the stationary two-dimensional Boussinesq equation with temperature-dependent parameters in terms of the pseudostress, vorticity, velocity, pseudoheat vector and temperature fields. The well-posedness of the continuous formulation is analyzed utilizing a fixed-point strategy, a smallness assumption on the data, and some additional regularities on the solution. The discretization for the mentioned variables is based on the coupling $\mathbb{H}(\mathbf{div}_{6/5})$ -- and $\mathbf{H}(\mathrm{div}_{6/5})$ -- conforming virtual element techniques. The proposed scheme is rewritten as an equivalent fixed point operator equation, so that its existence and stability estimates have been proven. In addition, an a priori convergence analysis is established by utilizing the C\'ea estimate and a suitable assumption on data for all variables in their natural norms showing an optimal rate of convergence. Finally, several numerical examples are presented to illustrate the performance of the proposed method.

北京阿比特科技有限公司