對機器學習優化和無約束凸優化進行簡明導論介紹。
這項工作的目標是向讀者介紹加權有限狀態自動機及其在機器學習中的應用。我首先介紹了機器學習中自動機的使用,然后介紹了受體、換能器和它們的相關屬性。然后詳細描述了加權自動機的許多核心運算。在此基礎上,通過解釋自動分化及其在加權自動機中的應用,進一步向研究前沿邁進。最后一節介紹幾個擴展示例,以加深對加權自動機及其操作的熟悉,以及它們在機器學習中的使用。
這本書的目的是介紹計算機科學家所需要的一些基本數學知識。讀者并不期望自己是數學家,我們希望下面的內容對你有用。
從Facebook、萬維網和互聯網這樣的社交網絡,到我們身體細胞中蛋白質之間復雜的相互作用,我們不斷面臨著理解網絡結構和發展的挑戰。隨機圖的理論為這一理解提供了一個框架,在這本書中,作者對理解和應用這一理論的基本工具給出了細致的介紹。第一部分包括足夠的材料,包括練習,一個學期的課程在高等本科或初級研究生水平。然后,讀者為第二部分和第三部分更高級的主題做好了充分的準備。最后一部分提供了一個快速介紹所需的背景材料。所有那些對離散數學、計算機科學或應用概率及其應用感興趣的人都會發現這是一個理想的入門課程。
來自Michael D. Alder撰寫的經典書-模式識別簡介:讓機器人看和聽的統計、神經網絡和句法方法。
這本教科書強調了代數和幾何之間的相互作用,以激發線性代數的研究。矩陣和線性變換被認為是同一枚硬幣的兩面,它們的聯系激發了全書的探究。圍繞著這個界面,作者提供了一個概念上的理解,數學是進一步的理論和應用的核心。繼續學習線性代數的第二門課程,您將會對《高等線性代數與矩陣代數》這本書有更深的了解。
從向量、矩陣和線性變換的介紹開始,這本書的重點是構建這些工具所代表的幾何直觀。線性系統提供了迄今為止看到的思想的強大應用,并導致子空間、線性獨立、基和秩的引入。然后研究集中在矩陣的代數性質,闡明了它們所代表的線性變換的幾何性質。行列式、特征值和特征向量都可以從這種幾何觀點中獲益。在整個過程中,“額外主題”部分以廣泛的思想和應用擴大了核心內容,從線性規劃,到冪迭代和線性遞歸關系。每個部分都有各種層次的練習,包括許多設計用來用電腦程序解決的練習。
這本書是從線性變換和矩陣本身都是有用的對象的角度寫的,但它是兩者之間的聯系,真正打開線性代數的魔法。有時候,當我們想知道一些關于線性變換的東西時,最簡單的方法就是找到一組基然后看對應的矩陣。相反,有許多有趣的矩陣和矩陣運算家族,它們似乎與線性變換無關,但卻可以解釋一些基無關對象的行為。
線性與矩陣代數導論是線性代數的理想入門證明課程。學生被假定已經完成了一到兩門大學水平的數學課程,盡管微積分不是明確的要求。教師將會感激有足夠的機會選擇符合每個教室需求的主題,并通過WeBWorK提供在線作業集。
線性代數是計算和數據科學家的基本工具之一。這本書“高級線性代數:基礎到前沿”(ALAFF)是一個替代傳統高級線性代數的計算研究生課程。重點是數值線性代數,研究理論、算法和計算機算法如何相互作用。這些材料通過將文本、視頻、練習和編程交織在一起來保持學習者的參與性。
我們在不同的設置中使用了這些材料。這是我們在德克薩斯大學奧斯汀分校名為“數值分析:線性代數”的課程的主要資源,該課程由計算機科學、數學、統計和數據科學、機械工程以及計算科學、工程和數學研究生課程提供。這門課程也通過UT-Austin計算機科學碩士在線課程提供“高級線性代數計算”。最后,它是edX平臺上名為“高級線性代數:基礎到前沿”的大規模在線開放課程(MOOC)的基礎。我們希望其他人可以將ALAFF材料重新用于其他學習設置,無論是整體還是部分。
為了退怕學習者,我們采取了傳統的主題的數字線性代數課程,并組織成三部分。正交性,求解線性系統,以及代數特征值問題。
第一部分:正交性探討了正交性(包括規范的處理、正交空間、奇異值分解(SVD)和解決線性最小二乘問題)。我們從這些主題開始,因為它們是其他課程的先決知識,學生們經常與高等線性代數并行(甚至在此之前)進行學習。
第二部分:求解線性系統集中在所謂的直接和迭代方法,同時也引入了數值穩定性的概念,它量化和限定了在問題的原始陳述中引入的誤差和/或在計算機算法中發生的舍入如何影響計算的正確性。
第三部分:代數特征值問題,重點是計算矩陣的特征值和特征向量的理論和實踐。這和對角化矩陣是密切相關的。推廣了求解特征值問題的實用算法,使其可以用于奇異值分解的計算。本部分和本課程以在現代計算機上執行矩陣計算時如何實現高性能的討論結束。
