亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

為滿足國防領域對高效數據分析和決策日益增長的需求,美海軍正優先發展能夠處理多源數據并提出行動方案的人工智能/機器學習(AI/ML)系統。歷史上,許多此類系統因技術問題、缺乏可用性或任務相關性而失敗。人機協作研究旨在創建能夠更好融入一線操作員工作流程的AI系統。美國國家科學院、工程院和醫學院(NASEM)近期的一份報告提出了57項研究目標,但美國海軍需要一組更聚焦的優先事項。在太平洋海軍信息戰中心舉辦了一場由多領域23位專家參與的研討會,最終確定了跨越不同時間范圍的五項關鍵研究重點。本專題討論將分析該研討會的成果,重點探討會前存在的關鍵問題及會后產生的新問題。參與專家來自政府、學術界和工業界,為人機協作的重大問題提供了獨特視角。

美國海軍與美國武裝力量其他軍種同樣認識到AI有潛力在幾乎所有任務環節協助作戰人員。能夠接收多源數據、分析識別模式并推薦行動方案的系統,可為棘手問題生成新見解和創造性解決方案。

人機協作研究被視為美國海軍艦隊采用AI的關鍵推動因素,因為以往許多技術因存在技術、可用性與可維護性挑戰而采納過慢(或根本未被采納)。盡管美國國家科學院近期發布了詳細列出57項研究目標的報告,以更好地協調、支持和評估人機團隊,但美國海軍仍希望進一步聚焦范圍,將這些研究方向縮減至三大目標:

(1)確定具體工作單元以支持提案、資金申請與執行;
(2)根據海軍需求將已識別的工作單元歸類為近期、中期與遠期研究重點;
(3)進一步結合研究可行性與難度,將這些重點與對應時間框架對齊。

為支持這些目標,太平洋海軍信息戰中心(NIWC Pacific)舉辦了一場研討會,來自學術界、工業界和政府的23位人因工程與計算機科學家參會,另有三名現役水兵作為實戰領域的海軍主題專家(SMEs)。研討會成果最終提煉為五項跨越近期、中期與遠期投資時間范圍的研究重點。兩項近期重點為:(1)開發人機協作效能度量標準,(2)構建人機協作測試平臺。一項中期重點——人機團隊任務分配,是在研討會討論中形成的,其內涵超越功能分配,旨在探索如何最優分配任務。兩項已識別的遠期重點聚焦于(1)開發AI對人類隊友的感知能力,(2)建立人機團隊開發團隊(即采用多學科方法構建成功的人機團隊)。這些目標因技術復雜性及對作戰人員組織結構的挑戰而被歸為遠期重點。研究優先級如何劃分存在不確定性,包括可能存在競爭性策略這一事實,推動了與會者之間的深入討論。主要討論點強調了需進一步開展戰略思考和更精細化優先級劃分的領域,例如如何推進測試平臺開發和人機協作度量標準。解決這兩項近期重點將推動許多人機協作研究活動,但首先需明確評估內容及原因。本次專題討論將承接研討會未盡議題,并邀請會議參與者貢獻觀點。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

當前,人們對新興與顛覆性技術(Emerging and Disruptive Technologies, EDTs)的特性及潛在影響興趣日增。從國防視角出發,需探明這些技術能否以優于或不同于現有方式實現關鍵能力需求。為此,需建立技術評估方法,即在技術被集成入系統/能力前,盡早評估其潛力(可能實現的功能)。基于北約SAS-159研究任務組的成果,本文提出一個框架,用于理解技術發展如何重塑未來作戰環境。借助該框架,可描述技術對物理、虛擬與認知維度中"變革要素"——空間、時間、感知、認知、選擇與效果——的影響,同時評估這些技術對軍事功能與作戰的潛在作用,以及其如何支撐北約戰爭特征概念(NWCC)中的"六個外"戰略要素。上述分析將整合為技術軍事潛力的評估報告。本文還將闡釋該框架如何結構化連接EDTs可能引發的基礎性、戰術性與作戰性變革,為優化技術賦能軍事優勢的投資決策與戰略規劃提供堅實依據。

SAS-159框架中的規劃者視角聚焦于三個步驟。首先,關注作戰影響,即技術如何在北約軍事職能與行動類型的背景下改變未來作戰環境(HOW)及作用領域(WHERE)。規劃者視角還需驗證特定技術是否真正使北約能在某項能力上超越對手(out-'x'),具有重要價值。基于北約戰爭特征概念(NWCC)的邏輯,2040年軍事力量工具(MIoP)需以優勢為基、機遇為機、漏洞為盾,致力于實現"六勝"目標——智勝(out-think)、優勝(out-excel)、戰勝(out-fight)、速勝(out-pace)、聯勝(out-partner)、持勝(out-last)。最后一步聚焦于解析北約(或其成員國)為何(WHY)應投資某項顛覆性技術以實現智勝對手。圖3展示了用于引導用戶完成該流程的HOW(如何)、WHERE(何處)與WHY(為何)矩陣。

