亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

DNA is a promising storage medium, but its stability and occurrence of Indel errors pose a significant challenge. The relative occurrence of Guanine(G) and Cytosine(C) in DNA is crucial for its longevity, and reverse complementary base pairs should be avoided to prevent the formation of a secondary structure in DNA strands. We overcome these challenges by selecting appropriate group homomorphisms. For storing and retrieving information in DNA strings we use kernel code and the Varshamov-Tenengolts algorithm. The Varshamov-Tenengolts algorithm corrects single indel errors. Additionally, we construct codes of any desired length (n) while calculating its reverse complement distance based on the value of n.

相關內容

Generative diffusion models have achieved spectacular performance in many areas of generative modeling. While the fundamental ideas behind these models come from non-equilibrium physics, in this paper we show that many aspects of these models can be understood using the tools of equilibrium statistical mechanics. Using this reformulation, we show that generative diffusion models undergo second-order phase transitions corresponding to symmetry breaking phenomena. We argue that this lead to a form of instability that lies at the heart of their generative capabilities and that can be described by a set of mean field critical exponents. We conclude by analyzing recent work connecting diffusion models and associative memory networks in view of the thermodynamic formulations.

RRAM-based multi-core systems improve the energy efficiency and performance of CNNs. Thereby, the distributed parallel execution of convolutional layers causes critical data dependencies that limit the potential speedup. This paper presents synchronization techniques for parallel inference of convolutional layers on RRAM-based CIM architectures. We propose an architecture optimization that enables efficient data exchange and discuss the impact of different architecture setups on the performance. The corresponding compiler algorithms are optimized for high speedup and low memory consumption during CNN inference. We achieve more than 99% of the theoretical acceleration limit with a marginal data transmission overhead of less than 4% for state-of-the-art CNN benchmarks.

Agglomerative hierarchical clustering based on Ordered Weighted Averaging (OWA) operators not only generalises the single, complete, and average linkages, but also includes intercluster distances based on a few nearest or farthest neighbours, trimmed and winsorised means of pairwise point similarities, amongst many others. We explore the relationships between the famous Lance-Williams update formula and the extended OWA-based linkages with weights generated via infinite coefficient sequences. Furthermore, we provide some conditions for the weight generators to guarantee the resulting dendrograms to be free from unaesthetic inversions.

The prevailing statistical approach to analyzing persistence diagrams is concerned with filtering out topological noise. In this paper, we adopt a different viewpoint and aim at estimating the actual distribution of a random persistence diagram, which captures both topological signal and noise. To that effect, Chazel and Divol (2019) proved that, under general conditions, the expected value of a random persistence diagram is a measure admitting a Lebesgue density, called the persistence intensity function. In this paper, we are concerned with estimating the persistence intensity function and a novel, normalized version of it -- called the persistence density function. We present a class of kernel-based estimators based on an i.i.d. sample of persistence diagrams and derive estimation rates in the supremum norm. As a direct corollary, we obtain uniform consistency rates for estimating linear representations of persistence diagrams, including Betti numbers and persistence surfaces. Interestingly, the persistence density function delivers stronger statistical guarantees.

LiDAR is a sensor system that supports autonomous driving by gathering precise geometric information about the scene. Exploiting this information for perception is interesting as the amount of available data increases. As the quantitative performance of various perception tasks has improved, the focus has shifted from source-to-source perception to domain adaptation and domain generalization for perception. These new goals require access to a large variety of domains for evaluation. Unfortunately, the various annotation strategies of data providers complicate the computation of cross-domain performance based on the available data This paper provides a novel dataset, specifically designed for cross-domain evaluation to make it easier to evaluate the performance of various source datasets. Alongside the dataset, a flexible online benchmark is provided to ensure a fair comparison across methods.

Confounder selection, namely choosing a set of covariates to control for confounding between a treatment and an outcome, is arguably the most important step in the design of observational studies. Previous methods, such as Pearl's celebrated back-door criterion, typically require pre-specifying a causal graph, which can often be difficult in practice. We propose an interactive procedure for confounder selection that does not require pre-specifying the graph or the set of observed variables. This procedure iteratively expands the causal graph by finding what we call "primary adjustment sets" for a pair of possibly confounded variables. This can be viewed as inverting a sequence of latent projections of the underlying causal graph. Structural information in the form of primary adjustment sets is elicited from the user, bit by bit, until either a set of covariates are found to control for confounding or it can be determined that no such set exists. Other information, such as the causal relations between confounders, is not required by the procedure. We show that if the user correctly specifies the primary adjustment sets in every step, our procedure is both sound and complete.