當看到這些材料時,一個明顯的問題可能會出現:“為什么還要寫一本深度學習和自然語言處理的書呢?”一些優秀的論文已經出版,涵蓋了深度學習的理論和實踐方面,以及它在語言處理中的應用。然而,從我教授自然語言處理課程的經驗來看,我認為,盡管這些書的質量非常好,但大多數都不是針對最有可能的讀者。本書的目標讀者是那些在機器學習和自然語言處理之外的領域有經驗的人,并且他們的工作至少部分地依賴于對大量數據,特別是文本數據的自動化分析。這些專家可能包括社會科學家、政治科學家、生物醫學科學家,甚至是對機器學習接觸有限的計算機科學家和計算語言學家。
現有的深度學習和自然語言處理書籍通常分為兩大陣營。第一個陣營專注于深度學習的理論基礎。這對前面提到的讀者肯定是有用的,因為在使用工具之前應該了解它的理論方面。然而,這些書傾向于假設一個典型的機器學習研究者的背景,因此,我經常看到沒有這種背景的學生很快就迷失在這樣的材料中。為了緩解這個問題,目前存在的第二種類型的書集中在機器學習從業者;也就是說,如何使用深度學習軟件,而很少關注理論方面。我認為,關注實際方面同樣是必要的,但還不夠。考慮到深度學習框架和庫已經變得相當復雜,由于理論上的誤解而濫用它們的可能性很高。這個問題在我的課程中也很常見。
因此,本書旨在為自然語言處理的深度學習搭建理論和實踐的橋梁。我涵蓋了必要的理論背景,并假設讀者有最少的機器學習背景。我的目標是讓任何上過線性代數和微積分課程的人都能跟上理論材料。為了解決實際問題,本書包含了用于討論的較簡單算法的偽代碼,以及用于較復雜體系結構的實際Python代碼。任何上過Python編程課程的人都應該能夠理解這些代碼。讀完這本書后,我希望讀者能有必要的基礎,立即開始構建真實世界的、實用的自然語言處理系統,并通過閱讀有關這些主題的研究出版物來擴展他們的知識。
//clulab.cs.arizona.edu/gentlenlp/gentlenlp-book-05172020.pdf
有幾個主要的主題貫穿全書。這些主題主要是對兩個不同類別的比較。當你閱讀的時候,很重要的一點是你要明白書的不同部分適合什么類別,不適合什么類別。
統計與因果。即使有無限多的數據,我們有時也無法計算一些因果量。相比之下,很多統計是關于在有限樣本中解決不確定性的。當給定無限數據時,沒有不確定性。然而,關聯,一個統計概念,不是因果關系。在因果推理方面還有更多的工作要做,即使在開始使用無限數據之后也是如此。這是激發因果推理的主要區別。我們在這一章已經做了這樣的區分,并將在整本書中繼續做這樣的區分。
識別與評估。因果效應的識別是因果推論所獨有的。這是一個有待解決的問題,即使我們有無限的數據。然而,因果推理也與傳統統計和機器學習共享估計。我們將主要從識別因果效應(在第2章中,4和6)之前估計因果效應(第7章)。例外是2.5節和節4.6.2,我們進行完整的例子估計給你的整個過程是什么樣子。
介入與觀察。如果我們能進行干預/實驗,因果效應的識別就相對容易了。這很簡單,因為我們可以采取我們想要衡量因果效應的行動,并簡單地衡量我們采取行動后的效果。觀測數據變得更加復雜,因為數據中幾乎總是引入混雜。
假設。將會有一個很大的焦點是我們用什么假設來得到我們得到的結果。每個假設都有自己的框來幫助人們注意到它。清晰的假設應該使我們很容易看到對給定的因果分析或因果模型的批評。他們希望,清晰地提出假設將導致對因果關系的更清晰的討論。
內容介紹:
計算機科學正在發展,以利用新的硬件,如GPU、TPUs、CPU和大型的集群。許多子領域,如機器學習和優化,已經調整了它們的算法來處理這樣的集群。
主題包括分布式和并行算法:優化、數值線性代數、機器學習、圖形分析、流形算法,以及其他在集群中難以擴展的問題。該類將重點分析程序,并使用Apache Spark和TensorFlow實現一些程序。
本課程將分為兩部分:首先,介紹并行算法的基礎知識和在單多核機器上的運行時分析。其次,我們將介紹在集群機器上運行的分布式算法。
機器學習有很多名稱,如機器學習、人工智能、模式識別、數據挖掘、數據同化和大數據等等。它在許多科學領域都有發展,比如物理學、工程學、計算機科學和數學。例如,它被用于垃圾郵件過濾、光學字符識別(OCR)、搜索引擎、計算機視覺、自然語言處理(NLP)、廣告、欺詐檢測、機器人技術、數據預測、材料發現、天文學。這使得有時在文獻中很難找到一個特定問題的解決方案,僅僅是因為不同的單詞和短語用于同一個概念。
這本書旨在緩解這一問題。一個共同的概念,但已知在幾個學科不同的名稱,是描述使用數學作為共同的語言。讀者會發現索引對他們所知的特定主題有用。該索引是全面的,使它很容易找到所需的信息。希望這本書能成為有用的參考書,并成為任何使用機器學習技術的人書架上的必備品
這本書的重點是為什么——只有當一個算法是成功的被理解的時候,它才能被正確的應用,并且結果是可信的。算法經常被并排講授,卻沒有顯示出它們之間的異同。這本書解決了共性,并旨在給一個徹底和深入的處理和發展直覺,同時保持簡潔。
對于任何使用機器學習技術的人來說,這本有用的參考書應該是必備的。
課件: