本教科書通過應用在電氣工程和計算機科學(EECS)說明了應用概率的技術。作者介紹了使用基于概率模型和技術的算法的信息處理和通信系統,包括網絡搜索、數字鏈接、語音識別、GPS、路線規劃、推薦系統、分類和估計。然后,他解釋了這些應用是如何工作的,并在此過程中,為讀者提供了應用概率的關鍵概念和方法的理解。Python實驗室使讀者能夠進行實驗并鞏固他們的理解。這個版本包括新的主題,統計測試,社會網絡,排隊網絡,和神經網絡。有關本書的輔助資料,包括Python演示和伯克利使用的Python實驗室的例子。
這本最新的教科書是向數學、計算機科學、工程、統計學、經濟學或商業研究的新學生介紹概率論和信息理論的一個極好的方式。它只需要基本的微積分知識,首先建立一個清晰和系統的基礎: 通過對布爾代數度量的簡化討論,特別關注概率的概念。這些理論思想隨后被應用到實際領域,如統計推斷、隨機游走、統計力學和通信建模。主題涵蓋了離散和連續隨機變量,熵和互信息,最大熵方法,中心極限定理和編碼和信息傳輸,并為這個新版本添加了關于馬爾可夫鏈和它們的熵的材料。大量的例子和練習包括說明如何使用理論在廣泛的應用,與詳細的解決方案,大多數練習可在網上找到。
這本書的目的是介紹計算機科學家所需要的一些基本數學知識。讀者并不期望自己是數學家,我們希望下面的內容對你有用。
高維概率提供了對隨機向量、隨機矩陣、隨機子空間和用于量化高維不確定性的對象的行為的洞察。借鑒了概率、分析和幾何的思想,它適用于數學、統計學、理論計算機科學、信號處理、優化等領域。它是第一個將高維概率的理論、關鍵工具和現代應用集成起來的。集中不等式是其核心,它涵蓋了Hoeffding和Chernoff等經典不等式和Bernstein等現代發展。然后介紹了基于隨機過程的強大方法,包括Slepian的、Sudakov的和Dudley的不等式,以及基于VC維的泛鏈和界。整本書包含了大量的插圖,包括經典和現代的協方差估計、聚類、網絡、半定規劃、編碼、降維、矩陣補全、機器學習、壓縮感知和稀疏回歸等結果。
這是一本教科書在高維概率與數據科學的應用展望。它是為博士和高級碩士學生和數學,統計,電子工程,計算機科學,計算生物學和相關領域的初級研究人員,誰正在尋求擴大他們的理論方法在現代研究數據科學的知識。
Python中的數據科學和分析是為學術和商業環境中的數據科學和數據分析從業者設計的。其目的是通過使用Python開發的工具(如SciKit-learn、Pandas、Numpy等)向讀者介紹數據科學中使用的主要概念。鑒于Python最近在數據科學社區的流行,它的使用特別有趣。有經驗的程序員和新手都可以使用這本書。
本書的組織方式是各個章節相互獨立,這樣讀者就可以放心地使用其中的內容作為參考。這本書從過程和獲得的結果的角度討論了什么是數據科學和分析。還介紹了Python的重要特性,包括Python入門。機器學習、模式識別和人工智能的基本元素在書的其余部分使用的算法和實現的基礎上也出現在書的第一部分。
本書的第二部分介紹了使用Python、聚類技術和分類算法的回歸分析。層次聚類、決策樹和集成技術,以及降維技術和推薦系統也被探討。書的最后一部分討論了支持向量機算法和內核技巧。
如果您是用Python編程的新手,并且正在尋找可靠的介紹,那么這本書就是為您準備的。由計算機科學教師開發,在“為絕對初學者”系列叢書通過簡單的游戲創造教授編程的原則。您將獲得實際的Python編程應用程序所需的技能,并將了解如何在真實場景中使用這些技能。在整個章節中,你會發現一些代碼示例來說明所提出的概念。在每一章的結尾,你會發現一個完整的游戲,展示了這一章的關鍵思想,一章的總結,以及一系列的挑戰來測試你的新知識。當你讀完這本書的時候,你將非常精通Python,并且能夠將你所學到的基本編程原理應用到你要處理的下一種編程語言。
管理統計和數據科學的原理包括:數據可視化;描述性措施;概率;概率分布;數學期望;置信區間;和假設檢驗。方差分析;簡單線性回歸;多元線性回歸也包括在內。另外,本書還提供了列聯表、卡方檢驗、非參數方法和時間序列方法。
教材:
這本書來自統計學習課程,這是一門統計機器學習的入門課程,面向具有一些微積分、線性代數和統計學背景的學生。這門課程的重點是監督學習:分類和回歸。本課程將涵蓋機器學習和數據科學中使用的一系列方法,包括:
這些方法將在整個課程中被研究并應用于來自各種應用的真實數據。課程還涵蓋了一些重要的實際問題,如交叉驗證、模型選擇和偏方差權衡。課程包括理論(例如,推導和證明)以及實踐(特別是實驗室和小型項目)。實際部分將使用Python實現。
高斯過程(GPs)為核機器的學習提供了一種有原則的、實用的、概率的方法。在過去的十年中,GPs在機器學習社區中得到了越來越多的關注,這本書提供了GPs在機器學習中理論和實踐方面長期需要的系統和統一的處理。該書是全面和獨立的,針對研究人員和學生在機器學習和應用統計學。
這本書處理監督學習問題的回歸和分類,并包括詳細的算法。提出了各種協方差(核)函數,并討論了它們的性質。從貝葉斯和經典的角度討論了模型選擇。討論了許多與其他著名技術的聯系,包括支持向量機、神經網絡、正則化網絡、相關向量機等。討論了包括學習曲線和PAC-Bayesian框架在內的理論問題,并討論了幾種用于大數據集學習的近似方法。這本書包含說明性的例子和練習,和代碼和數據集在網上是可得到的。附錄提供了數學背景和高斯馬爾可夫過程的討論。