付費5元查看完整內容

該項目對利用無人載具(UVC)概念支持分布式海上行動(DMO)的操作和設計考慮因素進行評估。該評估為投資和開發與利用無人系統、潛在的 UVC 及其與有人艦隊的集成相關的操作概念提供信息。該項目開發了 DMO 的架構表征,包括相關系統的定義以及相關的操作活動。這些表征是仿真模型開發的基線,該模型研究了 UVC 可能對作戰可用性和持續性產生的影響。模擬分析分兩個階段進行。第一階段評估了 UVC 在 90 天代表性運行情況下的總體影響。分析表明,UVC 對運行可用性有積極影響。值得注意的是,這種影響在有機續航時間有限的無人系統中更為明顯。對于不同等級的無人系統,采用 UVC 后,運行可用性的提高幅度最低為 6%,最高為 31%。第二階段分析研究了 UVC 的設計特點,以確定 UVC 的關鍵性能驅動因素。分析發現,無人水面艦艇和無人水下艦艇發射和回收井甲板的數量比無人飛行器發射和回收站的數量影響更大。與對固定式 UVC 配置的評估類似,該分析表明,對于續航時間有限的無人系統而言,增加回收和維修站數量的影響更大,這表明 UVC 本身的適當設計與 UVC 所支持系統的設計特性有著內在的聯系。

付費5元查看完整內容

為支持在不確定的動態環境中長期部署,同時減少人類面臨的威脅和危險,有必要將更多支持人工智能(AI)的機器人整合到軍事和第一反應領域。人工智能機器人作為人類隊友的有效整合將提供支持并提高整體任務性能;然而,目前有關人機交互的研究大多只關注機器人團隊主管。要將機器人真正融入軍事和第一反應任務,需要人類扮演從最高指揮層到直接與機器人一起工作的下地人員等多種角色。層級結構中的所有人類角色都必須了解并保持對機器人隊友的直接控制。本文將文獻中現有的人類角色映射到軍事任務中,提出了與未來人類-機器人團隊合作相關的技術挑戰,并提供了潛在的解決方案和建議,以推動該領域向能夠完成相關領域任務的人類-機器人團隊邁進。

圖:人類與機器人協同作戰的概念軍事示意圖,顯示了 (a) 前沿作戰基地、(b) 下裝巡邏和 (c) 車輛巡邏的示例。請注意,為便于查看,人員、機器人和車輛均已放大。

圖 1 提供了角色圖示,用于說明軍事小故事。有些角色將駐扎在遠離戰場或事件響應區(也稱為熱區)的地方,在那里他們可以從更廣闊的視角來了解需要管理的情況。如圖 1a 所示,這類軍事角色可能駐扎在前方作戰基地。圖 1b 和 c 顯示了結合地面和空中機器人的兩個部署示例,一個是徒步巡邏,另一個是乘車巡邏。這些示例展示了不同角色如何分布在一個軍事單元中,并包括平民旁觀者。

付費5元查看完整內容

本研究為基于人工智能的復雜作戰系統的運行和開發建立了 MUM-T 概念和分類系統。分析了該系統的核心方面:自主性、互操作性和程序級別。人工智能 MUM-T 可提高有人駕駛系統的生存能力、擴大其作戰范圍并提高戰斗力。利用美國和英國正在建造的人工智能 MUM-T 綜合作戰系統的數據,分析了技術挑戰和項目水平。目前,MUM-T 處于有人駕駛平臺和無人駕駛飛行器平臺復合運行的水平。從中長期來看,無人地面飛行器、無人水面飛行器和無人水下飛行器等異構平臺之間的互操作通信是可能的。根據人工智能 MUM-T 系統之間互操作性的通用架構和標準協議的發展水平,MUM-T 可以從 "1 到 N "的概念發展到從 "N 到 N "的各種操作概念組合。本研究與現有研究的不同之處在于,MUM-T 系統中體現了第四次工業革命的核心技術,如人工智能、自動駕駛和數據互操作性。此外,通過在現有的無人系統分類法中體現人工智能和自主性,建立了人工智能支持的自主 MUM-T 操作和設施分類系統,并在此基礎上對級別和程序進行了分析。

本研究確立了有人無人協同作戰(MUM-T)的概念,目的是操作、開發和利用智能聯合作戰系統。此外,它還分析了互操作性、自主性、挑戰和計劃水平。人工智能支持的自主無人 MUM-T 提高了有人系統的生存能力,擴大了作戰范圍,并顯著提高了作戰效率。與以往不同的是,MUM-T 的概念正隨著人工智能的發展而不斷擴展,互操作性和自主性也在相應提高。美國和北大西洋公約組織(NATO)國家提出了未來防御領域的挑戰,并在無人系統(UMS)和 MUMT 層面開展了解決這些挑戰的計劃。本研究分析了自主 MUM-T 聯合作戰系統的運行和使用所面臨的技術挑戰和計劃水平,并介紹了基本要素技術。研究方法基于現有定義和第四次工業革命建立了 MUM-T 概念。并利用北約、美國和英國的數據分析了互操作性、自主性、挑戰以及技術和利用方面的計劃水平。

圖 2 基于 NIST 和北約分類標準的人工智能自主 MUM-T 系統分析

美國防部(DoD)對 MUM-T 的定義各不相同。美國 陸軍無人機系統卓越中心(UAUCE)將有人駕駛平臺和無人機視為單一系統。有人系統和無人系統(如機器人、傳感器、無人飛行器和作戰人員)的集成增強了態勢感知、殺傷力和生存能力[1]。國防部將這種關系視為執行共同任務的綜合團隊,美國陸軍航空卓越中心(UAACE)將其定義為同時操作士兵、無人機和無人地面飛行器(UGV),以提高對態勢的了解和生存能力[2]。它采用了標準化的系統架構和通信協議,使來自傳感器的精確圖像數據能夠在整個部隊中共享。目前,它在國防領域的應用最為廣泛。陸軍航空動力局(AFDD 2015)將其定義為:為每個系統提供特殊功能,使現有有人平臺和無人資產能夠合作完成同一任務。這是一種規避風險的方法,通過從空中、陸地和海上無人系統向有人資產傳輸實時信息,提高單兵作戰人員的態勢感知能力[3]。圖 1 是戰場上 MUM-T 系統的層次示意圖。

