研究集成人類推理、機器學習和因果學習的重要性
計算思維和數據科學的進步導致了人工智能系統的新時代,這些系統被設計來適應復雜的情況并開發可操作的知識。這些學習系統旨在可靠地理解情況的本質,并構建關鍵的決策建議,以支持自主和人機團隊的運作。
同時,數據的數量、速度、種類、真實性、價值和變異性的不斷增加,使這些新系統的復雜性受到影響--在其開發和實施方面造成了挑戰。對于支持具有較高后果的關鍵決策的人工系統來說,安全已經成為一個重要的問題。需要有方法來避免故障模式,并確保只允許期望的行為。
元認知是一種解決策略,它能促進人工智能系統內部的自我意識,以了解其外部和內部的運行環境,并利用這些知識來識別潛在的故障,實現自我修復和自我管理,以實現安全和理想的行為。
人工智能戰爭決策輔助工具通過增強戰斗空間知識、解決不確定性、推薦戰術行動方案、制定交戰戰略來支持作戰人員決策。
本資料是基于國防部根據FA8702-15-D-0002號合同與卡內基梅隆大學合作的軟件工程研究所的運作而資助和支持的工作,這是一個聯邦資助的研究和開發中心。
目前,人工智能(AI)為改造許多軍事行動領域提供了巨大的機會,包括作戰、指揮與控制(C2)、后勤、安全和維護,以提高其整體作戰效率。空中和導彈防御(AMD)是一個特別復雜的任務領域,人工智能的應用至關重要。空中導彈防御任務指的是保衛國土、保護區、地面基地、地面部隊或艦艇免受敵對的空中或導彈威脅。AMD的威脅包括敵對的飛機、無人駕駛飛行器(UAV)或機載導彈。AMD行動的復雜性源于威脅的嚴重性、威脅的意外性、對形勢認識的不確定性以及事件的快速發展,因為作戰人員必須迅速評估形勢,制定適當的行動方案,并最好地利用他們的戰爭資產來應對。美國國防部(U.S. DOD)正在研究使用AI系統(或AI-enabled AMD[AI-AMD]系統)作為AMD作戰人員的自動決策輔助工具,以大大減少他們的認知負荷(Jones等人,2020),使AMD決策更快、更好。
人工智能的一個關鍵方面已經聚集了大量的研究興趣,那就是信任。信任是有效團隊的一個基本原則。它同時適用于人類和人機團隊。信任使團隊成員能夠很好地合作,是有效團隊表現的基礎(Lee and See 2004)。與人工智能系統的成功合作將需要人類對人工智能系統有一個校準的信任和依賴程度(泰勒等人,2016)。
隨著更先進和更快的空中和導彈威脅彈藥的發展和投入使用,操作人員更需要在AMD行動中迅速作出監測。不及時的決策和反應將導致災難性的后果。因此,人工智能是一個可能的解決方案,通過自動決策輔助工具加快和加強決策過程。這些AMD自動戰斗管理輔助工具可以幫助戰術操作人員應對更快的決策周期、大量的數據以及需要觀察的幾個系統或屏幕(Galdorisi 2019)。然而,為了有效地利用人工智能能力的潛力,需要操作員的高度信任。操作員對系統的信任程度低,可能會導致人工智能-AMD系統利用不足,受到不適當的監控,或者根本不使用(Floyd, Drinkwater, and Aha 2016)。這些問題中的任何一個都可能導致操作者的工作量不必要的增加,或者任務失敗的可能性。
論文對信任的定義、人機交互(HMI)的概念、信任因素以及包括AMD殺傷鏈模型、威脅場景、架構、模型和功能在內的概念模型進行了廣泛的回顧。有了這樣的認識,論文提出了人工智能-AMD系統的信任框架,對人機交互和人工智能-AMD系統信任因素的描述。論文最后提出了在人類操作者和AI-AMD系統之間實現校準信任的策略。
信任框架始于對系統背景的分析。圖1顯示了AI-AMD指揮與控制(C2)系統(包括AI-AMD操作員和決策輔助工具)及其他與之互動的子系統的背景圖,這些子系統有助于操作員和AI-AMD決策輔助工具之間信任的發展。背景圖使我們能夠研究各系統之間的相互作用,以及它們對AI-AMD操作員和決策輔助工具之間信任動態的影響。
圖1. AI-AMD系統框架圖。
這篇論文將信任定義為操作者的態度,即AI-AMD決策輔助工具將有助于實現操作者的目標,即在一個以不確定性和脆弱性為特征的作戰環境中迅速摧毀來襲威脅的任務。這種信任的定義表明,它是對操作者相信或感知AI-AMD決策輔助工具的一種情感評估。為了積極地影響信任,操作者必須親自看到并感受到AI-AMD決策輔助行動的優勢。AI-AMD行動涉及很多不確定因素,以及天氣、電磁干擾和地形等環境因素以及不斷變化的威脅的性質所帶來的脆弱性。操作員將預期AI-AMD決策輔助系統按照 "合同 "執行,以處理這些不確定性和脆弱性。這些合同將是人工智能-AMD決策輔助工具應該執行的感知功能或任務,以及執行這些功能或任務的理想表現。
圖2說明了操作員和AI-AMD決策輔助工具之間的信任框架。y軸代表人類對AI-AMD決策輔助系統的信任程度,x軸代表AI-AMD決策輔助系統的能力。綠色的45°虛線表示最佳的信任水平或校準的信任線,其中的信任與AI-AMD的能力相對應,導致正確的利用(Lee and See 2004)。過度信任由最佳信任水平線以上的區域表示,此時的信任超過了系統能力,導致誤用。低于理想信任水平線的區域表示不信任,這時的信任沒有達到系統能力,導致濫用。假設存在一些默認的信任水平(如黃框所示),目標是制定一個策略,以提高AI-AMD輔助決策能力的信任。在使用該系統時,可能會發生違反信任的情況,從而降低操作員的信任。因此,信任修復行動必須被納入,以保持信任在最佳水平。
圖2. 人類操作員和AI-AMD決策輔助工具之間的信任。
基于功能分配的操作員和AI-AMD決策輔助工具之間的人機交互研究表明,操作員和AI-AMD決策輔助工具應該被設計成在大多數殺戮鏈功能中作為一個 "團隊"運作。這引導論文研究了單獨和集體考慮人類和決策輔助的信任因素。對操作員和人工智能-AMD決策之間的人機交互的研究還顯示,操作員的角色已經從手動控制器變成了監督控制器。因此,一個值得信賴的決策輔助工具是很重要的,因為操作者會期望系統的表現符合預期,以幫助操作者更好地履行他的角色。另外,為了進一步幫助減輕操作者的認知工作量,信息的外部表示、決策輔助工具的建議必須易于閱讀和理解。
關于信任因素,本論文提出了一個 "由外而內 "的框架,如圖3所示。論文首先考慮了與操作環境相關的因素,這些因素描述了AMD操作系統的背景。第二,它研究了與組織環境相關的因素,操作人員和人工智能-AMD系統得到了培訓和發展。第三,論文研究了操作人員和人工智能-AMD決策輔助工具之間的交互,以提出與操作人員、人工智能-AMD、單獨和集體相關的因素。
圖3. 建議的信任因素
圖4顯示了擬議的戰略銜接圖,以實現操作者和AI-AMD輔助決策之間的校準信任。對信任定義、人機界面和信任因素的審查表明,該戰略應關注三個關鍵領域:(1)人類對自動化技術和AI-AMD決策輔助系統的集體和個人感知;(2)增強操作員和AI-AMD決策輔助系統的團隊活力;(3)AI-AMD決策輔助系統的可信度,重點是系統開發。該戰略利用DOTMLPF-P框架提出了三個關鍵原則和五個支持原則。首先,軍事作戰人員需要被告知自動化技術的真正能力和局限性,特別是AI-AMD輔助決策。第二,操作員的培訓要求必須增加,以應對新的工作范圍和不斷變化的威脅。第三,必須在人工智能-AMD決策輔助系統的開發中加入新的要求,以提高系統的可感知的可信度。這三個關鍵原則得到了DOTMLPF-P框架其他方面的支持,如組織、領導、人員、設施和政策。
圖4. 實現操作員和人工智能-AMD決策輔助工具之間校準信任的戰略銜接圖
私營部門不斷收集和整理關鍵數據及其來源,以通過利用數據密集型的人工智能機器學習(AI/ML)技術來確保支持和發展新的業務。大部分行業數據都是有價值的共享資源,而海軍到目前為止還沒有實現這種做法。本頂點研究通過研究、訪談和個人專業知識,探討了海軍在創造數據可用性和質量方面的挑戰性任務。研究側重于過程、技術和管理,采用了詳細需求評估、利益相關者分析、功能設計。其研究結果是一個集中式人工智能庫(CAIL)的概念框架,旨在匹配行業對數據作為關鍵商品的堅定關注。美國海軍需要持久和動態的數字化準備,因此這個擁有70多年美國海軍數據專業知識的頂點團隊建議 OVERMATCH 考慮這些發現并生成一個確保海軍數據可用性和質量的系統。
美國海軍部(DON)對研究和開發人工智能和機器學習(AI/ML)系統的興趣源于這些創新能力對海軍任務和對作戰人員的直接支持所帶來的深遠和改變游戲規則的影響。人工智能/機器學習系統可以被用來改善任務規劃,減少人員配置,改善戰術決策,簡化系統維護和支持,提高安全性,在某些情況下,還可以將作戰人員從危險中移除。戰士日常活動的許多方面將發生變化,從常規和勞動密集型工作的自動化到支持復雜和時間緊迫的戰斗空間決策。
只有當美國國防部首先釋放數據的力量,才能實現AI/ML系統的這些進步。目前,在獲取或"釋放"DON的數據以開發未來的AI/ML系統方面存在許多障礙。整個海軍的數據主要停留在"筒倉"或難以訪問的數據庫中,每個"筒倉"都在其領域內受到保護。在DON的數據領域內,定位、請求、獲取和策劃數據的過程并不正式。米勒(2021)說:"數據的所有者是美國人民。海軍只是管理人和監護人"。這句話包含了將數據從孤島中 "解放"出來的需要,以使海軍真正成為一個以數據為中心的企業,并實現海軍的數字化準備。
這個頂點項目開始了一項研究,以了解美國防部內AI/ML開發人員的數據需求,并制定一個概念性的解決方案來解決數據需求。其他目標是:
研究AI/ML方法如何在DON任務中應用。
了解數據需求是否在DON任務中普遍是標準的,或者數據需求是否在DON任務中有所不同。
制定一套 DON AI/ML利益相關者的要求。
為一個支持DON AI/ML數據需求的系統制定一個概念性設計。
研究實施概念性解決方案系統的潛在成本和進度效益。
時區團隊(Team Time Zone)應用系統工程分析方法研究DON AI/ML開發人員的數據需求,并開發和評估一個概念性的系統解決方案,以解決這一數據挑戰,并最終支持DON未來的數字準備,以解決復雜的任務。該團隊通過采訪三個不同的海軍任務領域的主題專家(SME)來進行利益相關者的需求分析:系統維護、物理安全和戰備。這三個任務被認為是 "數據提供者"的代表。此外,該團隊還采訪了數據研究人員和AI/ML科學家,以了解他們的數據需求。訪談為團隊提供了基于獨特和不同領域和經驗的關注、挫折、經驗教訓和挑戰的洞察力。從數據提供者的角度來看,反復出現的主題包括所有權的劃分、信息保障的需要、數據未被收集或存儲的情況以及對可訪問性的擔憂。從數據用戶的角度來看,明顯的軼事包括尋找數據的耗時,承諾的數據并不總是能夠實現,以及即使在獲得數據后,理解數據的背景也是至關重要的。該小組根據利益相關者的訪談和信息收集工作,為DON AI/ML制定了一套數據要求。DON AI/ML的數據需求是:
