Sequential Monte Carlo methods have been a major breakthrough in the field of numerical signal processing for stochastic dynamical state-space systems with partial and noisy observations. However, these methods still present certain weaknesses. One of the most fundamental is the degeneracy of the filter due to the impoverishment of the particles: the prediction step allows the particles to explore the state-space and can lead to the impoverishment of the particles if this exploration is poorly conducted or when it conflicts with the following observation that will be used in the evaluation of the likelihood of each particle. In this article, in order to improve this last step within the framework of the classic bootstrap particle filter, we propose a simple approximation of the one step fixed-lag smoother. At each time iteration, we propose to perform additional simulations during the prediction step in order to improve the likelihood of the selected particles.
We introduce an efficient first-order primal-dual method for the solution of nonsmooth PDE-constrained optimization problems. We achieve this efficiency through not solving the PDE or its linearisation on each iteration of the optimization method. Instead, we run the method interwoven with a simple conventional linear system solver (Jacobi, Gauss-Seidel, conjugate gradients), always taking only one step of the linear system solver for each step of the optimization method. The control parameter is updated on each iteration as determined by the optimization method. We prove linear convergence under a second-order growth condition, and numerically demonstrate the performance on a variety of PDEs related to inverse problems involving boundary measurements.
A new mechanical model on noncircular shallow tunnelling considering initial stress field is proposed in this paper by constraining far-field ground surface to eliminate displacement singularity at infinity, and the originally unbalanced tunnel excavation problem in existing solutions is turned to an equilibrium one of mixed boundaries. By applying analytic continuation, the mixed boundaries are transformed to a homogenerous Riemann-Hilbert problem, which is subsequently solved via an efficient and accurate iterative method with boundary conditions of static equilibrium, displacement single-valuedness, and traction along tunnel periphery. The Lanczos filtering technique is used in the final stress and displacement solution to reduce the Gibbs phenomena caused by the constrained far-field ground surface for more accurte results. Several numerical cases are conducted to intensively verify the proposed solution by examining boundary conditions and comparing with existing solutions, and all the results are in good agreements. Then more numerical cases are conducted to investigate the stress and deformation distribution along ground surface and tunnel periphery, and several engineering advices are given. Further discussions on the defects of the proposed solution are also conducted for objectivity.
We study how to construct a stochastic process on a finite interval with given `roughness' and finite joint moments of marginal distributions. We first extend Ciesielski's isomorphism along a general sequence of partitions, and provide a characterization of H\"older regularity of a function in terms of its Schauder coefficients. Using this characterization we provide a better (pathwise) estimator of H\"older exponent. As an additional application, we construct fake (fractional) Brownian motions with some path properties and finite moments of marginal distributions same as (fractional) Brownian motions. These belong to non-Gaussian families of stochastic processes which are statistically difficult to distinguish from real (fractional) Brownian motions.
Differential geometric approaches are ubiquitous in several fields of mathematics, physics and engineering, and their discretizations enable the development of network-based mathematical and computational frameworks, which are essential for large-scale data science. The Forman-Ricci curvature (FRC) - a statistical measure based on Riemannian geometry and designed for networks - is known for its high capacity for extracting geometric information from complex networks. However, extracting information from dense networks is still challenging due to the combinatorial explosion of high-order network structures. Motivated by this challenge we sought a set-theoretic representation theory for high-order network cells and FRC, as well as their associated concepts and properties, which together provide an alternative and efficient formulation for computing high-order FRC in complex networks. We provide a pseudo-code, a software implementation coined FastForman, as well as a benchmark comparison with alternative implementations. Crucially, our representation theory reveals previous computational bottlenecks and also accelerates the computation of FRC. As a consequence, our findings open new research possibilities in complex systems where higher-order geometric computations are required.
We present an energy/entropy stable and high order accurate finite difference method for solving the linear/nonlinear shallow water equations (SWE) in vector invariant form using the newly developed dual-pairing (DP) and dispersion-relation preserving (DRP) summation by parts (SBP) finite difference operators. We derive new well-posed boundary conditions for the SWE in one space dimension, formulated in terms of fluxes and applicable to linear and nonlinear problems. For nonlinear problems, entropy stability ensures the boundedness of numerical solutions, however, it does not guarantee convergence. Adequate amount of numerical dissipation is necessary to control high frequency errors which could ruin numerical simulations. Using the dual-pairing SBP framework, we derive high order accurate and nonlinear hyper-viscosity operator which dissipates entropy and enstrophy. The hyper-viscosity operator effectively tames oscillations from shocks and discontinuities, and eliminates poisonous high frequency grid-scale errors. The numerical method is most suitable for the simulations of sub-critical flows typical observed in atmospheric and geostrophic flow problems. We prove a priori error estimates for the semi-discrete approximations of both linear and nonlinear SWE. We verify convergence, accuracy and well-balanced property via the method of manufactured solutions (MMS) and canonical test problems such as the dam break, lake at rest, and a two-dimensional rotating and merging vortex problem.
