We introduce a finite volume scheme to solve isotropic 3-wave kinetic equations. We test our numerical solution against theoretical results concerning the long time behavior of the energy and observe that our solutions verify the energy cascade phenomenon. Up to our knowledge, this is the first numerical scheme that could capture the long time asymptotic behavior of solutions to isotropic 3-wave kinetic equations, where the energy cascade can be observed. Our numerical energy cascade rates are in good agreement with the theoretical one obtained by Soffer and Tran. Our finite volume algorithm relies on a new identity, that allows one to reduce the number of terms needed to be approximated in the collision operators.
Reconfigurable intelligent surfaces (RISs) provide an interface between the electromagnetic world of wireless propagation environments and the digital world of information science. Simple yet sufficiently accurate path loss models for RISs are an important basis for theoretical analysis and optimization of RIS-assisted wireless communication systems. In this paper, we refine our previously proposed free-space path loss model for RISs to make it simpler, more applicable, and easier to use. The impact of the antenna's directivity of the transmitter, receiver, and the unit cells of the RIS on the path loss is explicitly formulated as an angle-dependent loss factor. The refined model gives more accurate estimates of the path loss of RISs comprised of unit cells with a deep sub-wavelength size. Based on the proposed model, the properties of a single unit cell are evaluated in terms of scattering performance, power consumption, and area, which allows us to unveil fundamental considerations for deploying RISs in high frequency bands. Two fabricated RISs operating in the millimeter-wave (mmWave) band are utilized to carry out a measurement campaign. The measurement results are shown to be in good agreement with the proposed path loss model. In addition, the experimental results suggest an effective form to characterize the power radiation pattern of the unit cell for path loss modeling.
The strength of gnomes lies in their coordinated action. Being small and subtle creatures themselves, the forest gnomes can form large swarms acting as one giant creature. This unusual defense strategy required a lot of skill and training as directing a swarm is not an easy task! Initially, gnomes used leader-based control algorithms, although those have proven to be vulnerable to abuse and failure. After thorough research and study, gnomes developed their own leaderless consensus algorithm based on very simple rules. It is based on local broadcast (gossip) in an open network of a known radius $r$. One of the gnomes proposes a plan which then spreads gnome to gnome. If there is agreement, all gnomes act \emph{all at once}. If there are conflicting plans (an extreme rarity), they try again. The resulting swarm reaction time is exactly the swarm round-trip time $2rt$, where $t$ is the command relay time. The algorithm is non-Byzantine; all gnomes must be sane and sober.
In this article a space-dependent epidemic model equipped with a constant latency period is examined. We construct a delay partial integro-differential equation and show that its solution possesses some biologically reasonable features. We propose some numerical schemes and show that by choosing the time step to be sufficiently small the schemes preserve the qualitative properties of the original continuous model. Finally, some numerical experiments are presented that confirm the aforementioned theoretical results.
Our study aims to specify the asymptotic error distribution in the discretization of a stochastic Volterra equation with a fractional kernel. It is well-known that for a standard stochastic differential equation, the discretization error, normalized with its rate of convergence $1/\sqrt{n}$, converges in law to the solution of a certain linear equation. Similarly to this, we show that a suitably normalized discretization error of the Volterra equation converges in law to the solution of a certain linear Volterra equation with the same fractional kernel.
Let $P$ be a bounded polyhedron defined as the intersection of the non-negative orthant ${\Bbb R}^n_+$ and an affine subspace of codimension $m$ in ${\Bbb R}^n$. We show that a simple and computationally efficient formula approximates the volume of $P$ within a factor of $\gamma^m$, where $\gamma >0$ is an absolute constant. The formula provides the best known estimate for the volume of transportation polytopes from a wide family.
We present the asymptotic transitions from microscopic to macroscopic physics, their computational challenges and the Asymptotic-Preserving (AP) strategies to efficiently compute multiscale physical problems. Specifically, we will first study the asymptotic transition from quantum to classical mechanics, from classical mechanics to kinetic theory, and then from kinetic theory to hydrodynamics. We then review some representative AP schemes that mimic, at the discrete level, these asymptotic transitions, hence can be used crossing scales and, in particular, capture the macroscopic behavior without resolving numerically the microscopic physical scale.