數據必須能夠被外部組織訪問。
數據必須被翻譯成與其領域應用兼容的標準格式。
數據必須有確定的所有者。
數據必須伴隨著描述性的元數據。
數據必須有標準化的管理。
數據必須以其 "最低標準"的形式被訪問。
數據必須具有保護和適當共享的安全性。
數據必須具有混淆性,以保護個人身份信息(PII)。
數據必須伴有背景信息。
為了解決DON數據研究人員和AI/ML科學家確定的數據需求,Team Time Zone開發了一個中央AI庫(CAIL)系統的概念設計,作為解決方案。CAIL系統的目的是簡化 DON內部的數據訪問和管理,以支持AI/ML系統的開發。CAIL系統旨在減少訪問數據的時間(和相關費用),騰出更多時間用于AI/ML系統的實際開發、培訓和評估。該團隊提出,為了滿足未來計劃的訪問和整合要求,CAIL需要成為一個 "數據云"。圖1是CAIL的OV-1;它描述了為AI/ML開發簡化DON數據訪問和管理的擬議過程。
圖1. CAIL OV-1
該團隊根據六個主要類別制定了CAIL系統要求:數據準備、數據偏差、數據整理、數據分類、數據治理和數據安全。每一個類別都是針對利益相關者分析過程中發現的需求。CAIL系統將主要與外部聯合數據、數據庫、文件和權威數據生產商/供應商的內容對接。它將像 "谷歌 "一樣為DON用戶尋找數據。數據將是結構化的,并將伴隨著元數據(關于數據的描述性信息),使數據可以被搜索。一個管理數據的社區將提供規則來管理對數據的安全訪問和授權。
在利益相關者的分析中,很明顯,在訪問數據之前需要進行一些重要的活動。AI/ML開發人員解釋了了解數據收集方式、數據來源以及其他有關數據的特定領域的背景方面的重要性。Team Time Zone將這些過程指定為 "預CAIL活動",并將其作為整個CAIL過程的一部分。
Team Time Zone進行了成本分析,以估計為DON實施CAIL系統的成本。該團隊使用了兩種方法來估計成本:傳統的成本估計和基于模型的系統工程(MBSE)方法。該小組估計CAIL系統的成本(基于傳統的成本估算)為3380萬美元,持續時間為5年,每年的重復維持成本為400萬美元。團隊估算的CAIL系統成本(基于MBSE方法),在運行了一萬次蒙特卡洛模擬后,平均為3290萬美元,持續時間為5年。運營和維護模型的平均成本為每年440萬美元。表1顯示了CAIL開發和維護成本的摘要。
表1. CAIL系統成本匯總
為了使DON的AI/ML項目蓬勃發展,并在未來幾十年內實現AI/ML的進步,DON必須確保數據的管理,并使AI/ML的發展能夠被訪問。Team Time Zone提出的CAIL系統解決方案將為AI/ML項目提供一個單一來源的綜合數據環境,以訪問存儲在整個DON各種數據庫中的數據庫目錄。Team Time Zone建議海軍實施CAIL系統,通過確保AI/ML開發者訪問持久和動態的數字數據來支持數字準備。CAIL系統支持DON項目和開發人員的協調方法,以安全訪問數據。該小組建議超配項目(Project Overmatch)考慮這些發現并實施CAIL系統和流程,以確保海軍的數據可用性和質量。該小組開發了一個CAIL標志(見圖2),表明CAIL系統是海軍的一個重要基礎。
圖2:CAIL標志。改編自美國海軍標志。
技術的進步給軍事領域帶來了新的威脅類型和現有威脅的改進版本。對抗性威脅的進步要求海軍改進現有的能力并開發新的能力,以提高防御能力并應對這些威脅。能力的增強需要提高速度、隱身性、機動性、反措施、擴大范圍、更早發現和更大的殺傷力。這些增強的能力使我們能夠在不確定的、復雜的和時間緊迫的條件下做出關鍵決定。現代戰術作戰人員面臨著越來越復雜的決策空間。他們需要獲得對動態戰斗空間的態勢感知,并確定有效的行動方案(COA)以滿足任務需求。圖1強調了造成這種戰術復雜決策空間的因素。決策的復雜性來自于威脅環境,來自于知識的不確定性,來自于戰爭和信息系統本身,來自于作戰人員與自動化系統和信息系統的互動和使用所產生的挑戰,以及任務決策的重要性或后果的嚴重性。
圖1:戰士的復雜決策空間。資料來源:Johnson (2021).
美國國防部(DOD)和海軍部(DON)正在研究使用人工智能(AI)來解決復雜的戰術決策空間,通過改善態勢感知和提供自動決策輔助來支持戰術作戰人員。利用人工智能方法的先進算法可以通過減少信息過載、改善態勢感知、提高決策速度和加強一般的戰術決策來減輕作戰人員的認知負荷。預測分析(PA)可以支持對系統可靠性和故障概率的預測,這為物流提供了廣泛的改進(Zhao和Mata 2020)。諸如PA等技術可以通過開發 "what-if "和 "if-then "情景來加強戰術決策,通過預測決策選擇的長期影響來改善戰士的COA決策(Johnson 2020)。人工智能方法可以通過檢測異常情況和從大量的安全攝像機數據中識別可能的威脅來改善海軍基地的物理安全。
米切爾(2019)將人工智能定義為一個包括許多不同方法的領域,以創造具有智能的機器。圖2顯示,人工智能存在于一套廣泛的自動化方法中,使機器能夠根據命令和規則執行任務。人工智能是使系統能夠執行模仿人類智能的功能的一套方法。機器學習(ML)方法是人工智能方法的一個子集。ML方法允許系統從被訓練的大型數據集上學習。ML系統從訓練的數據集中學習。然后,這些 "訓練有素 "的ML系統在操作上被用來識別模式,并在新的操作數據下產生預測的結果(Johnson 2021)。
圖2:什么是人工智能?資料來源:Johnson (2021)。
人工智能算法是編碼的計算機程序,用于對數據進行分類、分析和得出預測。監控、交通預測和虛擬個人助理是實施ML算法的應用實例。
開發人工智能系統,特別是ML系統,是一項具有挑戰性的工作。ML算法的初始訓練是一個數據密集型的演變。人工智能/ML系統對數據要求很高,其準確性在很大程度上取決于數據訓練集的質量和數量(Godbole 2020)。作為一個參考點,訓練DeepMind的AlphaGo Zero系統學習下圍棋花了大約40天,包括2900萬場比賽(Feldman, Dant, and Massey 2019)。想象一下人工智能/ML武器系統算法所涉及的額外復雜性,它需要考慮戰爭背景(戰爭游戲、冷戰、和平時期)、朋友或敵人、道德和合法性等概念(Feldman, Dant, and Massey 2019)。
隨著美國防部開始開發人工智能和ML方法,出現了獨特的數據挑戰。開發人員需要大量的驗證數據來訓練他們的算法;這些數據需要準確、安全和完整,以確保算法不會被破壞或有偏見。這些數據集必須代表適當的操作環境。對于海軍的應用,訓練數據必須代表眾多的任務,包括海上、空中、太空、水下、沿岸、網絡和陸基領域的任務。盡管許多海軍司令部和實驗室正在研究和開發基于人工智能/ML系統的未來能力,但沒有協調的程序來獲取他們所需的海軍數據。在許多情況下,數據是存在的,但要確定國防部的數據來源并獲得數據是一項耗時和昂貴的工作。
這個頂點項目采用了系統工程分析方法來研究DON AI/ML開發者的數據需求,并確定和評估一個概念性的系統解決方案來解決這個數據挑戰,并最終支持未來DON的數字準備來解決復雜的任務。
DON對研究和開發AI/ML系統的興趣為各種應用帶來了數據挑戰。盡管DON的許多指揮部和實驗室正在研究和開發基于AI/ML系統的未來能力,但沒有一個協調的程序來訪問他們所需的DON數據。AI/ML系統需要大量的驗證數據來支持他們的發展和訓練算法。在許多情況下,數據是存在的,但要確定美國防部的數據來源并獲得數據是一項耗時和昂貴的工作。這個頂點研究了這個問題,并進行了需求分析,以確定DON AI/ML開發人員的數據需求,并開發和評估了解決DON數字準備這方面的解決方案概念。
這個頂點項目的主要目標是分析 DON AI/ML 開發的數據需求,并開發一個概念性的解決方案來解決數據需求。其他目標是
研究AI/ML方法如何在DON任務中應用。
了解數據需求在DON任務中是否有普遍的標準,或者數據需求在DON任務中是否有差異。
制定一套 DON AI/ML利益相關者的要求。
為一個支持DON AI/ML數據需求的系統制定一個概念性設計。
研究實施概念解決方案系統的潛在成本和進度效益。
時區團隊由五個具有不同學術和專業經驗的NPS系統工程學生組成。該團隊由以下人員組成。
Robert French于2016年畢業于Old Dominion大學,獲得了計算機工程和電子工程的學士學位。他目前是位于弗吉尼亞州弗吉尼亞海灘的海軍水面作戰中心Dahlgren分部-Dam Neck附件的特殊傳感器技術部門的R.F.工程師。羅伯特也是美國艦隊司令部海上作戰中心N6(信息系統)的高級入伍領導(USNR)。他曾在現役中擔任電子技術員超過14年,并成為現役預備役軍人達9年之久。
Wallace Fukumae前擁有夏威夷大學的電子工程學位。他目前居住在夏威夷,為海軍太平洋信息戰中心工作,擔任印度-太平洋部門主管。他的經驗包括指揮和控制(C2)系統的開發和交付以及操作。
Kheng Hun目前居住在日本,擁有華盛頓大學的電子工程學位。他目前在海軍信息戰中心(NIWC)太平洋分部工作,擔任位于日本橫須賀的夏威夷西太平洋(HWP)分部的項目工程師。他的專業背景包括設計和安裝各種C4I系統,如電子安全系統(ESS)和網絡系統以及MILCON項目的C4I系統規劃。
Obed Matuga擁有馬里蘭州巴爾的摩市摩根州立大學的工業工程學位,在華盛頓特區的海軍海洋系統司令部工作。與宙斯盾和艦船自衛系統一起工作,目前居住在馬里蘭州。
Caitlyn O’Shaughnessy于2015年畢業于馬薩諸塞大學達特茅斯分校,獲得計算機科學學士學位。她目前是羅德島紐波特的海軍海底作戰中心的CANES(S.S.)項目的首席工程師。
圖3描述了時區團隊(Team Time Zone)的組織結構和每個團隊成員的主要職責。圖中還顯示了NPS的項目顧問,Bonnie Johnson博士(系統工程系)和美國海軍上尉Scot Miller(退役)(信息科學系)。
圖3:團隊時區組織圖