在世界經濟論壇(WEF)議程的第四次工業革命(Fourth IR)之后,數字化(I2D2)作為一項核心技術被提出。這些技術在未來科學中具有自主、分析、通信和邊緣計算的特點。該技術的特征組合構成了自主系統和智能體(智能+分布式)、擴展領域(互聯+分布式)、作戰網絡(互聯+數字化)、精確作戰領域(智能+數字化)。智能人工智能將改變戰爭的格局,而數字數據的可用性將使分布式和互聯(自主)系統能夠進行分析、適應和響應。這些變化反過來又可能通過預測分析支持更好的決策。

北約(2020 年)以第四次工業革命的核心技術特征及其組合為導向,構建復雜的作戰系統[4-6]。美國國防發展機構(ADD 2018)認為,MUM-T 復雜系統是一種無人作戰系統,可以補充或替代作戰人員的能力,以最大限度地提高作戰效率,最大限度地減少戰場情況下的人員傷亡。它被定義為以一種復雜的方式操作包括戰斗人員在內的有人作戰系統的作戰系統[7]。考慮到美國國防部(2010)、北約(2020)和 ADD(2018)的定義,人工智能支持的自主 MUM-T 復雜作戰系統(以下簡稱 "自主 MUM-T")和 OODA 循環如表 1 所示[1,5,7]。本研究所指的 MUM-T 復合作戰系統通過聯合指揮與控制,在空中、地面、海上、太空、網絡和戰爭等所有領域提供觀察、分析和控制,可通過整合/連接所有軍事力量的有人和無人系統進行操作。它被定義為 "根據決策和行動執行聯合行動的作戰系統"。

圖 3 北約 STANAG LOI 5 和自主邊緣計算 MUM-T 互操作水平設計

付費5元查看完整內容

水下監視技術出現于冷戰時期。該技術解密后,學術界對其進行了深入研究,并取得了諸多進展。無人潛航器(UUV)的開發就是海洋領域的進步之一,它能夠增強作戰能力,同時降低人類生命危險。雖然這項技術已經商業化,但在海軍中的應用卻很有限。其有限的發展主要是由開發商和資助他們的政府推動的。然而,由于這項技術能為軍隊帶來諸多好處,因此需要盡快將其納入海軍。這實質上意味著,要想在海軍使用/應用中獲得更多認可,就必須將該技術融入海軍。反過來,這就需要回答許多問題,了解事實,以增強對該技術及其潛力的信心。因此,本文討論了其中一些有助于彌補知識差距的問題,以促進未來海軍對 UUV 技術的接受和應用。雖然本文試圖提供全面的答案,但這些答案并不完整,只能作為討論的起點。就目前而言,技術是存在的,但缺乏想象力卻阻礙了其使用。

圖 2 已詳細說明了 UUV 在軍事領域可發揮的廣泛作用,在此,將討論每種作用的可能任務概況。迄今為止,已知美國、俄羅斯和中國等國家運營著大量不同大小和形狀的軍用 UUV。圖 3 顯示了美國部分軍用 UUV 的范圍,圖 4 顯示了其他國家部分軍用 LDUUV 的范圍。

(a) 情報、監視和偵察。從海洋中收集關鍵的電磁和光電數據將有助于擴大被拒地區的信息范圍,特別是常規平臺無法進入的淺水區。UUV 可以輕松進入這些區域,提供所需的信息。

(b) 海洋學。為了在極端的海洋環境中實現更高的可操作性,必須收集實時情報數據并提供給操作人員,以便在進攻時更好地制定計劃。出于 "用戶舒適度和安全性 "的考慮,載人平臺收集此類數據的能力有限,因此無人平臺和固定平臺被認為是未來的一種可能(Agarwala,2020 年)。

(c) 通信/導航網絡節點(CN3)。通過在有人和無人平臺之間提供一個閉環網絡,CN3 系統有助于為水下平臺提供更強的連接性和控制性,否則這些平臺就必須浮出水面以刷新其全球定位系統進行導航。這樣的通信網絡可提高無人潛航器的安全性和控制能力,同時幫助它們在不被探測到的情況下輕松、長時間地開展 ISR 活動(Munafò 和 Ferri,2017 年)。

(d) 反水雷措施。為確保港口和航道可供軍艦安全作業,并確保敵方類似港口和航道無法使用,最簡單的進攻方式就是布設 "水雷"。為了在不危及人命的情況下做到這一點,UUV 得到了有效利用。在任何平臺上使用無人潛航器,都能提高在敵方水域布設水雷和在己方水域清除水雷的效率,從而無需依賴專門的掃雷艇。

(e) 反潛戰。為了 "遏制 "在狹窄水域、咽喉地帶或艦隊附近活動的潛艇,UUV 可以發揮巨大作用。在此過程中,UUV 可以為載人平臺提供必要的安全保障,同時限制敵方潛艇的行動。

(f) 檢查/識別。為了對船體、碼頭和停泊區及其周圍的密閉空間進行快速搜索,以排除反恐方面的顧慮,并確保在必要時進行爆炸物處理,UUV 可以得到廣泛而有效的使用。這些努力將確保港口、航道和泊位的安全。

(g) 有效載荷交付。由于無人潛航器難以被探測到,而且可以在淺水區輕松作業,因此可用于秘密投放有效載荷。這種有效載荷可以是敵后補給品,也可以是摧毀敵方資產的彈藥。

