Functional principal component analysis based on Karhunen Loeve expansion allows to describe the stochastic evolution of the main characteristics associated to multiple systems and devices. Identifying the probability distribution of the principal component scores is fundamental to characterize the whole process. The aim of this work is to consider a family of statistical distributions that could be accurately adjusted to a previous transformation. Then, a new class of distributions, the linear-phase-type, is introduced to model the principal components. This class is studied in detail in order to prove, through the KL expansion, that certain linear transformations of the process at each time point are phase-type distributed. This way, the one-dimensional distributions of the process are in the same linear-phase-type class. Finally, an application to model the reset process associated with resistive memories is developed and explained.
Mixed methods for linear elasticity with strongly symmetric stresses of lowest order are studied in this paper. On each simplex, the stress space has piecewise linear components with respect to its Alfeld split (which connects the vertices to barycenter), generalizing the Johnson-Mercier two-dimensional element to higher dimensions. Further reductions in the stress space in the three-dimensional case (to 24 degrees of freedom per tetrahedron) are possible when the displacement space is reduced to local rigid displacements. Proofs of optimal error estimates of numerical solutions and improved error estimates via postprocessing and the duality argument are presented.
We consider a geometric programming problem consisting in minimizing a function given by the supremum of finitely many log-Laplace transforms of discrete nonnegative measures on a Euclidean space. Under a coerciveness assumption, we show that a $\varepsilon$-minimizer can be computed in a time that is polynomial in the input size and in $|\log\varepsilon|$. This is obtained by establishing bit-size estimates on approximate minimizers and by applying the ellipsoid method. We also derive polynomial iteration complexity bounds for the interior point method applied to the same class of problems. We deduce that the spectral radius of a partially symmetric, weakly irreducible nonnegative tensor can be approximated within $\varepsilon$ error in poly-time. For strongly irreducible tensors, we also show that the logarithm of the positive eigenvector is poly-time computable. Our results also yield that the the maximum of a nonnegative homogeneous $d$-form in the unit ball with respect to $d$-H\"older norm can be approximated in poly-time. In particular, the spectral radius of uniform weighted hypergraphs and some known upper bounds for the clique number of uniform hypergraphs are poly-time computable.
This paper studies the convergence of a spatial semidiscretization of a three-dimensional stochastic Allen-Cahn equation with multiplicative noise. For non-smooth initial values, the regularity of the mild solution is investigated, and an error estimate is derived with the spatial $ L^2 $-norm. For smooth initial values, two error estimates with the general spatial $ L^q $-norms are established.
Most of the scientific literature on causal modeling considers the structural framework of Pearl and the potential-outcome framework of Rubin to be formally equivalent, and therefore interchangeably uses the do-notation and the potential-outcome subscript notation to write counterfactual outcomes. In this paper, we agnostically superimpose the two causal models to specify under which mathematical conditions structural counterfactual outcomes and potential outcomes need to, do not need to, can, or cannot be equal (almost surely or law). Our comparison reminds that a structural causal model and a Rubin causal model compatible with the same observations do not have to coincide, and highlights real-world problems where they even cannot correspond. Then, we examine common claims and practices from the causal-inference literature in the light of these results. In doing so, we aim at clarifying the relationship between the two causal frameworks, and the interpretation of their respective counterfactuals.
The objective of this article is to address the discretisation of fractured/faulted poromechanical models using 3D polyhedral meshes in order to cope with the geometrical complexity of faulted geological models. A polytopal scheme is proposed for contact-mechanics, based on a mixed formulation combining a fully discrete space and suitable reconstruction operators for the displacement field with a face-wise constant approximation of the Lagrange multiplier accounting for the surface tractions along the fracture/fault network. To ensure the inf--sup stability of the mixed formulation, a bubble-like degree of freedom is included in the discrete space of displacements (and taken into account in the reconstruction operators). It is proved that this fully discrete scheme for the displacement is equivalent to a low-order Virtual Element scheme, with a bubble enrichment of the VEM space. This $\mathbb{P}^1$-bubble VEM--$\mathbb{P}^0$ mixed discretization is combined with an Hybrid Finite Volume scheme for the Darcy flow. All together, the proposed approach is adapted to complex geometry accounting for network of planar faults/fractures including corners, tips and intersections; it leads to efficient semi-smooth Newton solvers for the contact-mechanics and preserve the dissipative properties of the fully coupled model. Our approach is investigated in terms of convergence and robustness on several 2D and 3D test cases using either analytical or numerical reference solutions both for the stand alone static contact mechanical model and the fully coupled poromechanical model.