時區團隊采用了系統工程的方法來進行這個項目。圖4說明了該團隊的過程。團隊從需求分析開始,以了解問題并為DON AI/ML開發者定義數據要求。在這個階段,團隊確定了三個DON任務領域作為AI/ML應用的代表性領域。接下來,團隊在功能分析和系統綜合的基礎上,制定了一個名為中央人工智能庫(CAIL)系統的解決方案戰略的概念設計。該小組對CAIL系統進行了建模,并利用DON的三個任務領域來分析實施CAIL系統的效用和潛在的成本/進度效益。該團隊的分析過程涉及幾種分析方法,包括定性調查、定量調查、建模和模擬、數據結構和格式分析、需求分析和操作概念評估。
圖4:頂點項目的方法
首先,該團隊通過進行需求分析和為海軍AI/ML開發人員制定一套數據要求來確定需求的定義。該團隊確定了利益相關者,并與來自不同海軍任務領域的AI/ML開發者會面,以了解他們的數據需求。該小組進行了文獻回顧,以收集背景信息并了解當前的人工智能/ML方法。團隊對來自利益相關者會議和文獻審查的信息進行了匯編,以了解與支持海軍AI/ML應用有關的要求和限制、數據所有者、數據源、數據系統、數據元素和數據屬性。
該小組研究并確定了利益相關者和三個海軍任務主線的獨特數據要求:系統維護、實體安全和戰斗群準備。該小組確定并采訪了任務領域的主題專家(SMEs),以了解獲得AI/ML實施數據的過程,并關注需要從DON系統和組織中收集和存儲哪些數據。圖5說明了海軍的三個任務主線,以及數據、架構、基礎設施和互操作性能力在支持這些作戰人員任務領域方面的直接潛在重要性。
圖5:美國防部任務領域
接下來,團隊根據需求分析結果,制定了一個概念設計方案,以解決海軍對人工智能/ML發展的數據需求。該團隊綜合了CAIL系統,并生成了CAIL操作概念(CONOPS)和CAIL功能模型。基于國防部建筑框架(DODAF)和系統建模語言(SysML),該團隊開發了概念模型,詳細說明了CAIL的系統特征、功能和操作概念。
頂點項目的最后階段是團隊對CAIL解決方案方法的評估和分析。該團隊使用Innoslate(一種基于模型的系統工程工具)開發了一個模型,以表示CAIL系統在三個海軍任務主線中的使用情況。該小組評估了CAIL系統的能力,以簡化和改善收集、格式化、策劃、驗證和確保安全訪問海軍任務數據集的過程,以支持在三個海上任務線領域工作的AI/ML開發人員。對該模型進行了評估,以估計海軍實施CAIL系統的潛在成本和調度效益。CAIL系統模型被用來驗證和確認需求。
第一章提供了項目的介紹和動機,描述了問題陳述、項目目標,以及團隊的組織和完成項目的方法。
第二章總結了團隊的文獻回顧,為需求分析提供了基礎,強調了訓練AI和ML算法所需的數據。文獻回顧包括對數據科學、統計學習、深度學習、分類學以及支持AI和ML系統的企業信息技術解決方案的信息探索。
第三章包含了團隊的需求分析結果。
第四章包含了對團隊的概念性解決方案--CAIL系統的描述。
第五章介紹了團隊對CAIL系統的分析和評估結果,該系統是解決海軍在支持AI/ML發展方面的數據挑戰的解決方案。
最后,第六章討論了擁有CAIL系統的影響和結論以及對后續研究和工作的建議。
小型無人駕駛飛機系統(sUAS)的指數式增長為美國防部帶來了新的風險。技術趨勢正極大地改變著小型無人機系統的合法應用,同時也使它們成為國家行為者、非國家行為者和犯罪分子手中日益強大的武器。如果被疏忽或魯莽的操作者控制,小型無人機系統也可能對美國防部在空中、陸地和海洋領域的行動構成危害。越來越多的 sUAS 將與美國防部飛機共享天空,此外美國對手可能在美國防部設施上空運行,在此環境下美國防部必須保護和保衛人員、設施和資產。
為了應對這一挑戰,美國防部最初強調部署和使用政府和商業建造的物資,以解決無人機系統帶來的直接風險;然而,這導致了許多非整合的、多余的解決方案。雖然最初的方法解決了近期的需求,但它也帶來了挑戰,使美國防部跟上不斷變化問題的能力變得復雜。為了應對這些挑戰,美國防部需要一個全局性的戰略來應對無人機系統的危害和威脅。
2019年11月,美國防部長指定陸軍部長(SECARMY)為國防部反小型無人機系統(C-sUAS,無人機1、2、3組)的執行機構(EA)。作為執行機構,SECARMY建立了C-sUAS聯合辦公室(JCO),該辦公室將領導、同步和指導C-sUAS活動,以促進整個部門的統一努力。
美國防部的C-sUAS戰略提供了一個框架,以解決國土、東道國和應急地點的sUAS從危險到威脅的全過程。國防部的利益相關者將合作實現三個戰略目標:(1)通過創新和合作加強聯合部隊,以保護國土、東道國和應急地點的國防部人員、資產和設施;(2)開發物資和非物資解決方案,以促進國防部任務的安全和可靠執行,并剝奪對手阻礙實現目標的能力;以及(3)建立和擴大美國與盟友和合作伙伴的關系,保護其在國內外的利益。
美國防部將通過重點關注三個方面的工作來實現這些目標:準備好部隊;保衛部隊;和建立團隊。為了準備好部隊,國防部將最大限度地提高現有的C-sUAS能力,并使用基于風險的方法來指導高效和快速地開發一套物質和非物質解決方案,以滿足新的需求。為了保衛部隊,國防部將協調以DOTMLPF-P考慮為基礎的聯合能力的交付,并同步發展作戰概念和理論。最后,作為全球首選的軍事伙伴,國防部將通過利用其現有的關系來建設團隊,建立新的伙伴關系,并擴大信息共享,以應對新的挑戰。
通過實施這一戰略,美國防部將成功地應對在美國本土、東道國和應急地點出現的無人機系統威脅所帶來的挑戰。在這些不同操作環境中的指揮官將擁有他們需要的解決方案,以保護國防部人員、設施、資產和任務免受當前和未來的無人機系統威脅。
本報告描述了2021財年美國陸軍作戰能力發展司令部(DEVCOM)陸軍研究實驗室(ARL)未來風險項目 "決策動力學、欺騙和博弈論"的研究工作。為了提高指揮和控制多域作戰的決策輔助工具的有效性,有必要開發能夠協助復雜決策的人工智能(AI)工具。該項目開發了一個人工智能測試平臺--ARL戰斗空間(ARL Battlespace),用于創建和研究復雜推理的人工智能決策輔助工具。ARL Battlespace是一個由友好和敵對的人類和人工智能Agent組成的多人網絡兵棋推演工具。分層貝葉斯模型的初步結果說明,在具有不確定性、欺騙和博弈論的情況下,具有復雜推理功能的人工智能多學科發展框架具有潛力。該項目還開始開發一個基于與戰場可視化和交互平臺以及高性能計算持久服務框架的潛在集成的人機協作決策框架。這些成果為改善人-人工智能團隊的復雜決策和協作能力開啟了研究的大門。
作為美國防部人工智能(AI)戰略的一部分,美國陸軍作戰能力發展司令部(DEVCOM)陸軍研究實驗室(ARL)正在開發基于人類系統適應戰略的研究項目和技術,包括開發基于人-AI團隊決策和相互適應的超人能力的目標。這些新能力對于解決陸軍的多域作戰(MDO)戰略是必要的,特別是其滲透和分解階段,在此期間,人工智能輔助決策可以增強指揮官處理高速和大量信息以及地面、海上、空中、太空和網絡領域的復雜動態的能力。一個關鍵的挑戰是,現有的人工智能算法,對于復雜的決策來說是遠遠不夠的,而且對MDO相關場景的概括能力有限。另一個挑戰是,現有的陸軍理論和決策支持程序沒有將人工智能納入軍事決策過程(MDMP),而陸軍的自動規劃框架(APF)剛剛開始解決這一差距。此外,現有的人-人工智能編隊決策理論和技術僅限于簡單的決策,為復雜的深度決策在提供人工智能透明度方面非常有限,在這種情況下,多種依賴性、不確定性以及信息領域和行為者與復雜的人類、物資和環境動態相交。它們與人類專家的隱性推理協同工作的能力也很有限。發展這些能力需要一個綜合的、多學科的研究方法,包括為新的人工智能研究和人類與人工智能的編隊協作開發人工智能試驗基地。
對于兵棋推演,有必要開發能夠模擬包括戰術和戰略層面在內的多個梯隊的決策測試平臺。現有的兵棋推演決策工具,如Opsim、AFSIM和OneSAF,可以在多個規模上對許多因素進行建模和模擬,以預測基于戰略、物資能力和資源的結果,但它們受到老化系統的限制,有經驗的士兵可能難以學習,也不太適合開發人工智能和人類+人工智能編隊協作的能力。最近,人工智能能力的快速上升為開發和納入新型人工智能作為兵棋推演的決策輔助工具打開了研究的大門。最近人工智能推理的改進(例如,基于深度強化學習)是基于環境狀態完全已知的“開放”游戲(例如,跳棋、國際象棋和圍棋),它們是基于有限的合作性或欺騙性。即使在有額外復雜性的情況下,如環境的不確定性(憤怒的小鳥、雅達利),決策的復雜性、靈活性和對多人兵棋推演的可轉移性也是有限的(如撲克、Minecraft、星際爭霸[圖1])。盡管這些模型可以深入探索決策,但它們只限于選擇結果的潛在價值可以很容易測量和量化的條件。兵棋推演環境給人工智能學習帶來了困難和未解決的挑戰,因為有許多信息不確定性的來源,不僅來自環境,也來自人類和人工智能Agent。人工智能需要適應不斷變化的規則和戰略,迅速減輕出乎意料的敵方能力,并利用新的機會和友好的能力。人工智能還需要與他們的人類隊友相互適應,他們需要有默契的推理能力來與人類專家協同工作,并補償個人的偏見和啟發式方法以及變化的認知狀態。與博弈論等經典方法不同的是,未來狀態的預期效用可以根據合作或不合作的選擇對有限的行動集進行明確的量化,兵棋推演提出了跨環境和社會動態(包括合作性和欺騙性)以及跨多個時空尺度和領域的相互作用的可能性,這使人工智能學習決策如何與未來狀態價值相聯系的能力受到影響。
圖1 ARL在更廣泛的人工智能研究戰略中的Battlespace平臺
解決這一差距需要持續的基礎研究工作,實驗的重點是為決策中的具體問題發現原則和開發新的算法,并有能力將這些原則和算法與MDO的兵棋推演聯系起來。例如,在具有不完善的知識和不確定性的復雜情況下,提供接近最佳解決方案的人工智能可能比提供單一的"最佳"解決方案更有幫助。這種解決問題的方式與人工智能的透明度也需要探討。對近乎最優和不確定性等條件進行實驗,并采用新的作戰人員機器界面(WMIs),可以產生新的算法、通用工具和原則,更好地協同人類和人工智能對復雜決策的探索。
陸軍戰略科技(S&T)計劃的一部分是為 "超人類"的決策和行動開發能力。對于科技計劃中的"人-系統適應"部分,預期的結果是將人類特有的能力和機器的新興能力結合起來,最大限度地提高速度和選擇,以有效應對2035年及以后的社會技術環境的復雜性、智能化和動態性。預計這些研究工作將為人類引導的機器適應、訓練精通技術的士兵、混合人機思維、以及下一代人類系統集成和系統級分析創造新的能力。由于戰爭正在快速變化,包括不斷的技術變化,實現這樣的能力需要制定一個研究計劃,以推進人工智能、人類與人工智能的合作,專門用于復雜的決策。