(h) 信息作戰。由于 UUV 體型小,在淺水區也能輕松運作,因此是收集信息的有力平臺。此外,它們還可用作誘餌和通信網絡干擾器。

(j) 關鍵時刻打擊。能夠及時精確地投放彈藥并最大限度地減少敵方的反應時間是一項關鍵活動。用無人潛航器投放彈藥時,可將其投放到離海岸較近的地方,確保縮短敵方的反應時間。這種行為還有助于避免暴露大型有人駕駛平臺的位置,以免遭報復性打擊。

付費5元查看完整內容

美空軍研究實驗室(AFRL)的使命是為空中、太空和網絡空間部隊領導作戰技術的發現、開發和交付。為完成這一使命,空軍研究實驗室需要獲得國內外的研發(R&D)和技術人才。美國空軍后勤部的國際組合和參與方法很好地利用了國際研發和人才,但僅靠這些方法可能不足以獲取越來越多的海外研究成果。為此,美國空軍后勤部委托進行了這項研究,以探討在美國空軍后勤部目前的海外辦事處(負責考察和資助研發工作)之外,在海外實驗室建立強大的實際存在的各種方案。根據這項研究獲得的信息,提出了四項主要建議: 2) 擴大、簡化和充分利用各種方法,將 AFRL 技術人員嵌入海外實驗室;3) 開展國際合作,應對駐地研發挑戰;以及 4) 不尋求影響國際科技資金的方法。

這項研究包括六項任務:

任務 1:確定在海外實驗室建立實體機構的目標
任務 2:記錄行業和大學在海外實驗室方面的經驗
任務 3:確定在海外實驗室建立實體機構的方法
任務 4:將行業/大學的經驗與建議的目標和方法進行比較
任務 5:評估功能要求
任務 6:建議

付費5元查看完整內容

該項目為與使用無人系統支持分布式海戰(DMO)有關的作戰概念和系統設計決策提供信息。研究通過系統地改變仿真模型中的系統設計特征和作戰活動,支持對無人系統(UVC)進行能力級分析。分析結果表明,UVC 可提高各種無人系統的作戰可用性(Ao)和使用時間(TOS),因為它可隨時進入維護、加油和重新武裝設施,而無需長時間前往岸基設施或分布式支援艦艇。在比較使用 UVC 的配置與在自適應兵力包 (AFP) 中分配無人系統支持的配置時,單個無人系統的 Ao 提高了 6% 到 31%。仿真模型分析確定了 UVC 架構,其中包括至少 8 個無人機發射回收站、至少 3 個船舷托架和至少 5 個甲板井托架,以最大限度地提高 Ao。

在支持分布式海上作戰(DMO)時,無人系統有可能發揮兵力倍增器的作用,在提高殺傷力的同時降低有人系統的風險。然而,無人系統到岸基維護、加油和重新武裝設施的轉運時間減少了可用于支持執行 DMO 的自適應兵力包(AFP)的總體駐扎時間(TOS)。本項目研究了無人水面艦艇 (USV)、無人水下航行器 (UUV) 和無人機 (UAV) 在美國海軍現有艦艇上的集成問題,該艦艇已被重新改裝為無人載具 (UVC)。在本報告中,"UxV "一詞用于描述無人系統這一類別。

如 Van Bossuyt 等人(2019 年)所述,項目團隊采用了系統定義、系統建模和系統分析的通用系統工程流程序列。在系統定義過程中,項目團隊重點開發了作戰概念(CONOPS),并定義了 UVC 的系統要求。系統建模活動的重點是構建 UVC 的離散事件仿真模型。在系統分析階段,團隊利用所開發的模型來評估 UVC 的各種設計參數對每種無人系統類型的運行可用性(Ao)的影響。

A. 系統定義

在系統定義階段,從自上而下和自下而上的角度開發和考慮了 UVC 要求。從自上而下的角度來看,團隊分析并確定了滿足總體任務有效性目標所需的能力,而與任何現有的候選平臺無關。從自下而上的角度來看,團隊評估了一艘登陸直升機船塢(LHD)艦,以確定該平臺可實現的最大 UVC 能力。通過查閱文獻和分析利益相關者的需求,項目團隊確定了 UVC 的以下關鍵能力:指揮與控制 (C2)、UxV 發射、UxV 維護和 UxV 回收。根據設想,UVC 將包括著陸甲板無人機發射和回收站、無人機維護/布防/燃料艙、用于大型 USV/UUV 操作的船舷艙或站,以及用于小型 USV/UUV 操作的井甲板艙。

B. 系統建模

項目構想將 UVC 視為針對地面和岸上敵對兵力實施 DMO 的 AFP 的一部分。UVC 的作用是支持 UxV 對敵方岸基導彈基地進行偵察和打擊。在打擊階段之前、期間和之后,UxV 提供全天候的情報、監視和偵察(ISR)、目標定位和戰損評估服務。UVC 的總體目標是通過消除到岸基支持設施的較長運輸時間來增加 UxV 的全時服務時間。為實現這一總體目標,研究小組選擇 "航程 "和 "持續停留時間 "作為性能指標(MOP),并選擇 "UxV 任務時間"、"UxV 停機時間 "和 "維護灣利用率 "作為效果指標(MOE)。

設計并開發了一個離散事件仿真模型,用于分析 UVC 設計參數對 MOP 和 MOE 的影響。該模型是通過 ExtendSim10 建模程序開發的。該模型包括 UxV 發射和回收、UxV 維護活動以及 UxV 重新武裝和加油活動。UxV 的發射時間表和總模擬運行時間是根據擬議的 UVC CONOPS 制定的。目前,該模型并未考慮 UxV 的損失或故障;這是未來可能開展工作的一個領域。模型的主要輸出是每種 UxV 的 Ao。