Let $P$ be a set of points in $\mathbb{R}^d$, where each point $p\in P$ has an associated transmission range $\rho(p)$. The range assignment $\rho$ induces a directed communication graph $\mathcal{G}_{\rho}(P)$ on $P$, which contains an edge $(p,q)$ iff $|pq| \leq \rho(p)$. In the broadcast range-assignment problem, the goal is to assign the ranges such that $\mathcal{G}_{\rho}(P)$ contains an arborescence rooted at a designated node and whose cost $\sum_{p \in P} \rho(p)^2$ is minimized. We study trade-offs between the stability of the solution -- the number of ranges that are modified when a point is inserted into or deleted from $P$ -- and its approximation ratio. We introduce $k$-stable algorithms, which are algorithms that modify the range of at most $k$ points when they update the solution. We also introduce the concept of a stable approximation scheme (SAS). A SAS is an update algorithm that, for any given fixed parameter $\varepsilon>0$, is $k(\epsilon)$-stable and maintains a solution with approximation ratio $1+\varepsilon$, where the stability parameter $k(\varepsilon)$ only depends on $\varepsilon$ and not on the size of $P$. We study such trade-offs in three settings. - In $\mathbb{R}^1$, we present a SAS with $k(\varepsilon)=O(1/\varepsilon)$, which we show is tight in the worst case. We also present a 1-stable $(6+2\sqrt{5})$-approximation algorithm, a $2$-stable 2-approximation algorithm, and a $3$-stable $1.97$-approximation algorithm. - In $\mathbb{S}^1$ (where the underlying space is a circle) we prove that no SAS exists, even though an optimal solution can always be obtained by cutting the circle at an appropriate point and solving the resulting problem in $\mathbb{R}^1$. - In $\mathbb{R}^2$, we also prove that no SAS exists, and we present a $O(1)$-stable $O(1)$-approximation algorithm.
In this paper, we develop a Monte Carlo algorithm named the Frozen Gaussian Sampling (FGS) to solve the semiclassical Schr\"odinger equation based on the frozen Gaussian approximation. Due to the highly oscillatory structure of the wave function, traditional mesh-based algorithms suffer from "the curse of dimensionality", which gives rise to more severe computational burden when the semiclassical parameter \(\ep\) is small. The Frozen Gaussian sampling outperforms the existing algorithms in that it is mesh-free in computing the physical observables and is suitable for high dimensional problems. In this work, we provide detailed procedures to implement the FGS for both Gaussian and WKB initial data cases, where the sampling strategies on the phase space balance the need of variance reduction and sampling convenience. Moreover, we rigorously prove that, to reach a certain accuracy, the number of samples needed for the FGS is independent of the scaling parameter \(\ep\). Furthermore, the complexity of the FGS algorithm is of a sublinear scaling with respect to the microscopic degrees of freedom and, in particular, is insensitive to the dimension number. The performance of the FGS is validated through several typical numerical experiments, including simulating scattering by the barrier potential, formation of the caustics and computing the high-dimensional physical observables without mesh.
The optimal value of the projected successive overrelaxation (PSOR) method for nonnegative quadratic programming problems is problem-dependent. We present a novel adaptive PSOR algorithm that adaptively controls the relaxation parameter using the Wolfe conditions. The method and its variants can be applied to various problems without requiring a specific assumption regarding the matrix defining the objective function, and the cost for updating the parameter is negligible in the whole iteration. Numerical experiments show that the proposed methods often perform comparably to (or sometimes superior to) the PSOR method with a nearly optimal relaxation parameter.
Developing suitable approximate models for analyzing and simulating complex nonlinear systems is practically important. This paper aims at exploring the skill of a rich class of nonlinear stochastic models, known as the conditional Gaussian nonlinear system (CGNS), as both a cheap surrogate model and a fast preconditioner for facilitating many computationally challenging tasks. The CGNS preserves the underlying physics to a large extent and can reproduce intermittency, extreme events and other non-Gaussian features in many complex systems arising from practical applications. Three interrelated topics are studied. First, the closed analytic formulae of solving the conditional statistics provide an efficient and accurate data assimilation scheme. It is shown that the data assimilation skill of a suitable CGNS approximate forecast model outweighs that by applying an ensemble method even to the perfect model with strong nonlinearity, where the latter suffers from filter divergence. Second, the CGNS allows the development of a fast algorithm for simultaneously estimating the parameters and the unobserved variables with uncertainty quantification in the presence of only partial observations. Utilizing an appropriate CGNS as a preconditioner significantly reduces the computational cost in accurately estimating the parameters in the original complex system. Finally, the CGNS advances rapid and statistically accurate algorithms for computing the probability density function and sampling the trajectories of the unobserved state variables. These fast algorithms facilitate the development of an efficient and accurate data-driven method for predicting the linear response of the original system with respect to parameter perturbations based on a suitable CGNS preconditioner.