作為DEVCOM陸軍研究實驗室未來風險投資(DFV)計劃的一部分,這個項目的目標是開發一個跨學科的計劃,以解決人工智能決策的復雜性和人類-人工智能團隊決策中的差距。這包括開發一個人工智能研究測試平臺--ARL戰斗空間,將復雜的兵棋推演決策抽象為關鍵要素,以便人工智能和人類-人工智能團隊的發展可以專門關注復雜的決策過程本身,同時避免物理現實主義和當今材料和理論的計算和概念限制。這也包括為如何發展人類-人工智能協作決策創造新的概念,了解如何塑造信息流以實現人類-人工智能決策的相互透明,以及在人類和人工智能都難以篩選出不確定性和欺騙的條件下實現相互適應性學習。顯性和隱性的決策框架都需要通過這個抽象的兵棋推演測試平臺來實現,以便人工智能可以在多個推理層次上學習和接受挑戰。還需要一個適當的抽象水平,以使多種類型的研究,包括神經科學、人工智能和決策理論交叉的學術研究,以提高人工智能決策的能力和復雜性,并改善其在軍事方面的轉化。
根據設想,在2035年及以后的陸軍中,指揮與控制(C2)決策將由決策輔助系統來激活,該系統利用分布在多個梯隊的人工智能能力,并以復雜和快速的方式攝取所有領域的數據,這將使沒有輔助的士兵感到不知所措。啟用人工智能的決策輔助工具將能夠對戰斗空間進行前沿模擬和分布式訓練;在MDO的滲透和解除整合階段,能夠對條件、友軍和敵軍戰略以及能力變化的可能影響進行調整和前瞻預測;并能夠對關鍵決策進行事后審查。人工智能將為其決策提供透明度,使真實和抽象的決策空間互動可視化,并根據陸軍理論和未來理論的要求,對士兵的個體化和情境進行優化。相反,人工智能將與士兵共同適應,學習如何在信息不足、沖突或欺騙的情況下做出復雜的決定,并為有效的團隊決策重新塑造、完善和展示信息。有了人工智能Agent作為數據有效轉化和行動化以及利用顯性和隱性知識的合作伙伴,預計分布式C2指揮官將能夠在MDO的許多時空尺度和維度上共同制定和協調行動方案,并且戰術和戰略的跨領域互動將被向前模擬,對環境、人和戰略的動態有更強的彈性。除了增加復雜決策的能力外,預計決策過程本身將通過消除繁瑣的計算和其他延遲而加速,從而使計劃和戰略能夠比實時更快適應不斷變化的戰場和外部(如外交、經濟)因素。
為了實現這一未來,為復雜決策開發新型人工智能的計劃的長期目標是利用多個學科的持續進步。用于推理的"核心人工智能"的發展,在為簡單決策迅速取得進展的同時,需要持續的協同創新,以及來自神經科學和心理學等領域的研究,以便在獎勵難以分配給具體事件或行動的條件下(例如,因為不清楚以何種程度的確定性將獎勵的原因歸于誰、什么、何時、何地或為何),為強化學習開發新型理論。需要機械層面的理論(例如,神經膠質網絡如何支持將不同的事件與獎勵聯系起來)和更高層次的理論(例如,社會規則如何塑造學習)來彌補目前核心人工智能的有限能力和C2決策的需求之間的差距。還需要協同創新和研究,將人工智能的發展與士兵的隱性推理過程相結合,以實現元學習和元推理的決策互動。
ARL DFV項目是一種機制,旨在促進跨學科基礎和應用研究的新方向,解決研究差距,并為軍隊的任務創造新的能力。DEVCOM ARL研究員認為分析科學是一個需要能力的領域,具有高回報的潛力,需要對現有項目進行重新規劃和擴展,并需要新的項目來建立新的核心能力和建立內部的專業知識。
為了創造這些能力,這個DFV項目的主要目標是建立一個新的研究項目,為C2決策輔助工具的復雜推理開發新型人工智能。這包括開發一個人工智能測試平臺:ARL Battlespace,以便靈活地開發專門用于MDO C2決策的復雜推理的新型人工智能。現有的兵棋推演人工智能測試平臺往往局限于較簡單的決策,更注重于戰術性的地面行動。例如,正在進行的人工智能測試平臺開發工作,如ARL Simple Yeho人工智能測試平臺,側重于環境的真實性,有多個地圖層,包括道路、樹葉和海拔高度,向排長推薦決策,如路線規劃和士兵重新分配任務。由于對當地地形環境的關注,在該環境中開發的人工智能推理將集中在精細的社會和生態動態上,對協作和敵對決策動態進行深入訓練的機會比較稀少。這些稀少和復雜的問題("微小的、骯臟的、動態的和欺騙性的數據")迷惑了發展人工智能的經典方法,尤其是復雜推理。相反,這個DFV項目的ARL戰斗空間人工智能測試平臺抽象了當地地形的元素,將人工智能的學習和推理更具體地集中在復雜的MDO相關的C2深度推理上(多個決策步驟,包括更頻繁的合作和欺騙的機會)。這使得在C2兵棋推演的背景下,更有針對性地發展人工智能對復雜的多Agent(人、人工智能和人+人工智能團隊)的決策能力。
第二個目標是通過開發一個有效的WMI來研究和開發如何呈現人工智能的理解和預測以及如何利用人類的理解和預測,為復雜決策的有效人類-人工智能團隊合作創造條件。這項工作包括利用和開發高性能計算(HPC)資源進行計算支持,同時開發用于決策的商業二維交互和混合現實交互的定制軟件(例如,基于增強現實沙盤[ARES]平臺的戰斗空間可視化和互動(BVI)平臺)。通過開發多種WMI方法,我們期望這些平臺能夠實現復雜決策的快速原型研究,并能夠將我們的新型AI與更成熟的兵棋推演訓練和模擬框架與團隊進行整合。
我們預計,在新型人工智能開發、HPC計算支持和用于決策空間現實表現的WMI開發方面的這些努力將為人類-人工智能團隊的發展創造一個新的范例,為未來多個陸軍理論(MDMP、DOTMLPF、27 METT-TC28)的進步和現代化鋪平道路(圖2)。
圖2 在更廣泛的人類-Agent團隊決策研究戰略中的新型人工智能開發
這個項目開發了兩個研究框架 。首先,它開發了一個人工智能測試平臺,被稱為ARL戰斗空間,用于創建和調查人工智能的復雜協作和敵對決策。其次,它認識到目前軍事決策過程中的局限性,構思了一個用于人與人工智能協作的復雜決策的WMI,利用軍隊和商業開發的戰斗空間可視化平臺,與非傳統的HPC資源進行潛在的連接,實現人工智能增強的兵棋推演平臺。
這里,我們描述了我們開發ARL Battlespace的方法,這是一個開源的靈活的兵棋推演平臺,將促進開發基于強化學習算法的新決策輔助工具。特別是,我們關注的是有三個或更多合作和敵對玩家的博弈論的理論和算法能力的差距。雖然博弈論的概念,如囚徒困境和Brinksmanship("吃雞"),對于兩個玩家已經發展得很好,但它們還沒有擴展到三個或更多的玩家,由于鞍點和局部最小值的存在,決策環境可能很復雜,這可能混淆了強化學習的作用。在戰爭中可能出現的情況下,理解和預測三個或更多的合作和敵對玩家的納什均衡,需要一個靈活的兵棋推演平臺,允許跨學科地探索這種決策空間。該兵棋推演平臺還需要能夠開發、理解和發現玩家和人工智能之間的新型互動和協同作用,使人類能夠利用人工智能快速找到最佳和接近最佳的解決方案。這些解決方案將使人工智能能夠從人類的決策模式中學習,以及如何優化其對決策空間的搜索。
為了實現這些解決方案,我們開發了一個類似于國際象棋的棋盤游戲,由兩支隊伍組成,一支紅色部隊和一支藍色部隊,每支隊伍可以有多個聯盟(玩家)。游戲是在一個共同的戰斗空間上進行的,這個戰斗空間目前被設計為MDO每個領域的一套棋盤。圖3顯示了一組游戲棋盤的例子,我們考慮了一個"空中"和一個"陸地"棋盤。每個棋盤都被劃分為一組單元格,"空中"棋盤被放在"陸地"棋盤上,形成一個共同的戰斗空間。在這個例子中,我們選擇了創建方形網格,并且只考慮兩個領域。然而,在一般情況下,棋盤格可以采取任何形狀,并且可以任意縮小,而棋盤的數量可以靈活處理MDO中的每一個域。例如,"空中"盤可以由多個代表不同海拔高度的板組成。這種提法提供了一個通用的應用編程接口(API),允許在兵棋推演中取得基本的研究進展,因為它可以被定制以適應任何兵棋推演的場景。
圖3 用于復雜決策的ARL戰斗空間AI測試平臺
每個聯盟都被假定有一組部件,我們稱之為單位。目前,我們假設有四個地面單位和一個空中單位。地面單位由士兵、坦克、卡車和旗幟組成,而空中單位是飛機。每個地面單位目前都有相同的能力(即,相同的行動和視圖集)。然而,API的設計是為了使聯盟的每個單位都有定制的能力,從而使設計特定場景變得容易。
目前各單位的規則和行動如下。士兵、坦克和卡車都有一個目標,描述他們的導向。他們的行動包括 "什么都不做(doNothing)"、"轉向(turnH)"、"前進1(advance1)"、"射擊(shoot)"和"沖撞(ram)"。"doNothing"意味著該單位停留在他們的位置,不改變他們的狀態。"turnH"將單位的方向旋轉H度,其中H∈{-135,-90,- 45,45,90,135,180}。"advance1 "使其方向上向前移動一個單元。"shoot"向單位的方向射出一個彈丸,彈丸繼續向前推進一個單元,直到它與另一個單位相撞或在游戲盤外飛行。最后,"ram"行動使單位在其方向上向前推進一格,同時進行攻擊。與 "advance1"行動相比,"ram"行動總是有利的,因為攻擊可以消滅敵方單位。
飛機單位的規則和行動與士兵、坦克和卡車相似。這些行動是"什么都不做(doNothing)"、"轉向(turnH)"、"前進X、Y(advanceX,Y)"、"射擊(shoot)"和 "轟炸(ram)"。“doNothing”、“turnH”和“shoot”的動作與地面單位相同。行動“advanceX,Y”允許該單位沿東西軸線移動X單元,沿南北軸線移動Y單元。飛機也可以 "上升(ascend)"和 "下降(descend)"來起飛和降落。最后,"炸彈(bomb)"行動在飛機的正下方射出一個彈丸到陸地游戲盤上。旗幟單位無法移動,如果被俘,則被清除。
目前游戲玩法的實施很簡單。最初,每個聯盟(玩家)將其單位放在游戲盤的各自區域。當每隊有多個聯盟時,各隊的游戲板部分被平均分配給各聯盟。請注意,每個單位的位置對所有其他聯盟都是未知的。然后,每個單位觀察其可見范圍內是否有其他單位,提供一個戰爭迷霧的場景。我們將每個單位的觀察范圍定義為從該單位的當前位置開始的一個方塊;然而,可視范圍可以根據場景和單位的情況進行定制。一旦每個單位觀察到了,同一團隊的聯盟就會合作確定他們想為每個單位采取的行動集。這允許每個聯盟觀察其隊友的單位位置,并進行溝通以協調他們的計劃。接下來,每個聯盟為每個單位選擇一個行動。請注意,所選擇的行動只有屬于同一團隊的聯盟才知道。在選擇了行動后,游戲決議被應用,根據他們選擇的行動移動單位,并解決是否有任何單位被攻擊或與另一個單位相撞。如果一個單位被攻擊或與另一個單位相撞,它將被從棋盤上移走。這個過程不斷重復,直到游戲結束。