C. 系統分析

為了廣泛探索實驗空間,同時減少試驗總數和模型運行時間,我們專門設計了一個填充空間的拉丁超立方設計。每次試驗重復模擬 30 次并收集結果。合并所得的 Ao 值,得出每個試驗的統計平均值。

分析結果表明,UVC 可隨時提供維護、加油和重新武裝設施,而無需在岸基設施或分布式支援艦艇之間進行長時間的轉運,從而改善了每種 UxV 的 Ao 值和 TOS 值。對于任何特定的 UxV,通過增加 UVC 發射、回收和維護站的數量,從而消除或減少這些服務的排隊時間,可獲得最大的 Ao。分析表明,UVC 在設計時應至少配備 8 個無人機發射/回收站、至少 3 個船舷托架和至少 5 個焊接甲板托架。這些參數沒有確定上限,這也是未來研究的一個潛在領域。

有趣的是,雖然 UVC 的存在改善了大型無人水面艦艇(LUSV)的航速,但 UVC 的實際設計似乎對 LUSV 的航速沒有影響。這可能是由于 LUSV 的假定任務持續時間長,假定維護間隔長,因此不可能出現任何排隊現象。單個船側停泊區似乎足以為多艘 LUSV 提供服務,但即使是單個船側停泊區,也可通過消除到岸基設施的轉運時間來改善 Ao。

付費5元查看完整內容

作為分布式海上作戰(DMO)的一個關鍵原則,盡管有人和無人、水面和空中、作戰人員和傳感器在物理時空上都有分布,但它們需要整合成為一支有凝聚力的網絡化兵力。本研究項目旨在了解如何為 DMO 實現有凝聚力的作戰人員-傳感器集成,并模擬和概述集成實施所需的系統能力和行為類型。作為一個多年期項目,本報告所述的第一項工作重點是建立一個適用于 DMO 建模、模擬和分析的計算環境,尤其側重于有人和無人飛機的情報、監視和偵察 (ISR) 任務。

在半個世紀的建模和仿真研究與實踐(例如,見 Forrester, 1961; Law & Kelton, 1991),特別是四分之一世紀的組織建模和仿真工作(例如,見 Carley & Prietula, 1994)的基礎上,獲得了代表當前技術水平的計算建模和仿真技術(即 VDT [虛擬設計團隊];見 Levitt 等人, 1999)。這種技術利用了人們熟知的組織微觀理論和通過基于代理的互動而產生的行為(例如,見 Jin & Levitt, 1996)。

通過這種技術開發的基于代理的組織模型在大約三十年的時間里也經過了數十次驗證,能夠忠實地反映對應的真實世界組織的結構、行為和績效(例如,參見 Levitt, 2004)。此外,幾年來,已將同樣的計算建模和仿真技術應用到軍事領域(例如,見 Nissen, 2007),以研究聯合特遣部隊、分布式作戰、計算機網絡行動和其他任務,這些任務反映了日益普遍的聯合和聯盟努力。

本報告中描述的研究項目旨在利用計算建模來了解如何為 DMO 實現有凝聚力的戰斗傳感器集成,并建模和概述集成實施所需的系統能力和行為類型。作為一個多年期項目,本報告所述的第一項工作重點是建立一個適用于 DMO 建模、模擬和分析的計算環境。在這第一項工作中,將對當今的海上行動進行建模、模擬和分析,重點是有人駕駛和無人駕駛飛機的情報、監視和偵察(ISR)任務。這為與執行 ISR 任務的一個或多個 DMO 組織進行比較確立了基線。這也為與其他任務(如打擊、防空、水面戰)進行比較建立了基線。第二階段接著對一個或多個備用 DMO 組織進行建模、模擬和分析。

在本技術報告的其余部分,首先概述了 POWer 計算實驗環境,并列舉了一個實例,以幫助界定 DMO 組織和現象的計算建模。依次總結了研究方法。最后,總結了沿著這些方向繼續開展研究的議程。這些成果將極大地提高理解和能力,使能夠為 DMO 實現戰斗員與傳感器的集成,并為集成實施所需的系統能力和行為建模和概述。

付費5元查看完整內容

人工智能(AI)是一項具有廣泛用途的新興技術。《美國防戰略》強調了人工智能對軍事行動的重要性,以使美國保持對其近似競爭對手的優勢。為了充分實現這一優勢,不僅要在戰術層面,而且要在戰爭的作戰層面整合人工智能。人工智能可以最有效地融入作戰計劃的復雜任務,方法是將其細分為其組成部分的作戰功能,這些功能可以由狹義的人工智能來處理。這種組織方式將問題減少到可以由人工智能解析的規模,并保持人類對機器支持的決策的監督。

引言

人工智能是一套新興的、變革性的工具,有可能幫助軍事決策者。美國國家戰略將人工智能(AI)納入戰爭。《2020年國防授權法》11次提到了人工智能。國防戰略強調了利用人工智能和機器學習方面的商業突破的重要性。人工智能的軍事用途是保留國家安全的一個引人注目的方式。創造工具來支持戰術行動,如摧毀敵軍和從一個點導航到另一個點,具有顯著和可見的效果,使他們在資源有限的環境中在政治上可以接受。它們在訓練和測試方面的可重復性,使它們在采購過程中成為人工智能系統的快速贏家。然而,戰術行動的范圍和時間是有限的。僅在戰術層面上整合人工智能,忽視了在作戰層面上發生的決定性影響。