We combine the recent relaxation approach with multiderivative Runge-Kutta methods to preserve conservation or dissipation of entropy functionals for ordinary and partial differential equations. Relaxation methods are minor modifications of explicit and implicit schemes, requiring only the solution of a single scalar equation per time step in addition to the baseline scheme. We demonstrate the robustness of the resulting methods for a range of test problems including the 3D compressible Euler equations. In particular, we point out improved error growth rates for certain entropy-conservative problems including nonlinear dispersive wave equations.
We consider the fundamental task of optimising a real-valued function defined in a potentially high-dimensional Euclidean space, such as the loss function in many machine-learning tasks or the logarithm of the probability distribution in statistical inference. We use Riemannian geometry notions to redefine the optimisation problem of a function on the Euclidean space to a Riemannian manifold with a warped metric, and then find the function's optimum along this manifold. The warped metric chosen for the search domain induces a computational friendly metric-tensor for which optimal search directions associated with geodesic curves on the manifold becomes easier to compute. Performing optimization along geodesics is known to be generally infeasible, yet we show that in this specific manifold we can analytically derive Taylor approximations up to third-order. In general these approximations to the geodesic curve will not lie on the manifold, however we construct suitable retraction maps to pull them back onto the manifold. Therefore, we can efficiently optimize along the approximate geodesic curves. We cover the related theory, describe a practical optimization algorithm and empirically evaluate it on a collection of challenging optimisation benchmarks. Our proposed algorithm, using 3rd-order approximation of geodesics, tends to outperform standard Euclidean gradient-based counterparts in term of number of iterations until convergence.
Symplectic integrators are widely implemented numerical integrators for Hamiltonian mechanics, which preserve the Hamiltonian structure (symplecticity) of the system. Although the symplectic integrator does not conserve the energy of the system, it is well known that there exists a conserving modified Hamiltonian, called the shadow Hamiltonian. For the Nambu mechanics, which is one of the generalized Hamiltonian mechanics, we can also construct structure-preserving integrators by the same procedure used to construct the symplectic integrators. In the structure-preserving integrator, however, the existence of shadow Hamiltonians is non-trivial. This is because the Nambu mechanics is driven by multiple Hamiltonians and it is non-trivial whether the time evolution by the integrator can be cast into the Nambu mechanical time evolution driven by multiple shadow Hamiltonians. In the present paper we construct structure-preserving integrators for a simple Nambu mechanical system, and derive the shadow Hamiltonians in two ways. This is the first attempt to derive shadow Hamiltonians of structure-preserving integrators for Nambu mechanics. We show that the fundamental identity, which corresponds to the Jacobi identity in Hamiltonian mechanics, plays an important role to calculate the shadow Hamiltonians using the Baker-Campbell-Hausdorff formula. It turns out that the resulting shadow Hamiltonians have indefinite forms depending on how the fundamental identities are used. This is not a technical artifact, because the exact shadow Hamiltonians obtained independently have the same indefiniteness.
This paper focuses on the numerical scheme for multiple-delay stochastic differential equations with partially H\"older continuous drifts and locally H\"older continuous diffusion coefficients. To handle with the superlinear terms in coefficients, the truncated Euler-Maruyama scheme is employed. Under the given conditions, the convergence rates at time $T$ in both $\mathcal{L}^{1}$ and $\mathcal{L}^{2}$ senses are shown by virtue of the Yamada-Watanabe approximation technique. Moreover, the convergence rates over a finite time interval $[0,T]$ are also obtained. Additionally, it should be noted that the convergence rates will not be affected by the number of delay variables. Finally, we perform the numerical experiments on the stochastic volatility model to verify the reliability of the theoretical results.
We investigate a convective Brinkman--Forchheimer problem coupled with a heat transfer equation. The investigated model considers thermal diffusion and viscosity depending on the temperature. We prove the existence of a solution without restriction on the data and uniqueness when the solution is slightly smoother and the data is suitably restricted. We propose a finite element discretization scheme for the considered model and derive convergence results and a priori error estimates. Finally, we illustrate the theory with numerical examples.