完成游戲取決于游戲的基本規則,這些規則可以根據具體場景進行定制。在這里,我們研究了兩種類型的游戲:(1)奪旗和(2)殲滅。奪旗游戲的目標是操縱地面部隊進入敵方領土以奪取對方的旗幟,旗幟的位置是未知的,必須通過探索才能發現。一旦所有的敵方旗幟被占領,游戲就會終止。殲滅戰的目標是發現并攻擊所有敵人的地面單位。在這里,一旦發現并消滅了所有敵人的地面單位,游戲就終止了。每種游戲的基本規則都是相同的,但實現每個目標的最佳策略是不同的。在這兩種類型的游戲中,由于敵方單位和旗幟的能見度有限,存在著高度的不確定性。
接下來,我們報告了我們在開發基于模仿學習思想的人工智能Agent方面的初步結果,模仿學習使用的是由人類演示構建的分層貝葉斯模型。我們從討論數據收集過程開始,對數據進行分析,最后用啟發式方法使一個簡單的人工智能Agent勝過一個隨機Agent。
為了學習人類的策略,我們讓五個人類受試者組合在一起,針對第2.1節中討論的兩類游戲(即奪旗和殲滅),與兩個隨機Agent進行ARL戰斗空間游戲。在每個回合中,每個隨機Agent根據一個固定的分類分布為每個單位??選擇一個行動,其中采取一個行動的概率是
,
取決于單位??可以采取的行動數。回顧一下,每個單位的行動在第2.1節中有描述。
每個游戲由一對人類受試者對兩個隨機Agent組成,在每個游戲開始時,人類受試者合作討論他們對該游戲類型的整體策略。這導致了20場游戲的收集,其中奪旗和殲滅戰各10場。一旦所有的游戲都進行了,就對游戲數據進行分析以確定人類的策略。
分析游戲數據的第一個方法是研究人類玩家的行動頻率。行動頻率被定義為 ,其中D代表奪旗或殲滅的游戲數據。
是指在所有游戲中,單位??采取的行動次數,而??(??)是所有游戲中的總回合數。
圖4顯示了地面單位(即士兵、坦克和卡車)的行動頻率,圖5顯示了空中單位(即飛機)的行動概率。游戲的總體目標決定了所選擇的行動,使我們能夠確定所玩游戲的類型。如圖4所示,奪旗游戲的地面單位更有可能選擇前進和攻擊的方式,用 "沖撞"的動作來尋找旗子。此外,"什么也不做"的行動也被更頻繁地選擇。這是因為一旦團隊找到旗子,離旗子最近的單位就會采取行動去搶奪旗子,而其余單位則什么都不做。對于空中單位,人類受試者更傾向于選擇 "advance0,-2 "的行動,即把單位推進到敵人的領土上尋找國旗。
圖4 從人類游戲中產生的所有地面單位,以游戲類型為條件的行動概率
圖5 從人類游戲中產生的空中單位,以游戲類型為條件的行動概率
在 "殲滅"游戲中,人類Agent更傾向于選擇攻擊行動來消滅敵人的目標(即對地面單位采取 "射擊",對空中單位采取 "射擊"和 "轟炸")。為了進一步驗證這一策略,圖6顯示了每回合平均射彈數量的累積總和。顯然,"殲滅"游戲的射彈數量比"奪旗"游戲要多。
圖6 每一回合中射彈總數的平均累積總和
兩種游戲的另一個區別是,奪旗游戲的總回合數要比殲滅游戲少得多。這是因為人類Agent找到旗子的速度比他們找到敵方單位并消滅它們的速度要快。
基于對人類Agent如何與隨機Agent玩游戲的簡單理解,我們可以按照類似的方法來學習策略,為簡單的人工智能Agent開發啟發式方法。
一個簡單的人工智能Agent的算法如下。最初,Agent隨機地將他們的單位放置在棋盤的指定區域。然后,每個Agent確定每個單位的狀態。考慮到狀態和游戲的目標,Agent從預定的概率分布中為每個單位抽取一個行動。
這個過程在每個回合中都會重復,直到游戲結束。預定的概率分布遵循一個分層貝葉斯模型。為了便于表述,我們在附錄中提供了相關理論。對于最簡單的情況,我們認為單位在每個回合中可能處于兩種狀態,或
。然后,概率分布
根據附錄中的公式A-1定義,與圖4和圖5中的行動頻率類似。然后我們將這個分布實現在兩個簡單的人工智能Agent中,并與兩個隨機Agent進行比賽。作為一個基線性能,我們與兩個隨機Agent進行了比較。在這兩種情況下,都進行了1000場比賽,并計算了獲勝百分比。通過使用雙狀態概率分布,簡單的人工智能Agent能夠在奪旗游戲中贏得84.5%的時間,在殲滅游戲中贏得76.9%的時間。
接下來,我們為每個單位i考慮了一個更大的九態狀態空間,定義為,其中??r0和??r1分別表示一個友好單位是否被i單位觀察。??0和??1分別表示i單位是否觀察到敵方單位;以及??l0和??l1分別為團隊是否看到敵方旗幟。同樣,概率分布
然后根據附錄中的公式A-1定義,并落實到兩個簡單的人工智能Agent。在奪旗游戲中,簡單人工智能Agent對兩個隨機Agent的獲勝比例為89.4%,在殲滅游戲中為82.3%。
結果摘要見圖7。有趣的是,在兩種形式的概率分布(即雙狀態分布和九狀態分布)中,奪旗策略都優于殲滅策略。這是因為 "消滅 "游戲中的Agent更有可能選擇 "射擊 "行動,由于隨機的初始位置,這將導致更多的友好射擊。因此,作為一個簡單的人工智能Agent,采取先攻后守的方法更有利。此外,當我們考慮到單位的額外狀態時,獲勝的百分比會增加。未來工作的一個可能方向是開發深度強化學習策略,以學習最大化獲勝比例所需的狀態定義和數量,即使是面對人類Agent,也要為MDO中的C2提供建議。
圖7 簡單AI Agent的獲勝比例
ARL戰斗空間測試平臺的關鍵優勢在于其靈活性和適應MDO任務規劃的變化需求。它的抽象性使關鍵的決策過程及其互動和動態被壓縮到一個較小的游戲盤中,并有更多可量化的人與人工智能的互動,用于開發人與人工智能的團隊合作。這使得人工智能的開發能夠集中于復雜決策的獎勵塑造,同時減少由于滋擾因素(如時空縮放)造成的學習障礙,這些因素使決策在時間和空間上變得稀疏,因此,更多的努力(人工智能以及人工智能開發者的部分)可以被用于在各種時空尺度的不確定性和欺騙下的學習。它還將兵棋推演互動中可能不容易被整合到人與人工智能團隊中的特質(例如,人類心理學的某些方面,如個人關系)放在一邊,以利于在人工智能推理發展方面取得更切實的進展。在下面一節中,我們介紹了幾個挑戰和發展人工智能進行復雜推理的例子。這些例子包括博弈論、元推理和網絡欺騙,涉及到現有人工智能算法尚未處理或解決的各種復雜決策。由于人工智能的C2決策輔助工具將有望超過人類水平的決策,不僅在速度上,而且在復雜性上,我們設想這樣的C2決策輔助工具需要能夠解決大多數(如果不是所有)的情景。
我們首先關注博弈論和兵棋推演之間的差距,在一個簡單的突破場景中,這是兵棋推演中經常遇到的一個經典問題(例如,在橋梁交叉口、地雷區和山口[圖8])。在經典的博弈論概念Brinksmanship("吃雞")中,友好的藍色和綠色坦克被激勵著越過缺口到達另一邊。通常情況下,這些坦克會協調他們的行動,但如果藍、綠坦克之間的通信被破壞,一個單位(如藍坦克)的行動可能會因為與另一個單位(綠坦克)的碰撞或友好射擊而導致低回報。如果還包括囚徒困境的元素,那么這個場景就迅速超越了經典的博弈論,因為可能需要綠色和藍色坦克一起穿越,共同攻擊更強大的紅色坦克,這需要仔細協調。額外單位的存在(例如,綠色飛機對敵對單位提供觀察、轟炸或干擾,如黃色士兵提供可能的增援)能夠進一步操縱動態和環境對決策的限制或機會。飛機也可能發現第二個缺口,或者 "墻"可以滲透,以創造缺口(例如,清除地雷或建立額外的橋梁交叉點)。
在粗略尺度(如10×10板)和背景下學到的行為可以通過獎勵塑造逐步推廣到更細的尺度和其他背景下。額外的地圖層也可以被添加到諸如快速地下運輸等領域,以繞過地面層中的墻壁。環境因素,如天氣,也可以包括在內,以改變機動性。因此,即使是一個看似簡單的場景,也可以提供豐富的機會來操縱影響決策動態和結果的因素,并探索不同類型的不確定性之間的相互作用如何改變決策景觀,以創建鞍點和局部最小值,從而混淆強化學習的作用。在戰爭中可能出現的情況下,理解和預測三個或更多的合作和敵對玩家的納什均衡,需要一個靈活的兵棋推演平臺,允許跨學科地探索這種決策空間。兵棋推演平臺還需要能夠開發、理解和發現玩家和人工智能之間的新型互動和協同作用,使人類能夠利用人工智能快速找到最佳和接近最佳的解決方案。這些解決方案將使人工智能能夠從人類的決策模式中學習,以及如何優化其對決策空間的搜索。
圖8 帶有豐富博弈論條件的場景
在ARL戰斗空間游戲中,每個玩家都有一面彩色的旗幟,游戲可以通過殲滅所有對方的地面單位或奪取對方的所有旗幟來獲得勝利(現實生活中的一個等價物是奪取所有關鍵的橋梁或指揮中心)。根據游戲的狀態,指揮官可以決定改變整體策略(殲滅戰與奪旗戰),以更快地取得勝利。例如,如果一輛坦克已經接近一面旗幟,那么將剩余的單位轉到其他地方尋找剩余的旗幟可能是有利的(圖9)。相反,如果一支敵對部隊守衛著第一面旗幟,那么優先奪取這面旗幟可能會更好,這樣搜索第二面旗幟的效率會更高。這種未闡明的推理,或稱 "默契推理",往往在自然的人類決策中根深蒂固,這是一種需要開發的人工智能能力,以便人工智能能夠有效地參與人類-人工智能團隊的決策,使人工智能的發展能夠開始有工具來獲得人類決策的創造性。
圖9 帶有隱性推理和任務重新分配的元推理標志方案
對于人工智能的發展,這就需要一個額外的更高級別的推理Agent不斷地監測游戲的狀態,以做出切換策略的選擇,并將此傳達給控制各個單位的Agent。元推理包括監測推理所涉及的步驟,以及平衡影響活動結果的標準。此外,元推理結合了不同信息的不確定性,以產生更有意義的、符合背景的決策建議。納入元推理可以使約束條件和各種決策方法得到權衡,為行動方案提供不同的選擇。例如,基于元推理的替代選擇可以決定是否優先考慮探索與攻擊已知敵方單位與防御,部署哪種機動戰略,或者考慮到敵方部隊的可觀察位置如何重新分配任務。由于ARL戰斗空間環境的網格大小較小,游戲可以快速進行,導致經常有機會使用元推理,并使人工智能有機會學習結合和預測多種類型的元推理方法的相互作用。由于抽象環境增加了人工智能學習戰略如何交互的頻率,這將使人工智能學習更高級的戰略,例如需要平衡不同戰略、能力和任務要求之間的交互,保持選擇的自由,并產生戰略模糊性以迷惑對手。總的來說,這種方法的好處是通過增加控制和監測機制來改善決策,這些機制包括一個平衡行動和環境約束的元推理Agent。