作戰,也就是實踐者將戰術行動轉化為戰略效果的層面,取決于領導者做出正確決策的能力。聯合部隊海事部分指揮官(JFMCC)的艱巨任務是制定計劃,將戰區戰略和聯合部隊指揮官(JFC)的目標結合起來,通過決定性的海軍交戰來塑造環境。在人工智能的快速認知能力的幫助下,JFMCC將能夠制定并更徹底地分析行動方案(COA)。這些品質對于未來的沖突是必要的。

人工智能必須在戰爭的各個層面進行整體集成,以充分實現其優勢。除了局部的、短期的戰斗,它還需要應用于主要的行動和戰役,涉及整個戰區的數月或數年。在戰爭的戰役(作戰)層面上的實施,放大了為實現戰略目標而進行的有序交戰和同步行動之間的協同作用。除了技術發展之外,行動上的整合將刺激政策和理論的建立,以使作戰人員有意愿使用人工智能。隨著使用人工智能的經驗的增加,其采用率也會增加。為協助海軍作戰計劃而實施的特定人工智能技術可能與那些用于計算射擊方案或在被拒絕的淺灘水域規劃路線的技術不同。然而,在作戰層面的接受度將推動戰術上的使用。

在JFMCC層面,人工智能系統網絡將為決策者提供決定性的優勢,將專注于作戰功能的獨立的人工狹義智能(ANI)單位統一起來將實現最顯著的好處。首先,人工智能解決方案比它們的通用人工智能(AGI)同行更適合于軍事問題的解決。其次,戰爭的性質促使有必要在作戰層面上整合人工智能。最后,雖然有許多方法可以整合,但沿著功能線這樣做會帶來最顯著的好處。不僅在技術意義上吸收人工智能,而且描述其在政策、理論和培訓中的使用,將使海軍能夠充分使用它,并在與我們的戰略競爭對手的競爭中獲得優勢。

如何在海戰領域整合人工智能?

目前人工智能在海上行動中的最佳應用是將復雜的海上行動問題分解成子問題,由人工智能來解決,并組合成COA建議。解決小問題的人工智能需要更少的訓練數據,有更直接的邏輯,并且可以連鎖起來解決更重要的問題。麻省理工學院人工智能實驗室前主任羅德尼-布魯克斯(Rodney Brooks)認為,創建動態環境的符號表示是困難的或不可能的。然而,特定任務的智能體可以利用足夠的傳感器數據智能地行動,更重要的是,可以連貫地互動。通過將簡單的活動連鎖起來,失敗的風險很低,更復雜的問題就可以得到解決。多個簡單的行動可以在低認知層平行運行,并將其輸出結合起來,為更高層次的復雜活動提供支持。這種結構的優點是允許軍事工程師開發和訓練人工智能,以首先解決可操作的問題。對人工智能開發者來說更具挑戰性的功能可以保留只由人類決定的方法,直到他們產生解決這些問題的專業知識。與其等待一個完整的系統,部分系統將提供一個臨時的邊際優勢。

鑒于人工智能可以通過將問題分解成更小的決策來最好地解決問題,問題仍然是如何劃分這些問題。重述作戰任務的一個模式是將它們分成作戰功能:指揮和控制(C2)、通信、情報、火力、運動和機動、保護和維持。這些作戰功能為開展有效行動提供了基礎。它們為一個行動提供了采用手段實現其目的的方法。因此,與決定如何實施這些功能以實現目標的決策者一起使用人工智能是很自然的。

如同應用于海上作戰戰爭,最低層的決策支持系統將由感知環境的活動組成:探測艦艇、飛機和潛艇;燃料水平;天氣;以及其他客觀的戰斗空間數據。通過將外部輸入限制在特定的、低層次的任務上,該系統將最大限度地減少對抗性例子或旨在消極操縱自動系統的數據的風險。中間層將把下層的輸出與作戰目標和因素結合起來,如時間、空間和力量的限制,以提供解決問題的方法和作戰功能。由于上層的對抗性數據注入的威脅較小,這些系統可以使用深度學習。深度學習是機器學習的一個子集,它不像其他形式那樣需要高度格式化的數據,但計算成本會更高,而且容易受到欺騙。深度學習將增加這一層的人類互動,并暴露出更復雜的關系。最高層將把C2流程應用于其他六個業務功能,以產生業務建議。中間層的每個功能人工智能將向其他功能人工智能和最高C2層提供建議。中間層的人工智能對復雜的數據和相鄰單位及C2功能的建議進行理解。

如果將中間層人工智能納入規劃和指導、收集、處理、分析和傳播的情報周期,將促進收集資產的更好分配。判斷對有限的收集資產的請求以滿足行動和戰術信息需求是JFMCC關注的一個問題。在收集計劃期間,人工智能可以使用已知的對手軌跡、地點、個人和組織來定義和優先考慮指定的利益區域(NAI)。在執行過程中,人工智能可以根據優先級驅動收集路線,就像企業用它來規劃送貨路線以減少勞動力、燃料和維護成本一樣。采集計劃者可以通過增加對手監視點的位置和范圍來減少反偵查的風險。在C2層面,指揮官和情報官員可以利用收集成果來證明更多的JFMCC收集資產和COA的修改。這種方法適用于其他功能。