The ability of executing multiple tasks simultaneously is an important feature of redundant robotic systems. As a matter of fact, complex behaviors can often be obtained as a result of the execution of several tasks. Moreover, in safety-critical applications, tasks designed to ensure the safety of the robot and its surroundings have to be executed along with other nominal tasks. In such cases, it is also important to prioritize the former over the latter. In this paper, we formalize the definition of extended set-based tasks, i.e., tasks which can be executed by rendering subsets of the task space asymptotically stable or forward invariant. We propose a mathematical representation of such tasks that allows for the execution of more complex and time-varying prioritized stacks of tasks using kinematic and dynamic robot models alike. We present and analyze an optimization-based framework which is computationally efficient, accounts for input bounds, and allows for the stable execution of time-varying prioritized stacks of extended set-based tasks. The proposed framework is validated using extensive simulations and experiments with robotic manipulators.

Knowledge graphs contain rich semantic relationships related to items and incorporating such semantic relationships into recommender systems helps to explore the latent connections of items, thus improving the accuracy of prediction and enhancing the explainability of recommendations. However, such explainability is not adapted to users' contexts, which can significantly influence their preferences. In this work, we propose CA-KGCN (Context-Aware Knowledge Graph Convolutional Network), an end-to-end framework that can model users' preferences adapted to their contexts and can incorporate rich semantic relationships in the knowledge graph related to items. This framework captures users' attention to different factors: contexts and features of items. More specifically, the framework can model users' preferences adapted to their contexts and provide explanations adapted to the given context. Experiments on three real-world datasets show the effectiveness of our framework: modeling users' preferences adapted to their contexts and explaining the recommendations generated.

Semantic communication, rather than on a bit-by-bit recovery of the transmitted messages, focuses on the meaning and the goal of the communication itself. In this paper, we propose a novel semantic image coding scheme that preserves the semantic content of an image, while ensuring a good trade-off between coding rate and image quality. The proposed Semantic-Preserving Image Coding based on Conditional Diffusion Models (SPIC) transmitter encodes a Semantic Segmentation Map (SSM) and a low-resolution version of the image to be transmitted. The receiver then reconstructs a high-resolution image using a Denoising Diffusion Probabilistic Models (DDPM) doubly conditioned to the SSM and the low-resolution image. As shown by the numerical examples, compared to state-of-the-art (SOTA) approaches, the proposed SPIC exhibits a better balance between the conventional rate-distortion trade-off and the preservation of semantically-relevant features.

Geochemical mapping of risk element concentrations in soils is performed in countries around the world. It results in large datasets of high analytical quality, which can be used to identify soils that violate individual legislative limits for safe food production. However, there is a lack of advanced data mining tools that would be suitable for sensitive exploratory data analysis of big data while respecting the natural variability of soil composition. To distinguish anthropogenic contamination from natural variation, the analysis of the entire data distributions for smaller sub-areas is key. In this article, we propose a new data mining method for geochemical mapping data based on functional data analysis of probability density functions in the framework of Bayes spaces after post-stratification of a big dataset to smaller districts. Proposed tools allow us to analyse the entire distribution, going beyond a superficial detection of extreme concentration anomalies. We illustrate the proposed methodology on a dataset gathered according to the Czech national legislation (1990--2009). Taking into account specific properties of probability density functions and recent results for orthogonal decomposition of multivariate densities enabled us to reveal real contamination patterns that were so far only suspected in Czech agricultural soils. We process the above Czech soil composition dataset by first compartmentalising it into spatial units, in particular the districts, and by subsequently clustering these districts according to diagnostic features of their uni- and multivariate distributions at high concentration ends. Comparison between compartments is key to the reliable distinction of diffuse contamination. In this work, we used soil contamination by Cu-bearing pesticides as an example for empirical testing of the proposed data mining approach.

北京阿比特科技有限公司