對抗性決策的一個關鍵方面,特別是在戰爭中,就是欺騙。欺騙可以發生在多個層面,包括戰略、可觀察的信息、單位能力和位置。在ARL戰斗空間中,單位的可觀察性有限,這自然為欺騙創造了機會,而飛機在敵方空間深處的探索能力也為揭開單位位置的欺騙提供了機會。圖10展示了一個簡單的欺騙場景的例子,在這個場景中,友軍的藍色和綠色部隊試圖穿越到另一邊。左下方的友軍士兵開始通過左邊的缺口發射導彈,因為他們的Agent推斷(通過對方Agent的人工智能心智理論),看到導彈后,敵方Agent會推斷出友軍正準備通過該缺口進行攻擊。這種欺騙,通過將敵方Agent的注意力和計劃集中到左邊的缺口,使他們偏離右邊的缺口,為藍綠坦克從右邊進入創造機會。通過設計有兩個缺口的情景,該情景建立在經典心理學的兩個替代性強迫選擇任務的基礎上,能夠應用敏感的心理學工具進行決策分析,并開發動物模型,從神經生理學和行為學上剖析支配欺騙的情境依賴性學習和決策的基本細胞和分子機制。例如,人們可以引入一些因素,使友好或敵對的決策出現偏差(例如,通過操縱傳感器的噪音或操縱總部的命令),或應用光遺傳學和化學遺傳學工具等方法,了解他人的認知、信念或策略的神經表征(例如,在前扣帶回和眶額皮層中)對決策計算的貢獻(在前額皮層中)。這種調查還可以發現決定一意孤行、啟發式方法和隱性偏見與對其他假設的開放性的因素,這可以幫助確定在特定條件下如何最好地重新分配任務(例如,當一個人對等級指揮結構有偏見時,他可能不太愿意追求與總部的命令相矛盾的傳感器信息)。這種固有的偏見、啟發式方法和默契的推理是人類推理的自然組成部分,在我們與他人的互動中會被預期到;人工智能的心智理論包括這種偏見補償,對優化人類+人工智能的團隊合作可能是有益的。
圖 10 需要人工智能心智理論的簡單欺騙場景
在人類的決策中,來自不同領域的信息可以結合起來,產生意想不到的效果。心理上的McGurk效應是指口型"ga"和聽覺上的音節"ba"在時間上有很強的同步性,從而產生幻覺"da"。雖然多感官整合似乎沒有在C2決策中得到探索,但MDO中多個領域的匯合,特別是其在穿透和分解整合階段的高容量和高速度,可能會產生意想不到的非線性跨領域的相互作用(這可能有助于"戰爭迷霧")。圖11說明了一個例子,在這個例子中,實際跡象(導彈)和坦克誘餌(由中間人[MITM]網絡攻擊產生)的組合可以協同作用,迫使敵方單位向左側缺口移動。為網絡欺騙創造趨同的跡象線是一種普遍的策略,然而特定的欺騙模式可能比其他模式更有效。例如,人們認為大腦會將相似或相關的跡象分組,以進行有效的處理(如格式塔分組),這樣就可以克服信息瓶頸(如處理七個以上的名義項目,從而減少單個項目的影響)。如果進行每一次網絡攻擊都會產生一定的成本或風險,那么了解如何將這些成本分配到不同的線索特征中,以便以最小的風險提供最有效的影響可能是有益的(例如,如果MITM攻擊產生導彈誘餌,那么它的效果可能會降低,甚至是反作用)。了解不同的線索組合如何被不同的士兵所感知,也可能是有意義的。具有不同偏見或處于不同角色或梯隊的指揮官可能對相同的跡象組合有不同的感知、解釋或行動(例如,一個誘餌的有效性可能取決于它與目標指揮官的距離以及與他的決策過程的相關性)。更高級的策略可能包括主動防御(例如,通過 "蜜罐 "策略[圖12]),以提高網絡欺騙的有效性。為了給MDO提供超人的能力,人工智能決策輔助工具可能需要根據即時可用的跡象在多個領域協助生成可信的誘餌,以網絡的速度迅速調整這些展示,并保持虛擬和現實世界之間的一致性,以保持幻覺的有效性。
圖11 帶有中間人攻擊的網絡場景
圖12 帶有蜜罐的網絡場景
上一節所述的ARL戰斗空間人工智能測試平臺通過將戰斗空間地形抽象為一個沒有現實表現的網格狀環境,提供了人工智能開發和測試所需的靈活性。例如,圖8顯示了一個類似于墻的障礙物,它被表示為幾個網格塊,與單位互動時應用的環境約束條件有關。人類團隊和AI都在共同的雙級網格化戰斗空間內進行游戲。人類玩家通過在控制臺窗口中輸入基于文本的編碼命令與ARL戰斗空間互動。這種命令行的交互和顯示加速了人工智能算法的開發過程,并為人工智能兵棋推演所需的大規模實時計算建立了與計算資源的潛在聯系。為人工智能兵棋推演測試平臺(如ARL Battlespace)構思一個用戶界面,并建立通往外部計算服務的管道,構成了DFV第二個目標的基本組成部分--開發一個用于復雜決策的WMI。
一個跨梯隊和作戰級別的軍事決策過程模型構成了為人類和人工智能兵棋推演開發一個有效的WMI的基礎。在傳統的兵棋推演中,指揮官利用一個共同的基于地圖的作戰地形,并模擬MDMP中各種因素的組合如何產生行動方案(COAs)、可能的反擊行動、資源使用估計和預測結果。在幾天或幾周內,MDMP過程形成一套精煉的COAs,對作戰環境做出某些假設,包括地形、天氣和設置戰場的單位的可用性和能力(即為支持主要作戰行動而塑造活動)。
盡管MDMP幫助指揮人員了解作戰環境和考慮作戰方法,但這個過程有許多局限性,如時間密集性、假設的僵硬性、跨場景變化的訓練機會有限,以及很少有機會將人工智能指導納入決策過程。傳統上,一項任務的成功與指揮部執行MDMP的能力直接相關。然而,鑒于MDO的復雜性增加,有大量的任務指揮系統和流程,與行動相關的所有活動的整合和同步變得越來越困難,甚至到了人力無法完成的地步。缺少MDMP所導致的規劃專業知識的缺乏會導致行動的不同步和不協調,并最終導致士兵的生命損失。
MDMP中沒有具體描述戰斗空間的可視化能力,但它顯然在決策過程中發揮著重要作用。最近,整合了先進可視化能力的新系統和技術已經被開發出來,這些系統和技術可以提高對局勢的認識,從而加強決策過程。陸軍的例子包括Nett Warrior,它使下馬的戰士能夠直觀地看到附近的友軍和敵軍,同時根據當地的地形協作規劃戰術任務。盡管這項技術將無線電和數字地圖擴展到了下馬戰士,但它缺乏一個提供決策幫助的基礎人工智能引擎。BVI是陸軍技術的另一個例子,它能夠為任務規劃提供分布式協作,具有從任意視角和廣泛選擇的設備對共同作戰圖進行2D和3D可視化的能力。BVI架構可以被制定,以拉入外部計算服務,如分析管道、模型和AI引擎。
目前,MDMP并沒有將人工智能指導納入整體任務規劃方法中。陸軍的APF開始通過將自主技術插入MDMP工作流程來解決人工智能輔助決策的問題。指揮人員可以通過APF的數字規劃顯示、規劃創建者和規劃監控工具,在任務規劃和COA開發過程中獲得背景援助。任務執行和估計能力通過監測任務的規劃和實際進展,為改進決策跟蹤和支持活動提供自動協助。盡管APF在MDMP中引入了基本的自動化水平,但它缺乏Nett Warrior和BVI所提供的高級可視化和用戶交互能力。
除了MDMP之外,最近將人工智能納入決策過程的努力包括了一些方法,在模擬人類決策過程方面取得了一些成功。一般來說,對于決策變量有限的問題,如資源分配、飛行模擬器和較簡單的場景,人工智能取得了一些成功。目前面臨的挑戰包括:需要提高人工智能的能力,以解決有多個行動者、不完整和可能相互沖突或欺騙的信息、不斷變化的單位行動和環境屬性的復雜決策,以及需要將這些決策的后果在許多空間和時間尺度上可視化。
MDMP在支持MDO復雜決策方面的局限性,突出表明需要在三個方面進行改進。首先,有必要將人工智能生成的指導和輔助決策支持納入MDMP。這包括進一步發展和整合人工智能到戰斗空間決策規劃,以及進一步改善人工智能決策過程的可解釋性和透明度。第二,有必要在可能的情況下,將決策分析與戰略層面以及戰術邊緣的HPC的力量結合起來。這將能夠利用HPC系統的力量來改善建模、分析和計算時間,同時整合和同步來自所有戰區領域的信息。最后,有必要利用先進的可視化技術,如混合現實技術,對決策空間進行更準確和互動的展現。不是簡單地在一個固定的時間尺度上顯示地形的二維渲染,而是需要可視化不同領域的決策是如何互動的,并利用混合現實技術來提高理解的吞吐量和深度,并實現平面顯示不可能的洞察力。
MDMP是陸軍設計方法的核心,用于應用批判性和創造性思維來理解、可視化和描述問題以及解決這些問題的方法。作為解決問題的行之有效的分析過程,必須克服前面描述的MDMP的局限性,以便快速制定一個靈活的、戰術上合理的、完全整合的、同步的規劃,以最小的傷亡增加任務成功的可能性。下面的小節描述了對MDMP的潛在改進,以支持人類與人工智能的合作決策。
需要新的人工智能支持的WMI,以利用人工智能決策的持續進步,并為復雜的適應性決策的人工智能學習做出貢獻。通過匯集所有領域的信息,計算人類和人工智能Agent的風險和預期回報,人工智能決策輔助工具的發展將提供能力越來越強的COA建議。現有的人工智能有幾個局限性,特別是對于有不確定性的復雜和適應性決策,以及人類和人工智能Agent的協作和對抗。對多Agent的協作和對抗性決策進行建模可能特別復雜,因為它的遞歸性質,其他Agent是模型的一部分,需要對決策特征、個性化的價值、風險規避、記憶和注意力進行動態和不斷發展的估計。這些具有高度不確定性、復雜性和動態性的情況是人類擅長的領域,適當設計的人機協作交互可以提供加速和更有效的決策。為了實現有效的團隊合作,新穎的WMI應該幫助作戰人員篩選復雜的信息,幫助人工智能發現決策的隱含規則。在此,我們提供了關于人機協作如何有效的案例。
多域兵棋推演中需要的復雜決策是開發有效的人工智能決策輔助工具的直接挑戰。最近人工智能在圍棋和國際象棋等游戲中的成功是基于對世界現有狀態的完全了解(即 "開放"游戲),而兵棋推演通常包括關于作戰環境的不完整(如星際爭霸)、不確定和/或欺騙性的信息。由于世界狀態、不同行動者的狀態以及所采取的行動影響的不確定性,知識的缺乏使得人工智能Agent難以計算未來行動的風險回報情況。不確定性也限制了人工智能估計其他行為者的風險回報概況的能力,而這是計算有效博弈論策略所需要的。人工智能被可能的最優和近似最優選擇的廣度所淹沒(即由于信息有限而選擇錯誤)的情況并不少見,因為人類在制定有效探索隱藏信息的策略時,會采用啟發式方法來進行有效的選擇和預測。為了幫助發展人工智能的隱性知識和探索能力,新型的WMI需要有效地解釋和展示決策圖,以使作戰人員能夠快速和自然地瀏覽可能的選擇,同時使人工智能能夠適時地從人類的決策中學習,而不施加認知負荷。
開發人工智能的WMI的另一個基本挑戰是如何有效地整合和顯示MDO中所有五個領域的信息,特別是空間和網絡,因為這些領域的信息具有不同的時空尺度。對于網絡,決策的規模和速度可能比人類處理和理解的能力更快,需要人類的輸入來指導半自動的決策,以及一個實施進攻和防御欺騙策略的人工智能。WMI需要能夠以這樣的方式顯示決策圖,即一小部分最優和接近最優的決策策略清單是可以解釋的(例如,通過決策樹)。這應該包括對關鍵Agent在不確定情況下的未來狀態和風險回報情況的估計,以使有效的博弈論決策能夠被共同開發和相互理解。