人工智能可以在部隊部署不斷變化和對手存在不確定的環境中改善維持能力。相互沖突的要求使如何使用有限的后勤資產來滿足作戰人員的需求的決策變得復雜。后勤單位較低的生存能力促使人們決定是將它們帶入被對手防御系統拒絕的區域,還是將戰斗飛船引離目標。人工智能可以利用軍事和民用運輸的可用性、預先部署的庫存和供應商的響應能力來制定船舶和飛機需求的解決方案。企業利用人工智能準確預測需求,并分辨出影響運輸和倉儲的采購模式。維持型人工智能可以使用這個過程的一個變種,來計劃在高級后勤支持站點(ALSS)或前方后勤站點(FLS)的材料堆放。它可以決定如何以及何時使用穿梭船和站立船來運送到攻擊組。機器學習將使用燃料、食品和武器庫存、威脅環、戰備水平和維修時間來訓練維持人工智能。維持型人工智能可以提供比人類單獨完成的更有效的量化解決方案,并將其反饋給其他功能區和C2高層。

C2層將對來自下層的決定進行仲裁,并提供一個統一的建議。就像一個軍事組織的指揮官一樣,它將把其副手AI的建議合并起來。人工智能過程的早期階段使用傳感器數據和其他客觀信息來確定指揮官的方向;決定行動方案需要建立對戰斗空間的理解,這是一種更高層次的欣賞。戰斗空間的可變性和模糊性將使這一層的人工智能元素最難開發。最終,該系統將作為一個可信的智能體,壓縮指揮官負責的信息量。壓縮的信息減輕了時間有限的決策者工作時的疑慮負擔,使她能夠向下屬單位發出更及時的命令。

圖1說明了基于這些原則的系統的擬議架構。以對手預測為例,許多單一用途的ANI將在最低層結合原始傳感器和單位報告數據。它將評估敵方單位的最可能位置。公司分析評論、社交媒體和論壇發帖的情緒,以確定產品的滿意度。同樣地,這個系統將通過公開的言論和秘密的報告來確定對手的意圖。它將評估當前和歷史天氣模式,以評估氣候對敵人行動的影響。這三個輸入和其他信息將被功能情報ANI用來形成對敵方COA的評估。同樣,火力節點將使用敵人的組成、JFC的優先級和預測的彈藥可用性來產生目標指導。中間層節點將橫向傳遞他們的評估,以完善鄰近的建議,如部隊保護水平。獨立的功能建議也將直接反饋給C2層,以創建整體行動方案。

圖1. 海上人工智能系統的擬議架構

建議

首先,利用聯合人工智能資源的優勢,針對海軍的具體問題修改標準組件。擅長開發軍事人工智能系統的工程師的稀缺性將限制新系統的開發。美國防部的人工智能戰略具體規定了建立通用的工具、框架和標準,以便進行分散的開發和實驗。使用這些現成的組件,為人工智能決策網的所有子系統創建低級別的系統和標準接口。將海軍的資源集中于采購和實施用于海事具體決策的中層和高層系統。避免技術上令人著迷但無效的解決方案,并通過將職能領域的專家與設計團隊相結合來保持解決海事問題的目標。

第二,創建并維護可通過機器學習攝入的作戰數據數據庫,以訓練海軍人工智能。實施能夠在海上作戰中心(MOC)讀取和集中匯總基本作戰數據報告的技術和工藝,如燃料狀態、導彈裝載量。開發記錄和定性評分作戰決策結果的方法,如對手態勢的變化、傷亡修復率和公眾對行動的反應。將輸入與作戰決策和結果聯系起來的數據庫將加速開發符合現實世界標準的系統。

第三,將人工智能的使用納入政策和條令。條令應該編纂人工智能可以被整合到戰爭戰役層面決策中的領域。明確地說,關于情報、行動、火力、后勤、規劃和通信的海軍作戰出版物應說明人工智能在決策過程中產生優勢的地方和方式。描述海上聯合行動的聯合出版物應明確說明如何將JFC的要求解析為JFMCC的AI系統。如果國防部和海軍的政策對指揮官因整合人工智能的決策建議而產生的責任量進行了定性,那么他們在使用人工智能時就可以采取經過計算的風險。讓指揮官和作戰人員掌握使用人工智能的戰術、技術和程序將加速其在艦隊中的應用。

付費5元查看完整內容

目前,人工智能(AI)為改造許多軍事行動領域提供了巨大的機會,包括作戰、指揮與控制(C2)、后勤、安全和維護,以提高其整體作戰效率。空中和導彈防御(AMD)是一個特別復雜的任務領域,人工智能的應用至關重要。空中導彈防御任務指的是保衛國土、保護區、地面基地、地面部隊或艦艇免受敵對的空中或導彈威脅。AMD的威脅包括敵對的飛機、無人駕駛飛行器(UAV)或機載導彈。AMD行動的復雜性源于威脅的嚴重性、威脅的意外性、對形勢認識的不確定性以及事件的快速發展,因為作戰人員必須迅速評估形勢,制定適當的行動方案,并最好地利用他們的戰爭資產來應對。美國國防部(U.S. DOD)正在研究使用AI系統(或AI-enabled AMD[AI-AMD]系統)作為AMD作戰人員的自動決策輔助工具,以大大減少他們的認知負荷(Jones等人,2020),使AMD決策更快、更好。

人工智能的一個關鍵方面已經聚集了大量的研究興趣,那就是信任。信任是有效團隊的一個基本原則。它同時適用于人類和人機團隊。信任使團隊成員能夠很好地合作,是有效團隊表現的基礎(Lee and See 2004)。與人工智能系統的成功合作將需要人類對人工智能系統有一個校準的信任和依賴程度(泰勒等人,2016)。

