亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

這項工作的目標是向讀者介紹加權有限狀態自動機及其在機器學習中的應用。我首先介紹了機器學習中自動機的使用,然后介紹了受體、換能器和它們的相關屬性。然后詳細描述了加權自動機的許多核心運算。在此基礎上,通過解釋自動分化及其在加權自動機中的應用,進一步向研究前沿邁進。最后一節介紹幾個擴展示例,以加深對加權自動機及其操作的熟悉,以及它們在機器學習中的使用。

//awnihannun.com/writing/automata_ml.html

付費5元查看完整內容

相關內容

“機器學習是近20多年興起的一門多領域交叉學科,涉及概率論、統計學、逼近論、凸分析、算法復雜度理論等多門學科。機器學習理論主要是設計和分析一些讓 可以自動“ ”的算法。機器學習算法是一類從數據中自動分析獲得規律,并利用規律對未知數據進行預測的算法。因為學習算法中涉及了大量的統計學理論,機器學習與統計推斷學聯系尤為密切,也被稱為統計學習理論。算法設計方面,機器學習理論關注可以實現的,行之有效的學習算法。很多 問題屬于 ,所以部分的機器學習研究是開發容易處理的近似算法。” ——中文維基百科

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

這完全修訂第二版介紹統計模式識別。一般來說,模式識別涵蓋了廣泛的問題:它被應用于工程問題,如字符識別和波形分析,以及生物學和心理學的大腦建模。統計決策和估計,這是本書的主要主題,被認為是研究模式識別的基礎。這本書是適當的為模式識別的入門課程的文本,并作為在該領域的工作者的參考書。每一章包含計算機項目以及練習。

//www.elsevier.com/books/introduction-to-statistical-pattern-recognition/fukunaga/978-0-08-047865-4

付費5元查看完整內容

本書是對機器學習一個領域的全面綜述,處理在分類問題中的未標記數據的使用: 最先進的算法,該領域的分類,應用,基準實驗,和未來的研究方向。

在機器學習領域,半監督學習(SSL)處于監督學習(其中所有訓練示例都被標記)和非監督學習(其中不給出標記數據)之間。近年來,人們對SSL的興趣有所增加,特別是在圖像、文本和生物信息學等未標記數據豐富的應用領域。這是對SSL的第一次全面概述,介紹了最先進的算法、該領域的分類、選定的應用程序、基準測試,以及對未來研究的展望。半監督學習首先提出了該領域的關鍵假設和思想:平滑性、聚類或低密度分離、流形結構和轉導。本書的核心是介紹根據算法策略組織的SSL方法。經過對生成模型的檢查,本書描述了實現低密度分離假設的算法,基于圖的方法,和執行兩步學習的算法。然后,本書討論了SSL應用程序,并通過分析大量基準測試的結果為SSL實踐者提供了指導方針。最后,本書還介紹了SSL研究的有趣方向。本書以半監督學習和轉導之間的關系的討論結束。

//mitpress.mit.edu/books/semi-supervised-learning

付費5元查看完整內容

機器學習中復雜的統計數據讓許多開發人員感到擔憂。了解統計學可以幫助你建立強大的機器學習模型,針對給定的問題陳述進行優化。這本書將教你所有需要執行復雜的統計計算所需的機器學習。您將獲得有關監督學習、非監督學習、強化學習等統計信息。了解真實世界的例子,討論機器學習的統計方面,并熟悉它。您還將設計用于執行諸如模型、參數擬合、回歸、分類、密度收集等任務的程序。

到本書結束時,你將掌握機器學習所需的統計數據,并能夠將你的新技能應用于任何類型的行業問題。

付費5元查看完整內容

《現代統計學導論》是對之前的游戲《統計學與隨機化和模擬導論》的重新構想。這本新書著重強調了探索性數據分析(特別是使用可視化、摘要和描述性模型探索多元關系),并提供了使用隨機化和引導的基于模擬的推理的全面討論,接著介紹了基于中心極限定理的相關方法。

第1部分:數據介紹。數據結構、變量、摘要、圖形、基本數據收集和研究設計技術。 第2部分:探索性數據分析。數據可視化和總結,特別強調多變量關系。 第3部分:回歸建模。用線性和邏輯回歸建模數值和分類結果,并使用模型結果來描述關系和作出預測。 第4部分:推理的基礎。案例研究被用來引入隨機測試、bootstrap間隔和數學模型的統計推理的思想。 第5部分:統計推斷。使用隨機化測試、引導間隔和數值和分類數據的數學模型的統計推斷的進一步細節。 第6部分:推理建模。擴展推理技術提出了迄今為止的線性和邏輯回歸設置和評估模型性能。

我們希望讀者能從本書中汲取三種思想,并為統計學的思維和方法打下基礎。

  1. 統計學是一個具有廣泛實際應用的應用領域。

  2. 你不必成為數學大師,也可以從有趣的、真實的數據中學習。

  3. 數據是混亂的,統計工具是不完善的。

地址:

//www.openintro.org/book/ims/

付費5元查看完整內容

約束優化已經成為一個很好的研究領域,有一些強大的技術可以解決該領域的一般問題。在這本書中,考慮了一類特殊的約束,稱為幾何約束,它表示優化問題的解在流形上。這是一個最近的研究領域,它為更一般的約束優化方法提供了強大的替代方案。經典的約束優化技術適用于比流形大得多的嵌入式空間。因此,在流形上工作的優化算法具有較低的復雜性,而且通常還具有更好的數值特性(例如,保持能量等不變量的數值積分方案)。作者將此稱為受限搜索空間中的無約束優化。

可以用流形來描述差分方程或微分方程的思想起源于布羅克特、弗拉施卡和魯提肖瑟的工作。例如,他們描述了等譜流,這些流產生的時變矩陣彼此相似,最終收斂到有序特征值的對角矩陣。這些想法在數值線性代數領域沒有像在動力系統領域那樣得到那么多的關注,因為由此產生的差分和微分方程并沒有立即導致有效的算法實現。

這本書對發展高階優化技術的微分幾何的進行了深入的介紹,但它仍然成功地用簡單的想法解釋復雜的概念。這些思想隨后被用于發展牛頓型方法以及其他超線性方法,如信賴域方法和非精確和準牛頓方法,這些方法更加強調概念算法的高效數值實現。

付費5元查看完整內容

這本教科書強調了代數和幾何之間的相互作用,以激發線性代數的研究。矩陣和線性變換被認為是同一枚硬幣的兩面,它們的聯系激發了全書的探究。圍繞著這個界面,作者提供了一個概念上的理解,數學是進一步的理論和應用的核心。繼續學習線性代數的第二門課程,您將會對《高等線性代數與矩陣代數》這本書有更深的了解。

從向量、矩陣和線性變換的介紹開始,這本書的重點是構建這些工具所代表的幾何直觀。線性系統提供了迄今為止看到的思想的強大應用,并導致子空間、線性獨立、基和秩的引入。然后研究集中在矩陣的代數性質,闡明了它們所代表的線性變換的幾何性質。行列式、特征值和特征向量都可以從這種幾何觀點中獲益。在整個過程中,“額外主題”部分以廣泛的思想和應用擴大了核心內容,從線性規劃,到冪迭代和線性遞歸關系。每個部分都有各種層次的練習,包括許多設計用來用電腦程序解決的練習。

這本書是從線性變換和矩陣本身都是有用的對象的角度寫的,但它是兩者之間的聯系,真正打開線性代數的魔法。有時候,當我們想知道一些關于線性變換的東西時,最簡單的方法就是找到一組基然后看對應的矩陣。相反,有許多有趣的矩陣和矩陣運算家族,它們似乎與線性變換無關,但卻可以解釋一些基無關對象的行為。

線性與矩陣代數導論是線性代數的理想入門證明課程。學生被假定已經完成了一到兩門大學水平的數學課程,盡管微積分不是明確的要求。教師將會感激有足夠的機會選擇符合每個教室需求的主題,并通過WeBWorK提供在線作業集。

付費5元查看完整內容

本書由計算理論領域的知名MichaelSipser所撰寫。他以獨特的視角,地介紹了計算理論的三個主要內容:自動機與語言、可計算性理論和計算復雜性理論。作者以清新的筆觸、生動的語言給出了寬泛的數學原理,而沒有拘泥于某些低層次的細節。在證明之前,均有“證明思路”,幫助讀者理解數學形式下蘊涵的概念。本書可作為計算機高年級本科生和研究生的教材,也可作為教師和研究人員的參考書。

//staff.ustc.edu.cn/~huangwc/book/Sipser_Introduction.to.the.Theory.of.Computation.3E.pdf

付費5元查看完整內容

本書致力于概率信息測度理論及其在信息源和噪聲信道編碼定理中的應用。最終的目標是全面發展香農的通信數學理論,但大部分篇幅都用于證明香農編碼定理所需的工具和方法。這些工具形成了遍歷理論和信息論的共同領域,并包含了隨機變量、隨機過程和動力系統中的信息的幾個定量概念。例如熵、互信息、條件熵、條件信息和相對熵(鑒別、Kullback-Leibler信息),以及這些量的極限標準化版本,如熵率和信息率。在考慮多個隨機對象時,除了考慮信息之外,我們還會考慮隨機對象之間的距離或變形,即一個隨機對象被另一個隨機對象表示的準確性。書的大部分與這些量的性質有關,特別是平均信息和扭曲的長期漸近行為,其中兩個樣本平均數和概率平均數是有興趣的。

付費5元查看完整內容

《通向人工智能之路》向讀者介紹了機器學習的關鍵概念,討論了機器使用數據產生的預測的潛在應用和局限性,并為學者、律師和政策制定者之間關于如何明智地使用和管理它的辯論提供了信息。技術人員還將從過去120年與問責制、可解釋性和有偏見的數據的法律斗爭中汲取有用的經驗教訓。

//link.springer.com/book/10.1007/978-3-030-43582-0#about

付費5元查看完整內容
北京阿比特科技有限公司