這些挑戰為有效的WMIs的可能設計提供了參考。也就是說,我們需要有能力從不同的來源(包括從其他國家的決策輔助工具)攝取信息,以及一個能夠承載整合這些信息的計算能力架構,同時還要處理基礎的人工智能計算(包括學習和部署)。我們還需要共同開發一個交互和算法設計,以適時地利用人類和人工智能Agent的優勢并減少其局限性。
在MDO兵棋推演的復雜決策過程中,需要大量的計算能力來處理和記錄所有組件、實體和狀態空間。從動態狀態空間的累積數據集中建立過去、現在和預測模型,需要利用HPC資源來產生分析見解,并創建在復雜決策背景下有用的表示。
實施HPC分析工作流程的一種方法是使用持久性服務框架(PSF)。PSF是一個最近可用的分布式虛擬化解決方案,它可以通過一個基于網絡的前端實現對高性能計算服務的非傳統訪問,而不像傳統的HPC環境那樣,計算節點在特定時期內以批處理模式分配給用戶。此外,PSF可以提供對數據、數據庫、容器化工具集和其他托管平臺的分布式持續訪問。
在一個PSF方法的例子中,一個模擬引擎連接到PSF,用于記錄人類和人工智能做出的所有決策。這允許分析在任務規劃和COA開發過程中發生的決策行為,以及識別決策模式和戰略,以開發競爭和現實的兵棋推演場景。一個戰斗空間可視化平臺可以托管在PSF上,并使用信息傳遞協議來更新所有連接的設備接口。來自模擬引擎的狀態信息可用于生成戰斗空間和參與作戰單位的圖形表示。
使用PSF方法并利用HPC資源,可以實現利用大數據攝取和分析的人工智能輔助決策機制,同時可供地理分布的用戶用于協作決策工作。連接到PSF托管服務器的各種混合現實顯示模式可以支持從戰略層面的C2到作戰邊緣的更多移動戰術使用等一系列作戰場景。
用圖形表示各級行動的軍事決策戰略需要新的可視化方法,這些方法可以應用于以規則變化、認知狀態、不確定性以及個人偏見和啟發式方法為特征的動態環境。
戰斗空間的視覺表現應該在技術上盡可能準確和逼真,但又保持在人類可以理解和解釋的認知水平。融合了混合現實技術的先進可視化方法有可能更好地表現多領域戰爭的變化特征及其不斷變化的威脅和動態環境。隨著最近混合現實可視化設備的技術進步,成本降低,硬件的可靠性和實用性顯著提高,混合二維和三維可視化方法現在已經成為可能。
由多個二維顯示器組成的混合現實方法增強了更先進的三維可視化能力,可以為指揮人員提供了解復雜的戰爭游戲狀態空間所需的洞察力。例如,BVI平臺可以使用多種可視化模式的組合,真實地呈現地理空間的地形。作為一個數據服務器,BVI向支持多種可視化模式的客戶端應用程序分發地形、作戰和Agent行為數據,包括頭戴式顯示器設備、基于網絡的界面、移動安卓平板設備和混合現實設備(例如,HoloLens 2、Oculus Quest)。
圖13(頂部)顯示了位于加利福尼亞州圣貝納迪諾縣歐文堡國家訓練中心的高分辨率地形上的友軍與敵軍的兵棋推演場景。與MDMP期間經常使用的傳統2D地圖顯示相比,戰斗空間的3D視圖可以從多個觀察角度提供更豐富的用戶體驗。三維視圖,在BVI的網絡戰術計劃器(WTP)中,將地形和人工特征的空間信息以及由MIL-STD 2525C符號描繪的單位位置可視化。
可以想象,地理空間視角,如BVI提供的視角,支持決策者對動態戰斗空間環境的理解。與可導航的人工智能增強的決策空間(圖13,底部)搭配,組合的視角可以使人們更好地理解視覺空間依賴性、影響和因果關系、估計的風險和價值、不確定性以及復雜決策的欺騙性。將這種以地理空間和決策為中心的視角與人工智能相結合,可以提供必要的廣度,以協調物理行動與網絡和其他非空間領域的行動,跨越多個時間尺度,并具有快速適應變化的任務目標的靈活性
圖13 BVI網絡戰術規劃器中的兵棋推演場景的三維視圖(上)與人工智能決策樹的概念(下)。
人工智能對人類自然決策行為的機會性學習,以及學習環境的適當結構和順序,使人工智能被訓練過程有效地塑造,是已經建立起來的提高人工智能快速學習困難挑戰能力的框架。要進一步提高人工智能在兵棋推演中的復雜決策能力,需要提高人工智能在具有高度不確定性的MDO背景下處理決策的能力、欺騙性和博弈論,這些都是人工智能發展過程中獎勵分配的挑戰。克服這些挑戰需要利用多學科的進展,從了解大腦的決策、獎勵和計算的神經生物學進展到專業知識、隱性知識、心智理論、博弈論和元推理在復雜決策過程中如何應用的心理學進展。
人工智能如何能夠最好地學習人類的復雜決策仍然是一個開放的問題。盡管對復雜決策進行獎勵塑造的確切機制還沒有被發現,但這個項目已經產生了如何通過一個新的人工智能測試平臺和WMIs來發現這種機制的設想。ARL戰斗空間人工智能測試平臺和場景將人類和人工智能置于與MDO相關的決策環境中,使人工智能能夠學習不同的決策和因素如何相互作用,以及人類如何通過這種復雜的決策樹進行合作和對抗。一個關鍵的進展是,測試平臺和場景提供了一個豐富的環境,通過抽象化那些會使決策要領稀疏化和阻礙學習的因素,有效地開發人工智能心智理論和與MDO相關的元推理,以進行復雜的決策。
另一個進展是開發高性能計算框架,以實現人工智能決策支持的連續分布式訓練。這將使人工智能決策輔助系統能夠托管在ARL的持久性服務框架上,因此,將來士兵可以隨時隨地以人類和人工智能混合團隊的形式,針對人工智能兵棋推演Agent進行單獨或協作訓練。
這個項目的第三個進展是開發了一種可視化人工智能決策過程的方法,以實現人工智能的透明度和信任,以及人類與人工智能團隊的合作決策。人工智能的推理必須既抽象又與兵棋推演環境相關,這樣人類就可以理解人工智能對不同決策結果的評價,并有效地瀏覽人工智能的決策樹,而不會造成過度的認知負擔。我們已經向人工智能增強的WMI邁出了第一步,它基于三維混合現實,利用和增強人類固有的三維認知和預測的能力。隨著進一步的設計,我們設想它的界面將給人以自然的感覺,同時擴大顯示多個領域的信息,并使人工智能能夠適時地從用戶的決策中學習。這種自然的、直觀的人工智能輔助決策系統,是為了支持MDO C2決策而開發的,包括隱性推理,以及協作和對抗推理,對于人類在復雜決策中信任人工智能對COA結果的估計至關重要。
雖然最近在游戲中對深度強化學習算法的利用顯示出巨大的前景,但這種成功的前提是與一個相對簡單、結構良好的游戲合作。真正的挑戰出現了,因為環境越來越依賴于稀疏的觀察數據、復雜和動態的Agent策略。完全在內部開發平臺與在現有的開放源碼庫上建立平臺相比,有幾個權衡因素--主要是限制因素的最小化和環境開發的純粹工作量。創建一個全新的定制平臺可以完全定制與游戲相關的錯綜復雜的問題,盡管變得非常耗時。相反,在使用現有的庫,如StarCraft2LearningEnvironment(SC2LE)時,會出現各種不可逾越的限制,但投入游戲開發的工作量會減少十倍。我們正在進行的ARL戰斗空間人工智能測試平臺的第二代開發,名為Simple Yeho(圖14),是建立在天平兩端的平衡上的,OpenAI Gym是一個用于開發強化學習算法的工具包,對輸入的Agent和環境結構不做任何假設。顯然必須遵循一個基本的框架,但OpenAI Gym除了提供大量的文件和例子供客戶參考外,還提供了完全的設計自由。從游戲開發的角度來看,并沒有立即需要解決的問題,但它確實需要成為未來一個更優先的事項。
圖14 簡單的Yeho人工智能測試平臺
未來的問題并不局限于游戲環境,因為它們將不可避免地延伸到理論上的強化學習挑戰,如無縫的多Agent通信、任務協調和固定的策略。更多需要關注的實際問題包括算法效率(限制計算密集型任務以及內存分配的心態),一種新穎的去中心化強化學習算法,以及跨多個領域的數據泛化。過度消耗硬件資源是人工智能所有分支中的一個共同瓶頸。從軟件的角度來看,ARL Battlespace AI測試平臺對資源消耗很少,該環境仍然專注于AI發展的研究問題,而不是全面的MDO實施,這就是為什么計算效率還不是一個緊迫的問題。歸納游戲狀態信息的潛在解決方案,特別是在動態環境中,包括時差變異自動編碼器和分布式時差強化學習,因為它們除了在數據點之間提供一個平滑的潛在空間外,還允許對未來的幾個狀態有明確的信念(這在元推理方面起作用)。我們的新型強化學習算法應該解決的其他主要問題是安全/認證、Agent決策透明度和Agent間的實時通信。將區塊鏈整合到DEVCOM ARL框架中,將確保節點之間的安全通信線路,提供一個不可改變的分布式賬本,以揭示Agent的低級決策,并向Agent引入民主投票系統,以促進團體合作,同時仍然保持個人的自私性。
目前軍事決策過程中的局限性確定了一個多學科的研究方法,用于開發復雜決策的人類和人工智能WMI。作為基礎層的決策空間的現實表示,包括具有地理空間精確性的自然和人工制作的戰斗空間地形。一個先進而直觀的用戶交互允許混合現實視角的戰斗空間,使決策者能夠根據作戰因素探索COA的替代方案。這兩個要求指導了對陸軍和商業開發的戰斗空間交互系統BVI的選擇,作為ARL戰斗空間人工智能測試平臺中實現的人工智能和人類-人工智能團隊發展的潛在過渡媒介。
過渡的第一步是將ARL戰斗空間的網格狀環境疊加到BVI真實世界的作戰地形上,并將現有的BVI多模態用戶交互調整為兵棋推演。圖15顯示了使用BVI的網絡戰術規劃器3D視角在歐文堡地形上疊加的擴展網格的一個部分,其中友軍和敵軍單位位于兵棋推演會話的開始。在瀏覽器窗口中,可以使用戰術規劃工具欄的鼠標、觸控板或觸摸屏互動來放置和操作單位。BVI提供了添加單位的功能;路線點、戰術符號和圖形;以及繪制線條、多邊形和文本框等特征。
圖15 BVI網絡戰術規劃器中帶有網格覆蓋的兵棋推演場景的三維視圖
一個尚未解決的問題是,如何最好地利用BVI的混合現實(XR)可視化功能來進行協作決策(例如,在兵棋推演期間,通過加強決策者對地形的地理空間因素的理解)。加載不同的地形和創建定制的訓練場景可能來自于多維數據,并以各種身臨其境的形式觀看,這超過了陸軍其他系統的可視化能力。根據這些三維地形的廣度和細節,當決策者使用一系列強大的交互方式在大面積的地形上進行操作時,界面如何顯示這些信息可能會造成大量的信息過載或混亂。一個有效的界面需要被設計成不僅要選擇傳達哪些環境和決策空間信息,而且要選擇如何從用戶的有利位置呈現這些信息。