隨著更先進和更快的空中和導彈威脅彈藥的發展和投入使用,操作人員更需要在AMD行動中迅速作出監測。不及時的決策和反應將導致災難性的后果。因此,人工智能是一個可能的解決方案,通過自動決策輔助工具加快和加強決策過程。這些AMD自動戰斗管理輔助工具可以幫助戰術操作人員應對更快的決策周期、大量的數據以及需要觀察的幾個系統或屏幕(Galdorisi 2019)。然而,為了有效地利用人工智能能力的潛力,需要操作員的高度信任。操作員對系統的信任程度低,可能會導致人工智能-AMD系統利用不足,受到不適當的監控,或者根本不使用(Floyd, Drinkwater, and Aha 2016)。這些問題中的任何一個都可能導致操作者的工作量不必要的增加,或者任務失敗的可能性。

論文對信任的定義、人機交互(HMI)的概念、信任因素以及包括AMD殺傷鏈模型、威脅場景、架構、模型和功能在內的概念模型進行了廣泛的回顧。有了這樣的認識,論文提出了人工智能-AMD系統的信任框架,對人機交互和人工智能-AMD系統信任因素的描述。論文最后提出了在人類操作者和AI-AMD系統之間實現校準信任的策略

信任框架始于對系統背景的分析。圖1顯示了AI-AMD指揮與控制(C2)系統(包括AI-AMD操作員和決策輔助工具)及其他與之互動的子系統的背景圖,這些子系統有助于操作員和AI-AMD決策輔助工具之間信任的發展。背景圖使我們能夠研究各系統之間的相互作用,以及它們對AI-AMD操作員和決策輔助工具之間信任動態的影響。

圖1. AI-AMD系統框架圖。

這篇論文將信任定義為操作者的態度,即AI-AMD決策輔助工具將有助于實現操作者的目標,即在一個以不確定性和脆弱性為特征的作戰環境中迅速摧毀來襲威脅的任務。這種信任的定義表明,它是對操作者相信或感知AI-AMD決策輔助工具的一種情感評估。為了積極地影響信任,操作者必須親自看到并感受到AI-AMD決策輔助行動的優勢。AI-AMD行動涉及很多不確定因素,以及天氣、電磁干擾和地形等環境因素以及不斷變化的威脅的性質所帶來的脆弱性。操作員將預期AI-AMD決策輔助系統按照 "合同 "執行,以處理這些不確定性和脆弱性。這些合同將是人工智能-AMD決策輔助工具應該執行的感知功能或任務,以及執行這些功能或任務的理想表現。

圖2說明了操作員和AI-AMD決策輔助工具之間的信任框架。y軸代表人類對AI-AMD決策輔助系統的信任程度,x軸代表AI-AMD決策輔助系統的能力。綠色的45°虛線表示最佳的信任水平或校準的信任線,其中的信任與AI-AMD的能力相對應,導致正確的利用(Lee and See 2004)。過度信任由最佳信任水平線以上的區域表示,此時的信任超過了系統能力,導致誤用。低于理想信任水平線的區域表示不信任,這時的信任沒有達到系統能力,導致濫用。假設存在一些默認的信任水平(如黃框所示),目標是制定一個策略,以提高AI-AMD輔助決策能力的信任。在使用該系統時,可能會發生違反信任的情況,從而降低操作員的信任。因此,信任修復行動必須被納入,以保持信任在最佳水平。

圖2. 人類操作員和AI-AMD決策輔助工具之間的信任。

基于功能分配的操作員和AI-AMD決策輔助工具之間的人機交互研究表明,操作員和AI-AMD決策輔助工具應該被設計成在大多數殺戮鏈功能中作為一個 "團隊"運作。這引導論文研究了單獨和集體考慮人類和決策輔助的信任因素。對操作員和人工智能-AMD決策之間的人機交互的研究還顯示,操作員的角色已經從手動控制器變成了監督控制器。因此,一個值得信賴的決策輔助工具是很重要的,因為操作者會期望系統的表現符合預期,以幫助操作者更好地履行他的角色。另外,為了進一步幫助減輕操作者的認知工作量,信息的外部表示、決策輔助工具的建議必須易于閱讀和理解。

關于信任因素,本論文提出了一個 "由外而內 "的框架,如圖3所示。論文首先考慮了與操作環境相關的因素,這些因素描述了AMD操作系統的背景。第二,它研究了與組織環境相關的因素,操作人員和人工智能-AMD系統得到了培訓和發展。第三,論文研究了操作人員和人工智能-AMD決策輔助工具之間的交互,以提出與操作人員、人工智能-AMD、單獨和集體相關的因素。

圖3. 建議的信任因素

圖4顯示了擬議的戰略銜接圖,以實現操作者和AI-AMD輔助決策之間的校準信任。對信任定義、人機界面和信任因素的審查表明,該戰略應關注三個關鍵領域:(1)人類對自動化技術和AI-AMD決策輔助系統的集體和個人感知;(2)增強操作員和AI-AMD決策輔助系統的團隊活力;(3)AI-AMD決策輔助系統的可信度,重點是系統開發。該戰略利用DOTMLPF-P框架提出了三個關鍵原則和五個支持原則。首先,軍事作戰人員需要被告知自動化技術的真正能力和局限性,特別是AI-AMD輔助決策。第二,操作員的培訓要求必須增加,以應對新的工作范圍和不斷變化的威脅。第三,必須在人工智能-AMD決策輔助系統的開發中加入新的要求,以提高系統的可感知的可信度。這三個關鍵原則得到了DOTMLPF-P框架其他方面的支持,如組織、領導、人員、設施和政策。

圖4. 實現操作員和人工智能-AMD決策輔助工具之間校準信任的戰略銜接圖

付費5元查看完整內容
北京阿比特科技有限公司