亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

本教材提供了一個全面的介紹統計原理,概念和方法,是必不可少的現代統計和數據科學。涵蓋的主題包括基于可能性的推理,貝葉斯統計,回歸,統計測試和不確定性的量化。此外,這本書討論了在現代數據分析中有用的統計思想,包括bootstrapping,多元分布的建模,缺失數據分析,因果關系以及實驗設計的原則。本教材包括兩個學期課程的充足材料,旨在為數據科學、統計和計算機科學的碩士學生掌握概率論的基本知識。對于想要加強統計技能的數據科學從業者來說也是有用的。

第一章對為什么統計和統計思想在數據科學領域具有重要意義進行了一般性討論。本書的這一章還將本書與側重于統計和機器學習的其他書進行了對比。后面的第2-5章可以看作是統計估計理論的簡要介紹。這兩種方法我們都包括,頻率理論和貝葉斯理論。換句話說,我們引入似然模型,就像解釋數值方法一樣,比如貝葉斯模型中的蒙特卡羅馬爾可夫鏈。第6章討論了統計檢驗,它與使用置信區間進行不確定性量化、貝葉斯推理和分類的方法相同。前六章提供了核心教學大綱,當然更多地關注理論和概念,但較少地關注應用。第7章著眼于回歸模型的廣泛領域,雖然本章更適用于此,但它肯定沒有涵蓋該領域,因為它應該與數據科學項目的普通教育有關。在我們看來,回歸是統計學和數據科學的一個基本概念,應該在單獨的講座/課程中討論;因此,這些材料需要包含在一個單獨的書中,其中一些我們在我們的書中引用。然而,我們認為,一本不涉及回歸的統計書也是不合適的。

//github.com/SFRI-SDS-lmu/book_first_edition/

付費5元查看完整內容

相關內容

理論統計學是統計學的一個分支,它是把研究對象一般化、抽象化,以概率論為基礎,從純理論的角度,對統計方法加以推導論證,中心的內容是統計推斷問。

//www.stat.cmu.edu/~larry/all-of-statistics/

這本書是為那些想要快速學習概率和統計的人準備的。它將現代統計學的許多主要思想集中在一起。本書適合統計學、計算機科學、數據挖掘和機器學習方面的學生和研究人員。

這本書涵蓋了一個更廣泛的主題比一個典型的介紹性文本的數學統計。它包括現代主題,如非參數曲線估計,bootstrap和分類,這些主題通常歸入后續課程。假定讀者懂得微積分和一點線性代數。以前不需要概率和統計知識。該文本可用于高等本科和研究生水平。

本文的第一部分是概率論,它是不確定性的形式語言,是統計推理的基礎。

第二部分是關于統計推斷,數據挖掘和機器學習。統計推理的基本問題是概率的逆問題.

第三部分將第二部分的思想應用于具體的問題,如回歸、圖形模型、因果關系、密度估計、平滑、分類和仿真。第三部分還有一章是關于概率的,涵蓋了包括馬爾可夫鏈在內的隨機過程。

付費5元查看完整內容

本書從根本上重新思考了概率論和統計學第一課的微積分。我們提供廣度優先的方法,其中概率論和統計的要點可以在一個學期教授。通過模擬、數據爭論、可視化和統計程序,統計編程語言R在全文中扮演著核心角色。在示例和練習中使用了來自各種來源的數據集,包括許多來自最近的開放源代碼科學文章的數據集。通過模擬給出了重要事實的證明,也有一些正式的數學證明。

這本書是學習數據科學,統計,工程,計算機科學,數學,科學,商業的學生的一個優秀的選擇,或任何學生想要在模擬實踐課程的基礎上。

這本書假設有一個學期的微積分的數學背景,并且在第三章中有一些無窮級數。在第3章和第4章中,積分和無窮級數被用于表示法和說明,但在其他章節中微積分的使用很少。由于強調通過模擬來理解結果(以及對偏離假設的穩健性),本書的大部分內容(如果不是全部的話)無需微積分也能理解。提供了許多結果的證明,并通過模擬為更多的理由,但本文不打算支持一個基于證明的課程。我們鼓勵讀者遵循證明,但通常只有在首先理解結果和為什么它是重要的之后,才想要理解一個證明。

付費5元查看完整內容

你們已經學過了一些基本的統計學知識。均值、中位數和標準差都很熟悉。你知道調查和實驗,以及相關和簡單回歸的基本概念。你已經學習了概率,誤差范圍,一些假設檢驗和置信區間。你準備好為你的統計工具箱裝載新的工具了嗎?Statistics II For Dummies, 2nd Edition,拾取了Statistics For Dummies, 2nd Edition, (John Wiley & Sons)的右邊,并保持你沿著統計學的想法和技術的道路,以積極的,一步一步的方式。《傻瓜統計II》第二版的重點是尋找更多分析數據的方法。我會一步一步地說明如何使用一些技術,如多元回歸、非線性回歸、單向和雙向方差分析(ANOVA)和卡方檢驗,我還會給你一些使用大數據集的練習,這是現在非常流行的。使用這些新技術,您可以根據手頭的信息估計、調查、關聯和聚集更多的變量,并看到如何將這些工具組合在一起,創建一個關于您的數據的偉大故事(我希望是非虛構的!)。