如果不可能有開發時間和精力,BVI的API提供了機會,以標記、標簽和定位在地形之上的場景適應性網格的形式嵌入視覺輔助,作為決策者的空間管理干預措施。例如,圖15中描述的網格的行和列可以被標記或編碼,以快速定位實時事件和人工智能產生的活動。多維網格結構和編碼方案可以將兵棋推演提升到以MDO為特征的復雜水平,同時減輕一些基于地形的空間管理問題。
在空間和時間領域的數據分析中協調戰斗空間的多個視圖,可視化提供了額外的方法,促進兵棋推演期間的復雜決策。當需要一個共享的MDO戰斗空間呈現時,可以通過在不同的可視化模式上實施多個協調視圖來實現協作戰略規劃模式,根據分布式指揮人員的輸入進行互動更新。指揮人員的輸入也可以指導視覺過濾器對協調視圖的應用,從而減少不必要的復雜性,突出場景或任務關鍵的戰斗空間信息。
圖16顯示了SyncVis視覺分析系統,該系統旨在顯示多個協調的數據分析視圖,支持數據探索和理解。SyncVis通過用戶互動將每個視圖中顯示的信息與其他視圖聯系起來,從而產生多種數據可視化。這個例子顯示了SyncVis在四個協調視圖中對COVID分類人群數據分析的二維界面。變量選擇器(選擇六個屬性)、地圖/地形、相互信息圖和每個選定變量的疊加區域圖。
圖16 SyncVis二維界面顯示COVID數據分析的多種協調的可視化效果
SyncVis的可視化功能可以與使用PSF的HPC分析工作流程后端集成。PSF服務器可以向BVI和SyncVis流傳作戰和Agent行為數據,創造一個統一的戰斗空間探索體驗。基于用戶按需輸入和過濾的協調戰斗空間視圖的好處有待研究。
一個靈活的兵棋推演環境似乎是關鍵,因為每個訓練場景、COA和任務計劃都是在MDMP和相關軍事理論的約束下制定的,但又是獨一無二的,并取決于戰斗空間及其操作變量。一個HPC PSF數據分析處理管道為WMI提供動力,士兵或指揮官按需協調戰斗空間的BVI和SyncVis可視化,將徹底改變現有的兵棋推演范式,并觸及MDO固有的復雜程度,以及贏得勝利所需的人類和AI指導的決策水平。
我們強調了三個關鍵的發展領域,即人工智能引導的決策指導,支持這種指導的計算基礎設施,以及決策透明度的混合現實表現的發展。這些領域的進步需要跨越許多不同學科的專業知識。新的人工智能發展需要融合神經科學、心理學和數學的思想,以克服復雜決策中長期存在的問題的瓶頸。這包括跨時間尺度的學習和變化環境下的災難性遺忘,以及更具體的兵棋推演問題,如具有不確定性、欺騙和博弈論的多Agent決策。計算基礎設施也需要發展,因為計算能力和數據框架對于在戰術邊緣產生人-人工智能團隊的共同操作圖來說都是必不可少的。為了有效地開發,應該通過一個共同的框架來抽象出專有的限制和軟件的依賴性,并為使用和故障排除提供清晰的文檔,以使學術界、政府和工業界更好地專注于解決人與人工智能的合作問題。這個通用框架應該包括有效的信息傳遞,同時提供靈活性和適應性,以滿足人工智能開發和人類用戶在訓練和實際使用環境中的需求。最后,交互技術的開發本身需要跨學科的協同專業技術。一個基礎性的問題是如何壓縮信息使之被用戶有效地理解,以及如何最好地利用用戶的互動來進行機會主義學習。人類的大腦并不處理所有的感官信息,而是對世界進行預測和假設,以便在信息不完整的環境下節約計算。一個有效的WMI應該同時預測潛在的決策結果以及個人用戶的期望和假設。此外,人工智能決策輔助工具必須估計用戶的默契,使其能夠提供最相關的信息和最有希望的選擇,這些信息來自整個作戰領域。
信任已經成為人類與人工智能系統互動的一個關鍵因素。然而,人們對什么樣的信任模式和什么樣的系統知之甚少:機器人、虛擬人物、智能車輛、決策輔助工具或其他。此外,目前還沒有已知的標準方法來衡量人工智能的信任。本綜述從模型、措施和方法的角度對人與人工智能交互(HAII)中的信任狀況進行了描述。研究結果表明,信任是HAII背景下一個重要的、多方面的研究課題。然而,大多數工作的理論化程度不高,報告也不充分,一般不使用既定的信任模型,也缺少方法的細節。我們為系統性審查工作提供了幾個目標,并結合當前文獻的優點和解決其缺點提供了研究議程。
人工智能被定義為 "制造智能機器,特別是智能計算機程序的科學和工程"[34:2]。對于什么是人或機器 "智能",人們有不同的理解[53]。它可能被描述為未來式的、類似人類的,也可能被描述為理性的,像現在的人工智能[25]。人工智能系統正變得無處不在,越來越多地被非專業人士使用和認可。常見的例子包括蘋果公司的虛擬助理和互聯網搜索引擎Siri,一個用于智能手機和其他使用iOS操作系統設備的語音問答應用程序,以及軟銀的人形機器人Pepper,最近已經退役,但被確立為店面形象和研究工具。這些基于人工智能的現代技術建立在智能系統的基礎上,旨在支持人類的工作,特別是控制系統的自動化[21,27]。此外,它們在體現形式上也越來越社會化[14,17,47]。Siri是對話式的(盡管范圍有限),Pepper努力與人進行眼神交流,并閱讀與之互動的人的情緒。他們的前輩和智能表親--飛機和車輛可能就不是這樣了。然而,在所有情況下,人們都在與一臺具有某種可感知智能的機器互動。我們還可以認識到一個與這種模擬智能相關的持久模式:卸載人類勞動,特別是認知過程,以及代替人類提供這種勞動的系統,這些概念交織在一起。隨著這些注入人工智能的系統繼續被公眾和專家所接受,我們非常有必要評估其中的基本人類因素。
信任被認為是人與人之間,以及人與機器之間人際關系的一個重要因素。來自不同學科的研究人員已經研究了信任在調解個人之間、個人與組織之間、甚至組織之間關系中的作用[27]。但是,信任的重要性并不限于人與人之間的互動;它也被強調為人與計算機[32,46,48]、人與機器人[9,19,39,45]以及人與自動化[21,27,36]之間的關鍵因素。最近關于人們與人工智能技術互動的工作表明,信任需要更多關注。例如,一項調查發現,許多人對基于人工智能的技術有負面印象,48%的美國人表示他們永遠不會坐上自動駕駛汽車[50]。日本的一項研究表明,平均而言,超過57%的人對在工作場所與人工智能合作感到不舒服[35]。這種對人工智能的猶豫不決可能有多種來源。一個可能是人工智能的獨特性質。機器學習(ML)是當前人工智能技術的核心,由算法和數據訓練組成:這種黑盒式的、不透明的狀態導致了對可解釋人工智能或XAI的呼吁[5]。此外,ML可能涉及到用新的數據進行重新學習,并不總是從相同的輸入產生相同的輸出。具備 "思想 "的人工智能可以像人的思想一樣不可知和不可預測,這使得與人工智能注入的系統的互動成為信任的問題。事實上,從早期開始,信任就是人工智能相關會議的一個重要主題,尤其是最近,它已經成為人與人工智能互動(HAII)研究中的一個關鍵詞[3]。
研究人員的高度興趣導致了一個新興的、多樣化的工作體系。然而,人們對信任的定義、理論和模型的使用以及對人工智能系統的使用知之甚少。最近的文獻綜述已經開始追蹤這些工作[16,52]。Glikson和Woolley[16]回顧了關于所有形式人工智能中信任的實證研究,研究了構成人類對人工智能信任的因素,但沒有研究如何評估這些因素。Vereschak等人[52]專注于人工智能決策支持的背景,回顧了研究人類和人工智能之間信任的方法并提供了實用指南。現在缺少的是一個普遍的觀點,包括模型和措施,而不考慮系統類型和背景。此外,我們還不知道有什么標準方法可以在人們與這些人工智能系統互動時衡量信任。到目前為止,還不清楚如何在HAII的背景下定義信任或衡量它。
現在迫切需要的是一張迄今為止HAII研究進展圖譜,以澄清 "信任 "的含義,發現已經使用的模型(如果有的話),并確定如何評估信任。為此,我們對HAII文獻中的信任進行了范圍審查,從最早的例子到現在,涵蓋了一系列廣泛的人工智能注入的系統。我們問:
這項工作的主要貢獻有三個方面。首先,我們全面總結了在HAII背景下如何將信任概念化和測量的技術現狀。為此,我們對定義、模型和措施進行了嚴格的分析。特別是,我們確定了兩個在以前的評論中沒有涉及的重要問題:實證研究通常沒有使用既定的信任模型;對人工智能系統有影響的常見評價方法--Wizard of Oz,似乎報告不足。其次,我們確定了一份系統回顧工作的目標清單。最后,我們為實證工作提出了幾個目標。我們的目的是為未來涉及系統回顧和實證研究的工作打下基礎。
近年來,機器學習取得了顯著進展,提供了一些新功能,比如創建復雜的、可計算的文本和圖像表示。這些功能催生了新產品,如基于圖像內容的圖像搜索、多種語言之間的自動翻譯,甚至是真實圖像和聲音的合成。同時,機器學習已經在企業中被廣泛采用,用于經典的用例(例如,預測客戶流失、貸款違約和制造設備故障)。
在機器學習取得成功的地方,它是非常成功的。
在許多情況下,這種成功可以歸因于對大量訓練數據的監督學習(結合大量計算)。總的來說,有監督的學習系統擅長于一項任務:預測。當目標是預測一個結果,并且我們有很多這個結果的例子,以及與它相關的特征時,我們可能會轉向監督學習。
隨著機器學習的普及,它在業務流程中的影響范圍已經從狹窄的預測擴展到決策制定。機器學習系統的結果經常被用來設定信用限額,預測制造設備故障,以及管理我們的各種新聞推送。當個人和企業試圖從這些復雜和非線性系統提供的信息中學習時,更多(和更好)的可解釋性方法已經被開發出來,這是非常重要的。
然而,僅僅基于預測的推理有一些基本的限制。例如,如果銀行提高客戶的信用額度會發生什么?這些問題不能用建立在先前觀察到的數據上的相關模型來回答,因為它們涉及到客戶選擇的可能變化,作為對信用限額變化的反應。在很多情況下,我們的決策過程的結果是一種干預——一種改變世界的行動。正如我們將在本報告中展示的,純粹相關的預測系統不具備在這種干預下進行推理的能力,因此容易產生偏差。對于干預下的數據決策,我們需要因果關系。
即使對于純粹的預測系統(這是監督學習的強項),應用一些因果思維也會帶來好處。根據因果關系的定義,它們是不變的,這意味著它們在不同的情況和環境中都是正確的。對于機器學習系統來說,這是一個非常理想的特性,在機器學習系統中,我們經常根據我們在訓練中沒有看到的數據進行預測;我們需要這些系統具有適應性和健壯性。
因果推理和機器學習的交集是一個迅速擴展的研究領域。它已經產生了可供主流采用的功能——這些功能可以幫助我們構建更健壯、可靠和公平的機器學習系統。
本書介紹了因果推理,因為它涉及很多數據科學和機器學習工作。我們引入因果圖,著重于消除理解的概念障礙。然后我們利用這個理解來探索關于不變預測的最新想法,它給高維問題帶來了因果圖的一些好處。通過附帶的原型,我們展示了即使是經典的機器學習問題,如圖像分類,也可以從因果推理工具中受益。