Indirect reciprocity is a mechanism that explains large-scale cooperation in human societies. In indirect reciprocity, an individual chooses whether or not to cooperate with another based on reputation information, and others evaluate the action as good or bad. Under what evaluation rule (called ``social norm'') cooperation evolves has long been of central interest in the literature. It has been reported that if individuals can share their evaluations (i.e., public reputation), social norms called ``leading eight'' can be evolutionarily stable. On the other hand, when they cannot share their evaluations (i.e., private assessment), the evolutionary stability of cooperation is still in question. To tackle this problem, we create a novel method to analyze the reputation structure in the population under private assessment. Specifically, we characterize each individual by two variables, ``goodness'' (what proportion of the population considers the individual as good) and ``self-reputation'' (whether an individual thinks of him/herself as good or bad), and analyze the stochastic process of how these two variables change over time. We discuss evolutionary stability of each of the leading eight social norms by studying the robustness against invasions of unconditional cooperators and defectors. We identify key pivots in those social norms for establishing a high level of cooperation or stable cooperation against mutants. Our finding gives an insight into how human cooperation is established in a real-world society.
We present a high-order boundary integral equation (BIE) method for the frequency-domain acoustic scattering of a point source by a singly-periodic, infinite, corrugated boundary. We apply it to the accurate numerical study of acoustic radiation in the neighborhood of a sound-hard two-dimensional staircase modeled after the El Castillo pyramid. Such staircases support trapped waves which travel along the surface and decay exponentially away from it. We use the array scanning method (Floquet--Bloch transform) to recover the scattered field as an integral over the family of quasiperiodic solutions parameterized by their on-surface wavenumber. Each such BIE solution requires the quasiperiodic Green's function, which we evaluate using an efficient integral representation of lattice sum coefficients. We avoid the singularities and branch cuts present in the array scanning integral by complex contour deformation. For each frequency, this enables a solution accurate to around 10 digits in a couple of seconds. We propose a residue method to extract the limiting powers carried by trapped modes far from the source. Finally, by computing the trapped mode dispersion relation, we use a simple ray model to explain an observed acoustic "raindrop" effect (chirp-like time-domain response).
The proximal Galerkin finite element method is a high-order, low iteration complexity, nonlinear numerical method that preserves the geometric and algebraic structure of pointwise bound constraints in infinite-dimensional function spaces. This paper introduces the proximal Galerkin method and applies it to solve free boundary problems, enforce discrete maximum principles, and develop a scalable, mesh-independent algorithm for optimal design problems with pointwise bound constraints. This paper also provides a derivation of the latent variable proximal point (LVPP) algorithm, an unconditionally stable alternative to the interior point method. LVPP is an infinite-dimensional optimization algorithm that may be viewed as having an adaptive barrier function that is updated with a new informative prior at each (outer loop) optimization iteration. One of its main benefits is witnessed when analyzing the classical obstacle problem. Therein, we find that the original variational inequality can be replaced by a sequence of partial differential equations (PDEs) that are readily discretized and solved with, e.g., high-order finite elements. Throughout this work, we arrive at several unexpected contributions that may be of independent interest. These include (1) a semilinear PDE we refer to as the entropic Poisson equation; (2) an algebraic/geometric connection between high-order positivity-preserving discretizations and certain infinite-dimensional Lie groups; and (3) a gradient-based, bound-preserving algorithm for two-field density-based topology optimization. The complete latent variable proximal Galerkin methodology combines ideas from nonlinear programming, functional analysis, tropical algebra, and differential geometry and can potentially lead to new synergies among these areas as well as within variational and numerical analysis.
The distribution-free chain ladder of Mack justified the use of the chain ladder predictor and enabled Mack to derive an estimator of conditional mean squared error of prediction for the chain ladder predictor. Classical insurance loss models, i.e. of compound Poisson type, are not consistent with Mack's distribution-free chain ladder. However, for a sequence of compound Poisson loss models indexed by exposure (e.g. number of contracts), we show that the chain ladder predictor and Mack's estimator of conditional mean squared error of prediction can be derived by considering large exposure asymptotics. Hence, quantifying chain ladder prediction uncertainty can be done with Mack's estimator without relying on the validity of the model assumptions of the distribution-free chain ladder.
Friction drag from a turbulent fluid moving past or inside an object plays a crucial role in domains as diverse as transportation, public utility infrastructure, energy technology, and human health. As a direct measure of the shear-induced friction forces, an accurate prediction of the wall-shear stress can contribute to sustainability, conservation of resources, and carbon neutrality in civil aviation as well as enhanced medical treatment of vascular diseases and cancer. Despite such importance for our modern society, we still lack adequate experimental methods to capture the instantaneous wall-shear stress dynamics. In this contribution, we present a holistic approach that derives velocity and wall-shear stress fields with impressive spatial and temporal resolution from flow measurements using a deep optical flow estimator with physical knowledge. The validity and physical correctness of the derived flow quantities is demonstrated with synthetic and real-world experimental data covering a range of relevant fluid flows.