//www.wiley.com/en-ag/Statistics+II+For+Dummies,+2nd+Edition-p-9781119827399

這本書是為那些已經通過置信區間和假設檢驗完成統計學的基本概念的人設計的(在《傻瓜統計學》第二版中找到),他們已經準備好了通過Stats I的最后部分,或者解決Stats II的問題。不過,我還是會根據需要對Stats進行一些簡要概述,以提醒您所涵蓋的內容,并確保您了解最新情況。對于每一項新技術,您都可以從經驗豐富的數據分析師(真正屬于您的)那里獲得關于何時以及為何使用它的概述,如何知道何時需要它,如何應用它的逐步指導,以及提示和技巧。因為知道何時使用哪種方法是非常重要的,我強調是什么使每一種技術不同,以及結果告訴你什么。您還將看到這些技術在現實生活中的許多應用。

付費5元查看完整內容

本書是Coursera統計推理課程的配套教材,是數據科學專業的一部分。然而,如果你不上這門課,這本書基本上是獨立的。這本書的一個有用的組成部分是包括Coursera課程的一系列YouTube視頻。這本書是對統計推斷做介紹。目標受眾是具有數字和計算能力的學生,他們希望將這些技能用于數據科學或統計學。

//github.com/bcaffo/LittleInferenceBook

付費5元查看完整內容

在過去的十年里,人們對人工智能和機器學習的興趣有了相當大的增長。從最廣泛的意義上說,這些領域旨在“學習一些有用的東西”,了解生物體所處的環境。如何處理收集到的信息導致了算法的發展——如何處理高維數據和處理不確定性。在機器學習和相關領域的早期研究階段,類似的技術在相對孤立的研究社區中被發現。雖然不是所有的技術都有概率論的自然描述,但許多都有,它是圖模型的框架(圖和概率論的結合),使從統計物理、統計、機器學習和信息理論的想法的理解和轉移。在這種程度上,現在有理由期待機器學習研究人員熟悉統計建模技術的基礎知識。這本書集中在信息處理和機器學習的概率方面。當然,沒有人說這種方法是正確的,也沒有人說這是唯一有用的方法。事實上,有人可能會反駁說,這是沒有必要的,因為“生物有機體不使用概率論”。無論情況是否如此,不可否認的是,圖模型和概率框架幫助機器學習領域出現了新算法和模型的爆炸式增長。我們還應該清楚,貝葉斯觀點并不是描述機器學習和信息處理的唯一方法。貝葉斯和概率技術在需要考慮不確定性的領域中發揮了自己的作用。

//www0.cs.ucl.ac.uk/staff/d.barber/brml/

本書結構

本書第一部分的目的之一是鼓勵計算機科學專業的學生進入這一領域。許多現代學生面臨的一個特別困難是有限的正規微積分和線性代數訓練,這意味著連續和高維分布的細節可能會讓他們離開。在以概率作為推理系統的一種形式開始時,我們希望向讀者展示他們可能更熟悉的邏輯推理和動態規劃的想法如何在概率環境中有自然的相似之處。特別是,計算機科學的學生熟悉的概念,算法為核心。然而,在機器學習中更常見的做法是將模型視為核心,而如何實現則是次要的。從這個角度來看,理解如何將一個數學模型轉換成一段計算機代碼是核心。

第二部分介紹了理解連續分布所需的統計背景,以及如何從概率框架來看待學習。第三部分討論機器學習的主題。當然,當一些讀者看到他們最喜歡的統計話題被列在機器學習下面時,他們會感到驚訝。統計學和機器學習之間的一個不同觀點是,我們最終希望構建什么樣的系統(能夠完成“人類/生物信息處理任務的機器),而不是某些技術。因此,我認為這本書的這一部分對機器學習者來說是有用的。第四部分討論了明確考慮時間的動態模型。特別是卡爾曼濾波器被視為圖模型的一種形式,這有助于強調模型是什么,而不是像工程文獻中更傳統的那樣把它作為一個“過濾器”。第五部分簡要介紹了近似推理技術,包括隨機(蒙特卡羅)和確定性(變分)技術。

付費5元查看完整內容

《現代統計學導論》是對之前的游戲《統計學與隨機化和模擬導論》的重新構想。這本新書著重強調了探索性數據分析(特別是使用可視化、摘要和描述性模型探索多元關系),并提供了使用隨機化和引導的基于模擬的推理的全面討論,接著介紹了基于中心極限定理的相關方法。

第1部分:數據介紹。數據結構、變量、摘要、圖形、基本數據收集和研究設計技術。 第2部分:探索性數據分析。數據可視化和總結,特別強調多變量關系。 第3部分:回歸建模。用線性和邏輯回歸建模數值和分類結果,并使用模型結果來描述關系和作出預測。 第4部分:推理的基礎。案例研究被用來引入隨機測試、bootstrap間隔和數學模型的統計推理的思想。 第5部分:統計推斷。使用隨機化測試、引導間隔和數值和分類數據的數學模型的統計推斷的進一步細節。 第6部分:推理建模。擴展推理技術提出了迄今為止的線性和邏輯回歸設置和評估模型性能。

我們希望讀者能從本書中汲取三種思想,并為統計學的思維和方法打下基礎。

  1. 統計學是一個具有廣泛實際應用的應用領域。

  2. 你不必成為數學大師,也可以從有趣的、真實的數據中學習。

  3. 數據是混亂的,統計工具是不完善的。

地址:

//www.openintro.org/book/ims/

付費5元查看完整內容
北京阿比特科技有限公司